1
|
Jastrzębska J, Frankowska M, Wesołowska J, Filip M, Smaga I. Dietary Intervention with Omega-3 Fatty Acids Mitigates Maternal High-Fat Diet-Induced Behavioral and Myelin-Related Alterations in Adult Offspring. Curr Neuropharmacol 2025; 23:329-348. [PMID: 39492773 PMCID: PMC11808589 DOI: 10.2174/1570159x23666241014164940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Maternal high-fat diet (HFD) during pregnancy and lactation induces depression- like phenotype and provokes myelin-related changes in rat offspring in the prefrontal cortex (PFCTX), which persist even to adulthood. OBJECTIVE Due to the plasticity of the developing brain, it was decided to analyze whether depressionlike phenotype and myelin-related changes in the early lifetime induced by maternal HFD (60% energy from fat) could be reversed by the omega-3 fatty acid-enriched diet (Ω3D) given from the postweaning period until adulthood (63rd day of life) in offspring. METHODS We analyzed the effect of post-weaning Ω3D on the depressive-like phenotype (assessed by the forced swimming test) and myelin-related changes (measured using RT-qPCR, ELISA, and immunofluorescence staining) in the PFCTX of adult offspring. RESULTS Ω3D reversed increased immobility time in adult offspring induced by maternal HFD, without affecting the animals' locomotor activity. Molecularly, Ω3D normalized the reduced expression levels of myelin-oligodendrocyte glycoprotein (MOG), as well as myelin and lymphocyte protein (MAL) in males and MOG in females in the PFCTX, changes initially induced by maternal HFD. Additionally, Ω3D normalized the quantity of oligodendrocyte precursor cells and mature oligodendrocytes in the prelimbic, infralimbic, and cingulate cortex in males, which were reduced following maternal HFD exposure. In females, the Ω3D effect was less pronounced, with normalization of oligodendrocyte precursors occurring only in the infralimbic cortex. CONCLUSION These findings suggest that Ω3D may play a significant role in correcting behavioral and neurobiological changes caused by adverse prenatal conditions.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Julita Wesołowska
- Laboratory of Microscopic Imaging, Maj Institute of Pharmacology Polish Academy of Sciences, CEPHARES, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
2
|
Changes in regulators of lipid metabolism in the brain: a study of animal models of depression and hypothyroidism. Pharmacol Rep 2022; 74:859-870. [PMID: 35951260 PMCID: PMC9584974 DOI: 10.1007/s43440-022-00395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Metabolic disturbances in the brain are assumed to be early changes involved in the pathogenesis of depression, and these alterations may be intensified by a deficiency of thyroid hormones. In contrast to glucose metabolism, the link between altered brain lipids and the pathogenesis of depression is poorly understood, therefore in the present study, we determine transcription factors and enzymes regulating cholesterol and fatty acid biosynthesis in the brain structures in an animal model of depression, hypothyroidism and the coexistence of these diseases. In used model of depression, a decrease in the active form of the transcription factor SREBP-2 in the hippocampus was demonstrated, thus suggesting a reduction in cholesterol biosynthesis. In turn, in the hypothyroidism model, the reduction of cholesterol biosynthesis in the frontal cortex was demonstrated by both the reduction of mature SREBP-2 and the concentration of enzymes involved in cholesterol biosynthesis. The lower expression of LDL receptors in the frontal cortex indicates the restriction of cholesterol uptake into the cells in the model of coexistence of depression and hypothyroidism. Moreover, the identified changes in the levels of SNAP-25, GLP-1R and GLP-2R pointed to disturbances in synaptic plasticity and neuroprotection mechanisms in the examined brain structures. In conclusion, a reduction in cholesterol synthesis in the hippocampus in the model of depression may be the reason for the reduction of synaptic plasticity, whereas a lower level of LDL-R occurring in the frontal cortex in rats from the model of depression and hypothyroidism coexistence could be the reason of anxiogenic and depression-like behaviors.
Collapse
|
3
|
Fatty acid dysregulation in the anterior cingulate cortex of depressed suicides with a history of child abuse. Transl Psychiatry 2021; 11:535. [PMID: 34663786 PMCID: PMC8523684 DOI: 10.1038/s41398-021-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Child abuse (CA) strongly increases the lifetime risk of suffering from major depression and predicts an unfavorable course for the illness. Severe CA has been associated with a specific dysregulation of oligodendrocyte function and thinner myelin sheaths in the human anterior cingulate cortex (ACC) white matter. Given that myelin is extremely lipid-rich, it is plausible that these findings may be accompanied by a disruption of the lipid profile that composes the myelin sheath. This is important to explore since the composition of fatty acids (FA) in myelin phospholipids can influence its stability, permeability, and compactness. Therefore, the objective of this study was to quantify and compare FA concentrations in postmortem ACC white matter in the choline glycerophospholipid pool (ChoGpl), a key myelin phospholipid pool, between adult depressed suicides with a history of CA (DS-CA) matched depressed suicides without CA (DS) and healthy non-psychiatric controls (CTRL). Total lipids were extracted from 101 subjects according to the Folch method and separated into respective classes using thin-layer chromatography. FA methyl esters from the ChoGpl fraction were quantified using gas chromatography. Our analysis revealed specific effects of CA in FAs from the arachidonic acid synthesis pathway, which was further validated with RNA-sequencing data. Furthermore, the concentration of most FAs was found to decrease with age. By extending the previous molecular level findings linking CA with altered myelination in the ACC, these results provide further insights regarding white matter alterations associated with early-life adversity.
Collapse
|
4
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|
5
|
Rzepka Z, Maszczyk M, Wrześniok D. Biological function of cobalamin: causes and effects of
hypocobalaminemia at the molecular, cellular, tissue
and organism level. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cobalamin (vitamin B12) is a complex compound, which is classified as a water-soluble
vitamin. Absorption of cobalamin in the gut and its transport to cells is a unique process,
in which many proteins are involved. The loss of function of these proteins causes serious
cell homeostasis disturbance, which may result in the dysfunction of many tissues and
organs. Vitamin B12, a cofactor of methionine synthase, provides methylation process and
nucleic acid synthesis. Cobalamin is also necessary for methylmalonyl-CoA mutase activity.
The enzyme synthesizes succinyl-CoA, an intermediate in tricarboxylic acid cycle.
Vitamin B12 deficiency is an important and current health problem. It may be caused by
insufficient dietary intake, age, or disease-related malabsorption and genetic defects of
mechanisms involved in the absorption, transport and metabolism of cobalamin. Hypocobalaminemia can also result from long-term pharmacotherapy with medicines:
metformin, proton pump inhibitors (e.g. omeprazole) and H2-receptor antagonists
(e.g. ranitidine).
Significant clinical symptoms of cobalamin deficiency include hematological abnormalities,
mainly megaloblastic anemia, as well as neurological disorders resulting from degeneration
within the nervous system. Early diagnosis and starting treatment with vitamin B12 increase
chances for a complete cure. Therefore, the diagnostically important symptom of hypocobalaminemia
may be skin manifestations, mainly hyperpigmentations, but also premature
graying of hair.
The aim of this review article was to summarize the current state of knowledge on the
biological function of cobalamin, as well as the causes and consequences of its deficiency
at the molecular, cellular, tissue and organism level.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Mateusz Maszczyk
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Dorota Wrześniok
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| |
Collapse
|
6
|
Ducrocq F, Walle R, Contini A, Oummadi A, Caraballo B, van der Veldt S, Boyer ML, Aby F, Tolentino-Cortez T, Helbling JC, Martine L, Grégoire S, Cabaret S, Vancassel S, Layé S, Kang JX, Fioramonti X, Berdeaux O, Barreda-Gómez G, Masson E, Ferreira G, Ma DWL, Bosch-Bouju C, De Smedt-Peyrusse V, Trifilieff P. Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits. Cell Metab 2020; 31:755-772.e7. [PMID: 32142670 DOI: 10.1016/j.cmet.2020.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/02/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023]
Abstract
Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain region for the modulation of motivation. Strikingly, transgenically preventing n-3 PUFA deficiency selectively in D2-expressing neurons normalizes MSN collateral inhibition and enhances motivation. These results constitute the first demonstration of a causal link between a behavioral deficit and n-3 PUFA decrease in a discrete neuronal population and suggest that lower n-3 PUFA biostatus in psychopathologies could participate in the etiology of reward-related symptoms.
Collapse
Affiliation(s)
- Fabien Ducrocq
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Baptiste Caraballo
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Marie-Lou Boyer
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Frank Aby
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | | | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sylvie Vancassel
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Jing Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Xavier Fioramonti
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Guillaume Ferreira
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E., Guelph, ON N1G2W1, Canada
| | | | | | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
7
|
Beasley CL, Honer WG, Ramos-Miguel A, Vila-Rodriguez F, Barr AM. Prefrontal fatty acid composition in schizophrenia and bipolar disorder: Association with reelin expression. Schizophr Res 2020; 215:493-498. [PMID: 28583708 DOI: 10.1016/j.schres.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The extracellular matrix protein reelin regulates early brain development and synaptic plasticity in adulthood. Reelin is decreased in the postmortem brain in schizophrenia patients. Reelin's two receptors, ApoER2 and VLDLR, are also substrates for ApoE - a key lipoprotein that regulates phospholipid homeostasis in the brain. The goal of the present study was therefore to examine phospholipids and their constituent fatty acids, and determine whether there is an association between reelin, its receptors and phospholipids in the brain. METHODS Dorsolateral prefrontal cortex (BA9) grey matter was obtained from the Stanley Foundation Neuropathology Consortium. Samples included tissue from 35 controls, 35 schizophrenia and 34 bipolar disorder patients. Phospholipids were measured using gas liquid chromatography. RESULTS We quantified 15 individual fatty acid or plasmalogen species for phosphatidylethanolamine and phosphatidylcholine fractions, each comprising >0.5% of the total fatty acid pool. There were no group differences in phospholipids or individual fatty acid species after correcting for multiple comparisons. However, for the entire cohort, both the polyunsaturated subclass of fatty acids, and ApoE, correlated significantly with reelin expression, with a number of individual ω-6 fatty acid species also demonstrating a significant positive correlation. There was a non-significant trend for similar effects with VLDLR expression as for reelin. CONCLUSION Phospholipids and fatty acids in the dorsolateral cortex do not differ in patients with schizophrenia, bipolar disorder and controls. Reelin expression in this brain region is associated with polyunsaturated fatty acids and ApoE, suggesting further study of potential physiological interactions between these substrates is warranted.
Collapse
Affiliation(s)
- Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alfredo Ramos-Miguel
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alasdair M Barr
- Department of Pharmacology, 2176 Health Sciences Mall, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.
| |
Collapse
|
8
|
Fernández R, Garate J, Tolentino-Cortez T, Herraiz A, Lombardero L, Ducrocq F, Rodríguez-Puertas R, Trifilieff P, Astigarraga E, Barreda-Gómez G, Fernández JA. Microarray and Mass Spectrometry-Based Methodology for Lipid Profiling of Tissues and Cell Cultures. Anal Chem 2019; 91:15967-15973. [PMID: 31751120 DOI: 10.1021/acs.analchem.9b04529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.
Collapse
Affiliation(s)
- Roberto Fernández
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | | | - Ainara Herraiz
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | - Fabien Ducrocq
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Rafael Rodríguez-Puertas
- Neurodegenerative Diseases , Biocruces Bizkaia Health Research Institute , 48903 Barakaldo , Spain
| | - Pierre Trifilieff
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Egoitz Astigarraga
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | - Gabriel Barreda-Gómez
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | |
Collapse
|
9
|
Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv Rev Psychiatry 2019; 27:94-107. [PMID: 30633010 PMCID: PMC6411441 DOI: 10.1097/hrp.0000000000000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meta-analytic evidence indicates that mood and psychotic disorders are associated with both omega-3 polyunsaturated fatty acid (omega-3 PUFA) deficits and progressive regional gray and white matter pathology. Although the association between omega-3 PUFA insufficiency and progressive neuropathological processes remains speculative, evidence from translational research suggests that omega-3 PUFA insufficiency may represent a plausible and modifiable risk factor not only for enduring neurodevelopmental abnormalities in brain structure and function, but also for increased vulnerability to neurodegenerative processes. Recent evidence from human neuroimaging studies suggests that lower omega-3 PUFA intake/status is associated with accelerated gray matter atrophy in healthy middle-aged and elderly adults, particularly in brain regions consistently implicated in mood and psychotic disorders, including the amygdala, anterior cingulate, hippocampus, prefrontal cortex, and temporal cortex. Human neuroimaging evidence also suggests that both low omega-3 PUFA intake/status and psychiatric disorders are associated with reductions in white matter microstructural integrity and increased rates of white matter hyperintensities. Preliminary evidence suggests that increasing omega-3 PUFA status is protective against gray matter atrophy and deficits in white matter microstructural integrity in patients with mood and psychotic disorders. Plausible mechanisms mediating this relationship include elevated pro-inflammatory signaling, increased synaptic regression, and reductions in cerebral perfusion. Together these associations encourage additional neuroimaging research to directly investigate whether increasing omega-3 PUFA status can mitigate neuropathological processes in patients with, or at high risk for, psychiatric disorders.
Collapse
|
10
|
Iritani S, Torii Y, Habuchi C, Sekiguchi H, Fujishiro H, Yoshida M, Go Y, Iriki A, Isoda M, Ozaki N. The neuropathological investigation of the brain in a monkey model of autism spectrum disorder with ABCA13 deletion. Int J Dev Neurosci 2018; 71:130-139. [PMID: 30201574 DOI: 10.1016/j.ijdevneu.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
The precise biological etiology of autism spectrum disorder (ASD) remains unknown. In this study, we investigated the neuropathology of a monkey model of autism Human ABCA13 is the largest ABC transporter protein, with a length of 5058 amino acids and a predicted molecular weight of >450 kDa. However, the function of this protein remains to be elucidated. This protein is thought to be associated with major psychiatric disease. Using this monkey model of autism with an ABCA13 deletion and a mutation of 5HT2c, we neuropathologically investigated the changes in the neuronal formation in the frontal cortex. As a result, the neuronal formation in the cortex was found to be disorganized with regard to the neuronal size and laminal distribution in the ABCA13 deletion monkey. The catecholaminergic and GABAergic neuronal systems, serotoninergic neuronal formation (5HT2c) were also found to be impaired by an immunohistochemical evaluation. This study suggested that ABCA13 deficit induces the impairment of neuronal maturation or migration, and the function of the neuronal network. This protein might thus play a role in the neurodevelopmental function of the central nervous system and the dysfunction of this protein may be a pathophysiological cause of mental disorders including autism.
Collapse
Affiliation(s)
- Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Astushi Iriki
- Laboratory for Symbolic Cognitive Developmen RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masaki Isoda
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017; 95:135-142. [PMID: 28843843 DOI: 10.1016/j.jpsychires.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, Irving K. Barber School of Arts & Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Roger A Dyer
- Nutrition and Metabolism Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Lake EMR, Steffler EA, Rowley CD, Sehmbi M, Minuzzi L, Frey BN, Bock NA. Altered intracortical myelin staining in the dorsolateral prefrontal cortex in severe mental illness. Eur Arch Psychiatry Clin Neurosci 2017; 267:369-376. [PMID: 27629158 DOI: 10.1007/s00406-016-0730-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022]
Abstract
Imaging and postmortem studies into the severe mental illnesses of major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have revealed deficiencies in the myelination of deep white matter tracts of the brain. Recent studies have further suggested that deficits could extend to myelinated fibers running through the cortex in those illnesses. Disruptions in this intracortical myelin may underlie functional symptomology in MDD, BD, and SZ; thus, in this study, we hypothesized that individuals with these illnesses may have reduced myelin staining relative to controls in the cerebral cortex. We stained 60 sections of dorsolateral prefrontal cortex for myelin with Luxol® fast blue in four groups: 15 BD, 15 MDD, 15 SZ, and 15 controls with no psychiatric illness. We digitally measured optical tissue attenuation reflecting the amount of myelin staining across six cortical depths in the middle frontal gyrus (MFG), in superficial white matter in the crown of the MFG, and in deep white matter. We found that a diagnosis of MDD or SZ meant that optical tissue attenuation was significantly reduced in the shallowest depths of the cortex. Furthermore, there was a trend toward reduced optical tissue attenuation in all illnesses across all myelinated regions we studied. These results encourage future studies into potential reductions in intracortical myelin in severe mental illness.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Eric A Steffler
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Psychology Complex, Room 304, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Christopher D Rowley
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Psychology Complex, Room 304, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Manpreet Sehmbi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Psychology Complex, Room 304, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
13
|
Polyunsaturated fatty acids and recurrent mood disorders: Phenomenology, mechanisms, and clinical application. Prog Lipid Res 2017; 66:1-13. [PMID: 28069365 DOI: 10.1016/j.plipres.2017.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders.
Collapse
|
14
|
Fatty acid composition of the postmortem corpus callosum of patients with schizophrenia, bipolar disorder, or major depressive disorder. Eur Psychiatry 2016; 39:51-56. [PMID: 27821355 DOI: 10.1016/j.eurpsy.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/22/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder. METHODS Fatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). RESULTS In contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis. CONCLUSIONS Patients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation.
Collapse
|
15
|
Nishimura Y, Takahashi K, Ohtani T, Ikeda-Sugita R, Okada N, Kasai K, Okazaki Y. Social Function and Frontopolar Activation during a Cognitive Task in Patients with Bipolar Disorder. Neuropsychobiology 2016; 72:81-90. [PMID: 26509704 DOI: 10.1159/000437431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 07/06/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND It is important to understand the neural basis of functional impairments in patients with bipolar disorder (BD) in order to be able to address the recovery. Recently, neurocognitive impairment emerged as a predictor of psychosocial function. A number of functional brain imaging studies have shown that social function is associated with activation of the prefrontal cortex during a cognitive task in healthy adults, and in patients with major depressive disorder and schizophrenia. However, few studies have been conducted in patients with BD. METHODS We performed multichannel near-infrared spectroscopy (NIRS) imaging to investigate the activation of the prefrontal cortex during a verbal fluency task (VFT). We also used the Social Adaptation Self-Evaluation Scale (SASS) to assess social functioning in patients with BD. Thirty-three depressed patients with BD and 65 age-, gender- and task performance-matched healthy controls (HCs) participated in this study. RESULTS Depressed patients with BD showed reduced activation in the broader bilateral prefrontal cortex during the VFT compared to HCs. Moreover, a significant positive correlation was observed between the total SASS scores and right prefrontal activation in patients with BD. In the SASS subscores, the interest and motivation factor was also positively correlated with frontopolar activation. CONCLUSIONS These results suggest an association between social function and prefrontal activation in depressed patients with BD. The present study provides evidence that NIRS imaging could be helpful in understanding the neural basis of social function.
Collapse
Affiliation(s)
- Yukika Nishimura
- Department of Clinical Laboratory, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Hamazaki K, Maekawa M, Toyota T, Iwayama Y, Dean B, Hamazaki T, Yoshikawa T. Fatty acid composition and fatty acid binding protein expression in the postmortem frontal cortex of patients with schizophrenia: A case-control study. Schizophr Res 2016; 171:225-32. [PMID: 26792082 DOI: 10.1016/j.schres.2016.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), have been found in the postmortem frontal cortex, particularly the orbitofrontal cortex, of patients with schizophrenia. Altered mRNA expression of fatty acid binding protein (FABP) 5 and FABP7 has likewise been reported. METHODS This study investigated whether PUFAs in the frontal cortex [Brodmann area (BA) 8] and mRNA expression of FABP3, 5, and 7 were different between patients with schizophrenia (n=95) and unaffected controls (n=93). RESULTS In contrast to previous studies, no significant differences were found in DHA between the groups. Although arachidonic acid (AA) levels were significantly decreased in the schizophrenia group, no association was found between AA and schizophrenia on logistic regression analysis. Only FABP3 expression was significantly lower in the schizophrenia group than in the control group. Significant inverse associations were seen between only two saturated fatty acids, behenic acid and lignoceric acid, and FABP3 expression. CONCLUSIONS We found no evidence that major PUFA levels in BA8 are involved in the etiology of schizophrenia. Although FABP3 expression was not correlated with any of the major PUFAs, it might play a novel role in the pathology of BA8 in a subset of patients with schizophrenia.
Collapse
Affiliation(s)
- Kei Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Public Health, Faculty of Medicine, University of Toyama, Toyama City, Toyama 9300194, Japan.
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Tomohito Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Messamore E, McNamara RK. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation. Lipids Health Dis 2016; 15:25. [PMID: 26860589 PMCID: PMC4748485 DOI: 10.1186/s12944-016-0196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case–control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice.
Collapse
Affiliation(s)
- Erik Messamore
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.,Lindner Center of HOPE, Mason, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.
| |
Collapse
|
18
|
The impact of chronic stress on the rat brain lipidome. Mol Psychiatry 2016; 21:80-8. [PMID: 25754084 PMCID: PMC4565780 DOI: 10.1038/mp.2015.14] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Abstract
Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer's disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.
Collapse
|
19
|
Tomlinson L, Leiton CV, Colognato H. Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology 2015; 110:548-562. [PMID: 26415537 DOI: 10.1016/j.neuropharm.2015.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022]
Abstract
Many behavioral experiences are known to promote hippocampal neurogenesis. In contrast, the ability of behavioral experiences to influence the production of oligodendrocytes and myelin sheath formation remains relatively unknown. However, several recent studies indicate that voluntary exercise and environmental enrichment can positively influence both oligodendrogenesis and myelination, and that, in contrast, social isolation can negatively influence myelination. In this review we summarize studies addressing the influence of behavioral experiences on oligodendrocyte lineage cells and myelin, and highlight potential mechanisms including experience-dependent neuronal activity, metabolites, and stress effectors, as well as both local and systemic secreted factors. Although more study is required to better understand the underlying mechanisms by which behavioral experiences regulate oligodendrocyte lineage cells, this exciting and newly emerging field has already revealed that oligodendrocytes and their progenitors are highly responsive to behavioral experiences and suggest the existence of a complex network of reciprocal interactions among oligodendrocyte lineage development, behavioral experiences, and brain function. Achieving a better understanding of these relationships may have profound implications for human health, and in particular, for our understanding of changes in brain function that occur in response to experiences. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
20
|
Hamazaki K, Maekawa M, Toyota T, Dean B, Hamazaki T, Yoshikawa T. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res 2015; 227:353-9. [PMID: 25858798 DOI: 10.1016/j.psychres.2015.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/12/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism.
Collapse
Affiliation(s)
- Kei Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan.
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia; The Department of Psychiatry, The University of Melbourne, Victoria 3010, Australia
| | - Tomohito Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology 2015; 110:654-659. [PMID: 25963414 DOI: 10.1016/j.neuropharm.2015.04.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/14/2022]
Abstract
Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Maria A Sanchez
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
McNamara RK, Rider T, Jandacek R, Tso P. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and schizophrenia and resembles multiple sclerosis. Psychiatry Res 2014; 215:560-7. [PMID: 24439517 PMCID: PMC3949121 DOI: 10.1016/j.psychres.2013.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 12/14/2013] [Indexed: 12/20/2022]
Abstract
This study investigated the fatty acid composition of the postmortem superior temporal gyrus (STG), a cortical region implicated in emotional processing, from normal controls (n=15) and patients with bipolar disorder (BD, n=15), major depressive disorder (MDD, n=15), and schizophrenia (SZ, n=15). For comparative purposes, STG fatty acid composition was determined in a separate cohort of multiple sclerosis patients (MS, n=15) and normal controls (n=15). Compared with controls, patients with BD, but not MDD or SZ, exhibited abnormal elevations in the saturated fatty acids (SFA) palmitic acid (16:0), stearic acid (18:0), the polyunsaturated fatty acids (PUFA) linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3), and reductions in the monounsaturated fatty acid (MUFA) oleic acid (18:1n-9). The total MUFA/SFA and 18:1/18:0 ratios were lower in the STG of BD patients and were inversely correlated with total PUFA composition. MS patients exhibited a pattern of fatty acid abnormalities similar to that observed in BD patients including elevated PUFA and a lower 18:1/18:0 ratio. Collectively, these data demonstrate that BD patients exhibit a pattern of fatty acid abnormalities in the STG that is not observed in MDD and SZ patients and closely resembles MS patients.
Collapse
Affiliation(s)
- Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
,Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine 260 Stetson Street Cincinnati, OH 45219-0516 PH: 513-558-5601 FAX: 513-558-4805
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| |
Collapse
|
23
|
Able JA, Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression. J Psychiatr Res 2014; 50:42-50. [PMID: 24360505 PMCID: PMC3904789 DOI: 10.1016/j.jpsychires.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/01/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022]
Abstract
Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.
Collapse
Affiliation(s)
- Jessica A. Able
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yanhong Liu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267,Corresponding author: Robert K. McNamara, Ph.D. Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine 260 Stetson Street Cincinnati, OH 45219-0516 PH: 513-558-5601 FAX: 513-558-4805
| |
Collapse
|
24
|
Renoir T, Hasebe K, Gray L. Mind and body: how the health of the body impacts on neuropsychiatry. Front Pharmacol 2013; 4:158. [PMID: 24385966 PMCID: PMC3866391 DOI: 10.3389/fphar.2013.00158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/30/2013] [Indexed: 12/24/2022] Open
Abstract
It has long been established in traditional forms of medicine and in anecdotal knowledge that the health of the body and the mind are inextricably linked. Strong and continually developing evidence now suggests a link between disorders which involve Hypothalamic-Pituitary-Adrenal axis (HPA) dysregulation and the risk of developing psychiatric disease. For instance, adverse or excessive responses to stressful experiences are built into the diagnostic criteria for several psychiatric disorders, including depression and anxiety disorders. Interestingly, peripheral disorders such as metabolic disorders and cardiovascular diseases are also associated with HPA changes. Furthermore, many other systemic disorders associated with a higher incidence of psychiatric disease involve a significant inflammatory component. In fact, inflammatory and endocrine pathways seem to interact in both the periphery and the central nervous system (CNS) to potentiate states of psychiatric dysfunction. This review synthesizes clinical and animal data looking at interactions between peripheral and central factors, developing an understanding at the molecular and cellular level of how processes in the entire body can impact on mental state and psychiatric health.
Collapse
Affiliation(s)
- Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of MelbourneMelbourne, VIC, Australia
| | - Kyoko Hasebe
- School of Medicine, Deakin UniversityGeelong, VIC, Australia
| | - Laura Gray
- School of Medicine, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
25
|
McNamara RK, Jandacek R, Tso P, Dwivedi Y, Ren X, Pandey GN. Lower docosahexaenoic acid concentrations in the postmortem prefrontal cortex of adult depressed suicide victims compared with controls without cardiovascular disease. J Psychiatr Res 2013; 47:1187-91. [PMID: 23759469 PMCID: PMC3710518 DOI: 10.1016/j.jpsychires.2013.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND A growing body of evidence suggests that deficits in long-chain omega-3 (LCn-3) fatty acids may contribute to major depressive disorder (MDD) and principal causes of excess mortality including suicide and cardiovascular disease. In the present study we compared concentrations of docosahexaenoic acid (DHA, 22:6n-3), the principal LCn-3 fatty acid in brain, in the postmortem prefrontal cortex (BA10) of adult depressed suicide victims and controls with and/or without cardiovascular disease. METHODS DHA concentrations (μmol/g) in the prefrontal cortex (PFC, BA10) of adult male and female suicide victims (n = 20) and controls with (n = 8) or without (n = 12) cardiovascular disease were determined by gas chromatography. RESULTS There was a non-significant trend for lower DHA concentrations in suicide victims compared with all controls (-10%, p = 0.06, d = 0.5). Significantly lower DHA concentrations were observed in suicide victims compared with controls without cardiovascular disease (-14%, p = 0.03, d = 0.7) but not controls with cardiovascular disease (-4%, p = 0.71, d = 0.1). There was a non-significant trend for lower DHA concentrations in controls with cardiovascular disease compared with controls without cardiovascular disease (-11%, p = 0.1, d = 0.6). CONCLUSIONS Adult depressed suicide victims exhibit lower postmortem PFC DHA concentrations compared with controls without cardiovascular disease. These data add to a growing body of evidence implicating DHA deficits in the pathophysiology of MDD, suicide, and cardiovascular disease.
Collapse
Affiliation(s)
- Robert K. McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267,To whom correspondence should be addressed: Robert K. McNamara, Ph.D., Department of Psychiatry, University of Cincinnati College of Medicine, Medical Science Building, 231 Albert Sabin Way, Cincinnati, OH 45267-0559, PH: 513-558-5601, FX: 513-558-2955,
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| | - Xinguo Ren
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| | - Ghanshyam N. Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|