1
|
Selvam P, Tseng CH, Wang CT, Sun YY, Chen YL, Kao YT, Dahms HU, Cheng CM. 4-Anilinoquinolinylchalcone derivatives mediate antifibrotic effects through ERK/MRTF-a signaling pathway crosstalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11685-11696. [PMID: 40234319 DOI: 10.1007/s11356-025-36382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Quinolones and their analogues are a remarkable group of drugs that have multiple impacts on the human immune system. They are suspected to mediate anti-cancer and anti-inflammatory responses. However, due to their effectiveness in treating a number of significant diseases, such as genitourinary cancer and breast cancer, as well as their antiangiogenic and immunomodulatory qualities, interest in this group of traditional medicines has recently increased. Unfortunately, numerous side effects were observed, such as diarrhea, skin rashes, nausea, vomiting, bleeding, and abnormal liver functions. To overcome these restrictions and to enhance the pharmacological profile, research efforts are focusing on the synthesis and optimization of novel quinolone analogues that lack severe side effects. The present study focuses on the mechanism of action and the signaling pathway involving the 4-anilinoquinolinylchalcone derivative. The objective of the present work was to better understand the mechanism by which anti-fibrosis is mediated by screening 6 synthesized 4-anilinoquinolinylchalcone derivatives for their potential as novel anti-fibrosis therapeutics.
Collapse
Affiliation(s)
- Padhmavathi Selvam
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
| | - Chih Hua Tseng
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Fragrance & Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 801, Taiwan
| | - Ching Tung Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Yu-Tse Kao
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Chih Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Xu D, Yuan X, Li Z, Mu R. Integrin activating molecule-talin1 promotes skin fibrosis in systemic sclerosis. Front Immunol 2024; 15:1400819. [PMID: 38863696 PMCID: PMC11165211 DOI: 10.3389/fimmu.2024.1400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Background Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives We aimed to explore the function of integrin activating molecules in SSc. Methods Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin β1 and β5 in SSc. Conclusions Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.
Collapse
Affiliation(s)
| | | | | | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Yu S, Kalinin AA, Paraskevopoulou MD, Maruggi M, Cheng J, Tang J, Icke I, Luo Y, Wei Q, Scheibe D, Hunter J, Singh S, Nguyen D, Carpenter AE, Horman SR. Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis. Cell Chem Biol 2023; 30:1169-1182.e8. [PMID: 37437569 PMCID: PMC10529501 DOI: 10.1016/j.chembiol.2023.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/11/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Intestinal fibrosis, often caused by inflammatory bowel disease, can lead to intestinal stenosis and obstruction, but there are no approved treatments. Drug discovery has been hindered by the lack of screenable cellular phenotypes. To address this, we used a scalable image-based morphology assay called Cell Painting, augmented with machine learning algorithms, to identify small molecules that could reverse the activated fibrotic phenotype of intestinal myofibroblasts. We then conducted a high-throughput small molecule chemogenomics screen of approximately 5,000 compounds with known targets or mechanisms, which have achieved clinical stage or approval by the FDA. By integrating morphological analyses and AI using pathologically relevant cells and disease-relevant stimuli, we identified several compounds and target classes that are potentially able to treat intestinal fibrosis. This phenotypic screening platform offers significant improvements over conventional methods for identifying a wide range of drug targets.
Collapse
Affiliation(s)
- Shan Yu
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA.
| | | | | | - Marco Maruggi
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Jie Cheng
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Jie Tang
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Ilknur Icke
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Yi Luo
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Qun Wei
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Dan Scheibe
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Joel Hunter
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Shantanu Singh
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deborah Nguyen
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
4
|
Fan Z, Pu X, Li L, Li Q, Jiang T, Lu L, Tang J, Pan M, Zhang L, Chai Y. Mechanism of Polygonum capitatum intervention in pulmonary fibrosis based on network pharmacology and molecular docking technology: A review. Medicine (Baltimore) 2023; 102:e34912. [PMID: 37713849 PMCID: PMC10508485 DOI: 10.1097/md.0000000000034912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 09/17/2023] Open
Abstract
Pulmonary fibrosis (PF) is a serious interstitial disease that includes diffuse collagen deposition of lung tissue. Polygonum capitatum Buch.-Ham. ex D. Don (THL) is a traditional vaccine that has antibacterial and anti-inflammatory effects. In this research, to investigate the mechanism of action of THL in the intervention of pulmonary fibrosis by network pharmacology and molecular docking related research methods, in order to provide a theoretical basis for expanding the scope of THL medication. A total of 49 active ingredients were analyzed and screened in Cephalus cephalusis, including 35 pulmonary fibrosis targets, and 10 key targets such as ALB, EGFR were screened after software analysis. The molecular docking results showed that there were 44 binding energies less than -3 kcal·mol-1 in the 60 docking results, indicating that most proteins had strong binding energies with compounds. The key targets of KEGG enrichment analysis were mainly enriched in 20 core action pathways, such as hemostasis-related pathway, regulation of kinase activity. This study shows that based on network pharmacology, the multicomponent-multitarget-multipathway effect of THL intervention in pulmonary fibrosis is discussed.
Collapse
Affiliation(s)
- Zhiliang Fan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang Pu
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lailai Li
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Li
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Te Jiang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liping Lu
- Technical Patent Department of Guizhou Weimen Pharmaceutical Co., Ltd., Guiyang, China
| | - Jingwen Tang
- Technical Patent Department of Guizhou Weimen Pharmaceutical Co., Ltd., Guiyang, China
| | - Mei Pan
- Technical Patent Department of Guizhou Weimen Pharmaceutical Co., Ltd., Guiyang, China
| | - Liyan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihui Chai
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Peng Y, Li L, Shang J, Zhu H, Liao J, Hong X, Hou FF, Fu H, Liu Y. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Theranostics 2023; 13:3897-3913. [PMID: 37441594 PMCID: PMC10334827 DOI: 10.7150/thno.85250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Renal infiltration of inflammatory cells including macrophages is a crucial event in kidney fibrogenesis. However, how macrophage regulates fibroblast activation in the fibrotic kidney remains elusive. In this study, we show that macrophages promoted fibroblast activation by assembling a vitronectin (Vtn)-enriched, extracellular microenvironment. Methods: We prepared decellularized kidney tissue scaffold (KTS) from normal and fibrotic kidney after unilateral ischemia-reperfusion injury (UIRI) and carried out an unbiased quantitative proteomics analysis. NRK-49F cells were seeded on macrophage-derived extracellular matrix (ECM) scaffold. Genetic Vtn knockout (Vtn-/-) mice and chronic kidney disease (CKD) model with overexpression of Vtn were used to corroborate a role of Vtn/integrin αvβ5/Src in kidney fibrosis. Results: Vtn was identified as one of the most upregulated proteins in the decellularized kidney tissue scaffold from fibrotic kidney by mass spectrometry. Furthermore, Vtn was upregulated in the kidney of mouse models of CKD and primarily expressed and secreted by activated macrophages. Urinary Vtn levels were elevated in CKD patients and inversely correlated with kidney function. Genetic ablation or knockdown of Vtn protected mice from developing kidney fibrosis after injury. Conversely, overexpression of Vtn exacerbated renal fibrotic lesions and aggravated renal insufficiency. We found that macrophage-derived, Vtn-enriched extracellular matrix scaffold promoted fibroblast activation and proliferation. In vitro, Vtn triggered fibroblast activation by stimulating integrin αvβ5 and Src kinase signaling. Either blockade of αvβ5 with neutralizing antibody or pharmacological inhibition of Src by Saracatinib abolished Vtn-induced fibroblast activation. Moreover, Saracatinib dose-dependently ameliorated Vtn-induced kidney fibrosis in vivo. These results demonstrate that macrophage induces fibroblast activation by assembling a Vtn-enriched extracellular microenvironment, which triggers integrin αvβ5 and Src kinase signaling. Conclusion: Our findings uncover a novel mechanism by which macrophages contribute to kidney fibrosis via assembling a Vtn-enriched extracellular niche and suggest that disrupting fibrogenic microenvironment could be a therapeutic strategy for fibrotic CKD.
Collapse
Affiliation(s)
- Yiling Peng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Jingyue Shang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
6
|
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose KA, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1463-1479. [PMID: 35998281 PMCID: PMC9757097 DOI: 10.1164/rccm.202010-3832oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-β (adenovirus transforming growth factor-β) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-β-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-β, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christine Becker
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G. Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Xing Wang
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aurelien Justet
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Service de Pneumologie, UNICAEN, Normandie University, Caen, France
| | - Taylor Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin Readhead
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kelly Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Loukia N. Lili
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Helen M. Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kadi-Ann Rose
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuizi Ding
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Barnthaler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Section of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Qin Li
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Norihito Omote
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Katrina W. Kopf
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- BioPharmaceuticals Research & Development Cell Therapy, Research, and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Anna Backmark
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ivan Rosas
- Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Leslie P. Cousens
- Emerging Innovations, Discovery Sciences, Research & Development, AstraZeneca, Boston, Massachusetts
| | - Joel T. Dudley
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
7
|
Jaeger B, Schupp JC, Plappert L, Terwolbeck O, Artysh N, Kayser G, Engelhard P, Adams TS, Zweigerdt R, Kempf H, Lienenklaus S, Garrels W, Nazarenko I, Jonigk D, Wygrecka M, Klatt D, Schambach A, Kaminski N, Prasse A. Airway basal cells show a dedifferentiated KRT17 highPhenotype and promote fibrosis in idiopathic pulmonary fibrosis. Nat Commun 2022; 13:5637. [PMID: 36163190 PMCID: PMC9513076 DOI: 10.1038/s41467-022-33193-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study, we focus on the properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing (scRNAseq) of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17high PTENlow dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2-/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNAseq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrate that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.
Collapse
Affiliation(s)
- Benedikt Jaeger
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Jonas Christian Schupp
- German Center for Lung Research, BREATH, Hannover, Germany
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - Linda Plappert
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Oliver Terwolbeck
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Nataliia Artysh
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - Gian Kayser
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany
| | - Peggy Engelhard
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | - Taylor Sterling Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wiebke Garrels
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Danny Jonigk
- German Center for Lung Research, BREATH, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Antje Prasse
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
- German Center for Lung Research, BREATH, Hannover, Germany.
- Department of Pulmonology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Haftbaradaran Esfahani P, Westergren J, Lindfors L, Knöll R. Frequency-dependent signaling in cardiac myocytes. Front Physiol 2022; 13:926422. [PMID: 36117711 PMCID: PMC9478484 DOI: 10.3389/fphys.2022.926422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Recent experimental data support the view that signaling activity at the membrane depends on its geometric parameters such as surface area and curvature. However, a mathematical, biophysical concept linking shape to receptor signaling is missing. The membranes of cardiomyocytes are constantly reshaped due to cycles of contraction and relaxation. According to constant-volume behavior of cardiomyocyte contraction, the length shortening is compensated by Z-disc myofilament lattice expansion and dynamic deformation of membrane between two adjacent Z-discs. Both morphological changes are strongly dependent on the frequency of contraction. Here, we developed the hypothesis that dynamic geometry of cardiomyocytes could be important for their plasticity and signaling. This effect may depend on the frequency of the beating heart and may represent a novel concept to explain how changes in frequency affect cardiac signaling. Methods: This hypothesis is almost impossible to answer with experiments, as the in-vitro cardiomyocytes are almost two-dimensional and flattened rather than being in their real in-vivo shape. Therefore, we designed a COMSOL multiphysics program to mathematically model the dynamic geometry of a human cardiomyocyte and explore whether the beating frequency can modulate membrane signal transduction. Src kinase is an important component of cardiac mechanotransduction. We first presented that Src mainly localizes at costameres. Then, the frequency-dependent signaling effect was studied mathematically by numerical simulation of Src-mediated PDGFR signaling pathway. The reaction-convection-diffusion partial differential equation was formulated to simulate PDGFR pathway in a contracting sarcomeric disc for a range of frequencies from 1 to 4 Hz. Results: Simulations exhibits higher concentration of phospho-Src when a cardiomyocyte beats with higher rates. The calculated phospho-Src concentration at 4, 2, and 1 Hz beat rates, comparing to 0 Hz, was 21.5%, 9.4%, and 4.7% higher, respectively. Conclusion: Here we provide mathematical evidence for a novel concept in biology. Cell shape directly translates into signaling, an effect of importance particularly for the myocardium, where cells continuously reshape their membranes. The concept of locality of surface-to-volume ratios is demonstrated to lead to changes in membrane-mediated signaling and may help to explain the remarkable plasticity of the myocardium in response to biomechanical stress.
Collapse
Affiliation(s)
| | | | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, Sweden
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- *Correspondence: Ralph Knöll,
| |
Collapse
|
9
|
Identifying the Potential Role and Prognostic Value of the Platelet-Derived Growth Factor Pathway in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9498010. [PMID: 35342405 PMCID: PMC8947876 DOI: 10.1155/2022/9498010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The platelet-derived growth factor (PDGF) pathway is important in angiogenesis, which can accelerate the formation of vessels in tumor tissues and promote the progression of malignant tumors. To clarify the role of PDGF in the occurrence of renal cell carcinoma and targeted drug resistance, we explored the pathway in kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis with the aim of supporting comprehensive and individualized therapy. First, we found 40 genes related to the PDGF pathway through gene set enrichment analysis and then obtained their expressions and clinical data in 32 different cancers from The Cancer Genome Atlas (TCGA). Mutations in these genes (including copy number and single-nucleotide variation) and mRNA expression were also detected. Next, we conducted a hazard ratio analysis to determine whether the PDGF pathway genes were risk or protective factors in tumors. Although PDGF-related genes acted as traditional oncogenes and were closely related to tumor angiogenesis in many cancers, our results indicated that most genes had a protective role in KIRC. We further analyzed the methylation modification of PDGF pathway genes and found that they were prevalent in 32 different cancers. Furthermore, 539 KIRC samples obtained from TCGA were divided into three clusters based on the mRNA expression of PDGF genes, including normal, inactive, and active PDGF gene expressions. The results from survival curve analysis indicated that the active PDGF cluster of patients had the best survival rate. Using the three clusters, we studied the correlation between the PDGF pathway and 12 common targeted drugs, as well as classical oncogenes and infiltrating immune cells. A prognostic risk model was constructed based on the PDGF score using LASSO-Cox regression analysis to analyze the value of the model in predicting the prognosis of patients with KIRC. Finally, 11 genes were selected for LASSO regression analysis, and the results demonstrated the high predictive value of this risk model and its close relationship with the pathological characteristics of KIRC (metastasis, size, grade, stage, etc.). In addition, we found that the risk score was an independent risk factor correlated with overall survival through univariate and multivariate analyses and a nomogram was built to assess patient prognosis. In conclusion, the occurrence and development of KIRC may be associated with an abnormally activated PDGF pathway, which may be a potential drug target in the treatment of KIRC.
Collapse
|
10
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
11
|
Wu X, Li W, Luo Z, Chen Y. The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis: A network pharmacology and molecular docking study. Medicine (Baltimore) 2022; 101:e28787. [PMID: 35147109 PMCID: PMC8830865 DOI: 10.1097/md.0000000000028787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At present, there was no evidence that any drugs other than lung transplantation can effectively treat Idiopathic Pulmonary Fibrosis (IPF). Ligusticum wallichii, or Chinese name Chuan xiong has been widely used in different fibrosis fields. Our aim is to use network pharmacology and molecular docking to explore the pharmacological mechanism of the Traditional Chinese medicine (TCM) Ligusticum wallichii to improve IPF. MATERIALS AND METHODS The main chemical components and targets of Ligusticum wallichii were obtained from TCMSP, Swiss Target Prediction and Phammapper databases, and the targets were uniformly regulated in the Uniprot protein database after the combination. The main targets of IPF were obtained through Gencards, OMIM, TTD and DRUGBANK databases, and protein interaction analysis was carried out by using String to build PPI network. Metascape platform was used to analyze its involved biological processes and pathways, and Cytoscape3.8.2 software was used to construct "component-IPF target-pathway" network. And molecular docking verification was conducted through Auto Dock software. RESULTS The active ingredients of Ligusticum wallichii were Myricanone, Wallichilide, Perlolyrine, Senkyunone, Mandenol, Sitosterol and FA. The core targets for it to improve IPF were MAPK1, MAPK14, SRC, BCL2L1, MDM2, PTGS2, TGFB2, F2, MMP2, MMP9, and so on. The molecular docking verification showed that the molecular docking affinity of the core active compounds in Ligusticum wallichii (Myricanone, wallichilide, Perlolyrine) was <0 with MAPK1, MAPK14, and SRC. Perlolyrine has the strongest molecular docking ability, and its docking ability with SRC (-6.59 kJ/mol) is particularly prominent. Its biological pathway to improve IPF was mainly acted on the pathways in cancer, proteoglycans in cancer, and endocrine resistance, etc. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of Ligusticum wallichii to improve IPF.
Collapse
|
12
|
Paradiso F, Quintela M, Lenna S, Serpelloni S, James D, Caserta S, Conlan S, Francis L, Taraballi F. Studying Activated Fibroblast Phenotypes and Fibrosis-Linked Mechanosensing Using 3D Biomimetic Models. Macromol Biosci 2022; 22:e2100450. [PMID: 35014177 DOI: 10.1002/mabi.202100450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis and solid tumor progression are closely related, with both involving pathways associated with chronic wound dysregulation. Fibroblasts contribute to extracellular matrix (ECM) remodeling in these processes, a crucial step in scarring, organ failure, and tumor growth, but little is known about the biophysical evolution of remodeling regulation during the development and progression of matrix-related diseases including fibrosis and cancer. A 3D collagen-based scaffold model is employed here to mimic mechanical changes in normal (2 kPa, soft) versus advanced pathological (12 kPa, stiff) tissues. Activated fibroblasts grown on stiff scaffolds show lower migration and increased cell circularity compared to those on soft scaffolds. This is reflected in gene expression profiles, with cells cultured on stiff scaffolds showing upregulated DNA replication, DNA repair, and chromosome organization gene clusters, and a concomitant loss of ability to remodel and deposit ECM. Soft scaffolds can reproduce biophysically meaningful microenvironments to investigate early stage processes in wound healing and tumor niche formation, while stiff scaffolds can mimic advanced fibrotic and cancer stages. These results establish the need for tunable, affordable 3D scaffolds as platforms for aberrant stroma research and reveal the contribution of physiological and pathological microenvironment biomechanics to gene expression changes in the stromal compartment.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales, SA28PP, UK.,Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St, Houston, TX, 77030, USA
| | - Marcos Quintela
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales, SA28PP, UK
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St, Houston, TX, 77030, USA
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St, Houston, TX, 77030, USA
| | - David James
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales, SA28PP, UK
| | - Sergio Caserta
- Department of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, P.zzle Tecchio 80, Naples, 80125, Italy
| | - Steve Conlan
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales, SA28PP, UK
| | - Lewis Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales, SA28PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Yeung V, Sriram S, Tran JA, Guo X, Hutcheon AEK, Zieske JD, Karamichos D, Ciolino JB. FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro. Biomolecules 2021; 11:1682. [PMID: 34827680 PMCID: PMC8616004 DOI: 10.3390/biom11111682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis-ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Sriniwas Sriram
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Jennifer A. Tran
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| |
Collapse
|
14
|
Katoh K. Regulation of Fibroblast Cell Polarity by Src Tyrosine Kinase. Biomedicines 2021; 9:biomedicines9020135. [PMID: 33535441 PMCID: PMC7912711 DOI: 10.3390/biomedicines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Src protein tyrosine kinases (SFKs) are a family of nonreceptor tyrosine kinases that are localized beneath the plasma membrane and are activated during cell adhesion, migration, and elongation. Due to their involvement in the activation of signal transduction cascades, SFKs have been suggested to play important roles in the determination of cell polarity during cell extension and elongation. However, the mechanism underlying Src-mediated polarity formation remains unclear. The present study was performed to investigate the mechanisms underlying Src-induced cell polarity formation and cell elongation using Src knockout fibroblasts (SYFs) together with an inhibitor of Src. Normal and Src knockout fibroblasts were also transfected with a wild-type c-Src, dominant negative c-Src, or constitutively active c-Src gene to analyze the changes in cell morphology. SYF cells cultured on a glass substrate elongated symmetrically into spindle-shaped cells, with the formation of focal adhesions at both ends of the cells. When normal fibroblasts were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine kinases, they elongated into symmetrical spindle-shaped cells, similar to SYF cells. These results suggest that cell polarity during extension and elongation may be regulated by SFKs and that the expression and regulation of Src are important for the formation of polarity during cell elongation.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
15
|
Maldonado H, Hagood JS. Cooperative signaling between integrins and growth factor receptors in fibrosis. J Mol Med (Berl) 2021; 99:213-224. [DOI: 10.1007/s00109-020-02026-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
|
16
|
Veith C, Hristova M, Danyal K, Habibovic A, Dustin CM, McDonough JE, Vanaudenaerde BM, Kreuter M, Schneider MA, Kahn N, van Schooten FJ, Boots AW, van der Vliet A. Profibrotic epithelial TGF-β1 signaling involves NOX4-mitochondria cross talk and redox-mediated activation of the tyrosine kinase FYN. Am J Physiol Lung Cell Mol Physiol 2020; 320:L356-L367. [PMID: 33325804 DOI: 10.1152/ajplung.00444.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-β (TGF-β) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-β signaling is not known. Here, we demonstrate that TGF-β1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-β1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-β-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-β1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - John E McDonough
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
17
|
Src family kinases and pulmonary fibrosis: A review. Biomed Pharmacother 2020; 127:110183. [PMID: 32388241 DOI: 10.1016/j.biopha.2020.110183] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 01/15/2023] Open
Abstract
Src family kinases (SFKs) is a non-receptor protein tyrosine kinases family. They are crucial in signal transduction and regulation of various cell biological processes, such as proliferation, differentiation and apoptosis. The role and mechanism of SFKs in tumorigenesis have been widely studied. However, more and more studies have also shown that SFKs are involved in the pathogenesis of pulmonary fibrosis (PF). Myofibroblasts activation, epithelial-mesenchymal transition and inflammation response are three pivotal pathomechanisms in the development of pulmonary fibrotic disease. In this article, we summarize the roles of SFKs in these biological processes. SFKs play a crucial role in the pathogenesis of PF, making it a promising molecular target for the treatment of these diseases. We will pay special attention to the role of SFKs in idiopathic pulmonary fibrosis (IPF), and also emphasize the important findings in other pulmonary fibrotic diseases because their pathological mechanisms are similar. We will then describe the translation results obtained with SFKs inhibitors in basic and clinical studies.
Collapse
|
18
|
Wan H, Xie T, Xu Q, Hu X, Xing S, Yang H, Gao Y, He Z. Thy-1 depletion and integrin β3 upregulation-mediated PI3K-Akt-mTOR pathway activation inhibits lung fibroblast autophagy in lipopolysaccharide-induced pulmonary fibrosis. J Transl Med 2019; 99:1636-1649. [PMID: 31249375 PMCID: PMC7102294 DOI: 10.1038/s41374-019-0281-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced autophagy inhibition in lung fibroblasts is closely associated with the activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-Akt-mTOR) pathway. However, the underlying mechanism remains unknown. In this study, we demonstrated that LPS activated the PI3K-Akt-mTOR pathway and inhibited lung fibroblast autophagy by depleting thymocyte differentiation antigen-1 (Thy-1) and upregulating integrin β3 (Itgb3). Challenge of the human lung fibroblast MRC-5 cell line with LPS resulted in significant upregulation of integrin β3, activation of the PI3K-Akt-mTOR pathway and inhibition of autophagy, which could be abolished by integrin β3 silencing by specific shRNA or treatment with the integrin β3 inhibitor cilengitide. Meanwhile, LPS could inhibit Thy-1 expression accompanied with PI3K-Akt-mTOR pathway activation and lung fibroblast autophagy inhibition; these effects could be prevented by Thy-1 overexpression. Meanwhile, Thy-1 downregulation with Thy-1 shRNA could mimic the effects of LPS, inducing the activation of PI3K-Akt-mTOR pathway and inhibiting lung fibroblast autophagy. Furthermore, protein immunoprecipitation analysis demonstrated that LPS reduced the binding of Thy-1 to integrin β3. Thy-1 downregulation, integrin β3 upregulation and autophagy inhibition were also detected in a mouse model of LPS-induced pulmonary fibrosis, which could be prohibited by intratracheal injection of Thy-1 overexpressing adeno-associated virus (AAV) or intraperitoneal injection of the integrin β3 inhibitor cilengitide. In conclusion, this study demonstrated that Thy-1 depletion and integrin β3 upregulation are involved in LPS-induced pulmonary fibrosis, and may serve as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hanxi Wan
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Tingting Xie
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Qiaoyi Xu
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Xiaoting Hu
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Shunpeng Xing
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Hao Yang
- 0000000123704535grid.24516.34Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433 Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127, Shanghai, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127, Shanghai, China.
| |
Collapse
|
19
|
Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L162-L172. [PMID: 29696986 DOI: 10.1152/ajplung.00037.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.
Collapse
Affiliation(s)
- David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Cecilia M Prele
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| |
Collapse
|
20
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|