1
|
Moon S, Lee HH, Archer-Hartmann S, Nagai N, Mubasher Z, Parappurath M, Ahmed L, Ramos RL, Kimata K, Azadi P, Cai W, Zhao JY. Knockout of the intellectual disability-linked gene Hs6st2 in mice decreases heparan sulfate 6-O-sulfation, impairs dendritic spines of hippocampal neurons, and affects memory. Glycobiology 2024; 34:cwad095. [PMID: 38015989 PMCID: PMC10969535 DOI: 10.1093/glycob/cwad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Zainab Mubasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Mahima Parappurath
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Laiba Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| |
Collapse
|
2
|
Anderson RA, Oyarbide U. Neuronal expression of ndst3 in early zebrafish development is responsive to Wnt signaling manipulation. Gene Expr Patterns 2023; 47:119300. [PMID: 36503154 PMCID: PMC10006321 DOI: 10.1016/j.gep.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are constituents of the cell surface and extracellular matrix and are vital for various activities within the cell. The N-deacetylase/N-sulfotransferase (heparin glucosaminyl) family of enzymes, or NDST, modifies heparan sulfate (HS) by catalyzing both the N-deacetylation and the N-sulfation of N-acetylglucosamine residues. In zebrafish, a single ndst3 gene is an orthologue of both mammalian NDST3 and NDST4 genes. The role of ndst3 in zebrafish development has not been investigated and such study may provide insight into the role(s) of both mammalian orthologues. Here, we characterized expression of ndst3 during early development in zebrafish and found it to be predominately neuronal. We found that expression of ndst3 is sensitive to Wnt signaling manipulation, with stimulation of the Wnt pathway resulting in robust expansion of ndst3 expression domains. Finally, using CRISPR/Cas9 genome editing, we mutagenized the ndst3 gene and isolated an allele, ndst3nu20, resulting in a frameshift and premature protein truncation. We discovered Ndst3 is not essential for zebrafish survival as ndst3nu20 homozygous mutants are viable and fertile.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| | - Usua Oyarbide
- Department of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine in the Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Tang Q, Li X, Wang J. Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases. Bioessays 2022; 44:e2200110. [PMID: 36135988 PMCID: PMC9829454 DOI: 10.1002/bies.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Liu R, Tang W, Wang W, Xu F, Fan W, Zhang Y, Zhang C. NLRP3 Influences Cognitive Function in Schizophrenia in Han Chinese. Front Genet 2021; 12:781625. [PMID: 34956329 PMCID: PMC8702823 DOI: 10.3389/fgene.2021.781625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been proposed that immune abnormalities may be implicated with pathophysiology of schizophrenia. The nod-like receptor pyrin domain-contraining protein 3 (NLRP3) can trigger immune-inflammatory cascade reactions. In this study, we intended to identify the role of gene encoding NLRP3 (NLRP3) in susceptibility to schizophrenia and its clinical features. For the NLRP3 mRNA expression analysis, 53 drug-naïve patients with first-episode schizophrenia and 56 healthy controls were enrolled. For the genetic study, a total of 823 schizophrenia patients and 859 controls were recruited. Among them, 239 drug-naïve patients with first-episode schizophrenia were enrolled for clinical evaluation. There is no significant difference in NLRP3 mRNA levels between patients with schizophrenia and healthy controls (p = 0.07). We did not observe any significant differences in allele and genotype frequencies of rs10754558 polymorphism between the schizophrenia and control groups. We noticed significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10754558 polymorphism (p = 0.001 and p < 0.01, respectively). Further eQTL analysis presented a significant association between the rs10754558 polymorphism and NLRP3 in frontal cortex (p = 0.0028, p = 0.028 after Bonferroni correction). Although our findings did not support NLRP3 confer susceptibility to schizophrenia, NLRP3 may be a risk factor for cognitive impairment, especially attention deficit in this disorder.
Collapse
Affiliation(s)
- Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiping Wang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Feikang Xu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Res 2021; 31:2035-2049. [PMID: 34667117 PMCID: PMC8559704 DOI: 10.1101/gr.275989.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022]
Abstract
Vocal learning, the ability to imitate sounds from conspecifics and the environment, is a key component of human spoken language and learned song in three independently evolved avian groups—oscine songbirds, parrots, and hummingbirds. Humans and each of these three bird clades exhibit specialized behavioral, neuroanatomical, and brain gene expression convergence related to vocal learning, speech, and song. To understand the evolutionary basis of vocal learning gene specializations and convergence, we searched for and identified accelerated genomic regions (ARs), a marker of positive selection, specific to vocal learning birds. We found avian vocal learner-specific ARs, and they were enriched in noncoding regions near genes with known speech functions or brain gene expression specializations in humans and vocal learning birds, including FOXP2, NEUROD6, ZEB2, and MEF2C, and near genes with major neurodevelopmental functions, including NR2F1, NRP2, and BCL11B. We also found enrichment near the SFARI class S genes associated with syndromic vocal communication forms of autism spectrum disorders. These findings reveal strong candidate noncoding regions near genes for the evolutionary adaptations that distinguish vocal learning species from their close vocal nonlearning relatives and provide further evidence of molecular convergence between birdsong and human spoken language.
Collapse
|
6
|
Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J 2021; 40:e107204. [PMID: 34435379 PMCID: PMC8488563 DOI: 10.15252/embj.2020107204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N‐deacetylase and N‐sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α‐tubulin. Loss of NDST3 promotes assembly of the V‐ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly‐dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Common variants in CREB1 gene confer risk for bipolar disorder in Han Chinese. Asian J Psychiatr 2021; 59:102648. [PMID: 33848807 DOI: 10.1016/j.ajp.2021.102648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Recently, we have identified involvement of the gene encoding cAMP responsive element-binding 1 (CREB1) in risk of BD in European ancestry. CREB1 has significant genetic diversity between Europeans and Chinese, thereby resulting in diverged CREB1 genetic backgrounds. In this study, we aimed to determine whether CREB1 confers susceptibility to BD and cognitive dysfunction in Han Chinese. We recruited 572 patients with BD and 611 healthy controls for genetic study. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used for cognitive evaluation. SNP rs10932201 and rs3770704 within CREB1 were genotyped. The frequency of the G allele of rs10932201 was significantly greater in BD patients (41.8 %) than that in control subjects (37.2 %), with P = 0.02, corrected P = 0.04. There were significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10932201 polymorphism (P = 0.002 and 0.003, corrected P = 0.012 and 0.018, respectively). Post-hoc comparisons showed that rs10932201 G/G or G/A carriers had lower RBANS attention and total scores than those with A/A carriers (P = 0.002 and 0.004, P = 0.002 and 0.006, respectively). We observed a significant association between the rs10932201 and CREB1 expression in intralobular white matter (P = 0.037). Carriers with G allele have significantly lower levels of CREB1 expression in intralobular white matter than those without G allele. In conclusion, this study identified a novel BD risk SNP rs10932201 in Han Chinese and this SNP may be a risk factor for cognitive dysfunction in patients with BD.
Collapse
|
8
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
9
|
Wang D, Tang W, Zhao J, Fan W, Zhang Y, Zhang C. A Comprehensive Analysis of the Effect of SIRT1 Variation on the Risk of Schizophrenia and Depressive Symptoms. Front Genet 2020; 11:832. [PMID: 32849821 PMCID: PMC7413929 DOI: 10.3389/fgene.2020.00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Depressive symptoms could be considered a mutual manifestation of major depressive disorder and schizophrenia. Rs3758391 is a functional locus of Sirtuin (SIRT1) involving depression etiology. In this study, we hypothesized that the SIRT1 SNP rs3758391 might be a hazard for schizophrenia pathogenesis, especially related to the appearance of depressive symptoms. We recruited 723 healthy controls and 715 schizophrenia patients, the occurrence of psychotic and depressive symptoms was evaluated by Calgary Depression Scale (CDSS) and PANSS. Meanwhile, qt-PCR was used to detect the mRNA levels of SIRT1 in peripheral blood of 197 olanzapine monotherapy schizophrenia patients. 45.6% of schizophrenia patients had depressive symptoms. In the patient group, mRNA levels of patients with depressive symptoms were significantly lower than those without depressive symptoms (P < 0.01). CDSS scores of schizophrenia patients with different rs3758391 genotypes were significantly different (P < 0.01). Post hoc comparisons indicated that the CDSS scores of rs3758391 C/C and C/T carriers were higher than those of T/T carriers (Ps < 0.01). In the occipital cortex, our eQTL analysis showed that there was a clear correlation between rs3758391 and the SIRT1 mRNA levels. Our preliminary findings provide suggestive evidence that SIRT1 makes schizophrenia patients more prone to depressive symptoms. This SNP might be a biomarker of depression in schizophrenia.
Collapse
Affiliation(s)
- Dandan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junxiong Zhao
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Block J. High risk genotypes for schizophrenia may have been adaptive in the context of smallpox. Med Hypotheses 2020; 137:109556. [DOI: 10.1016/j.mehy.2020.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
|
11
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
12
|
Chen Y, Fang X, Wang Y, Zhang C. Meta-analysis of FOXP2 rs10447760 polymorphism with schizophrenia. Asian J Psychiatr 2018; 35:50-51. [PMID: 29783134 DOI: 10.1016/j.ajp.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Chen
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Interaction between BDNF and TNF-α genes in schizophrenia. Psychoneuroendocrinology 2018; 89:1-6. [PMID: 29306772 DOI: 10.1016/j.psyneuen.2017.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Our recent work reported that tumor necrosis factor-α (TNF-α) is negatively correlated with brain-derived neurotrophic factor (BDNF) in patients with schizophrenia. A previous study has shown that TNF-α could regulate the extracellular secretion of BDNF. Therefore, we hypothesized that the TNF-α gene (TNF-α) may interact with the BDNF gene (BDNF) to influence schizophrenia risk. METHODS We recruited 694 patients with schizophrenia from three mental hospitals in Eastern China and 725 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was employed to evaluate symptom severity. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess cognitive function. The SNPs rs6265 in BDNF and rs1799964 in TNF-α were genotyped. RESULTS There were no significant differences in allele and genotype frequencies in either rs6265 or rs1799964 between the case and control groups. A significant association of rs6265 AA + AG × rs1799964 CC + CT with schizophrenia was observed (OR = 1.14, 95%CI: 1.02-1.27; P = .02). There were significant differences in the RBANS attention and total scores between the patients with rs6265A and rs1799964C alleles and those without these two alleles (P = .03 and P = .03 after Bonferroni correction, respectively). CONCLUSION Our findings provided preliminary evidence that the interaction of BDNF and TNF-α may confer susceptibility to schizophrenia and cognitive dysfunction.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wang L, Chen J, Li Z, Sun W, Chen B, Li S, Li W, Lu D, Wang Y, Shi Y. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:3-9. [PMID: 29140583 DOI: 10.1002/ajmg.b.32573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The NDST3 gene at 4q26 was a functional candidate gene for mental disorders. Recently, a novel genome-wide significant risk locus at chromosome 4q26 was identified and the top single nucleotide polymorphism rs11098403 in the vicinity of NDST3 gene was reported to confer risk of schizophrenia in Caucasian. Nevertheless, association between NDST3 gene polymorphisms and schizophrenia, bipolar disorder, or major depressive disorders has not been well studied in the Han Chinese population. To further investigate whether NDST3 is a risk gene for these mental disorders, we genotyped and analyzed eight tag SNPs (rs11098403, rs10857057, rs2389521, rs4833564, rs6837896, rs7689157, rs3817274, rs609512) covering NDST3 gene in 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls of Chinese origin. However, there was no significant difference in allelic or genotypic frequency observed between each case group and healthy controls. Accordingly, our study does not support that the NDST3 gene plays a major role in schizophrenia, bipolar disorder, and major depressive disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Lin Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sining Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,ULink College of Shanghai, Shanghai, P. R. China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dajiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai, P. R. China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Changning Mental Health Center, Shanghai, P. R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
15
|
Lu W, Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Genetic association analysis of microRNA137 and its target complex 1 with schizophrenia in Han Chinese. Sci Rep 2017; 7:15084. [PMID: 29118371 PMCID: PMC5678134 DOI: 10.1038/s41598-017-15315-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a strong association signal of microRNA137 host gene (MIR137) with schizophrenia. MIR137 dysfunction results in downregulation of presynaptic target gene complexin 1 (CPLX1) and impairs synaptic plasticity in the hippocampus. In this study, we aimed to investigate whether the variants of MIR137 and CPLX1 confer susceptibility to schizophrenia in Han Chinese. This study employed 736 patients with schizophrenia patients and 751 well-matched healthy subjects for genetic analysis, and genotyped 12 SNPs within MIR137 and CPLX1. SZDB database was used to performed brain eQTL analysis. There were no significant differences of CPLX1 expression in hippocampus, prefrontal cortex or stratum between the schizophrenia patients and control subjects. No significant differences were observed in allele and genotype frequencies in studied SNPs between the case and control groups. Gene interaction analysis showed that MIR137 SNP rs1625579 did not affect schizophrenia susceptibility in interaction with the CPLX1 polymorphic variants. Our findings do not support MIR137 and CPLX1 conferring susceptibility to schizophrenia in Han Chinese.
Collapse
Affiliation(s)
- Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers. Int J Mol Sci 2017; 18:ijms18071361. [PMID: 28672878 PMCID: PMC5535854 DOI: 10.3390/ijms18071361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.
Collapse
|
17
|
Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Sci Rep 2017; 7:41140. [PMID: 28120939 PMCID: PMC5264157 DOI: 10.1038/srep41140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Rs1344706 in the the zinc finger protein 804A (ZNF804A) gene has been identified to be associated with schizophrenia and bipolar disorder (BD) in Europeans. However, whether rs1344706 is associated with schizophrenia in Chinese populations remains inconclusive; furthermore, the association between rs1344706 and BD in Chinese populations has been rarely explored. To explore the association between rs1344706 and schizophrenia/BD in Chinese populations, we genotyped rs1344706 among 1128 Chinese subjects (537 patients with BD and 591 controls) and found that rs1344706 showed marginal allelic association with BD (P = 0.028) with T-allele being more prevalent in cases than that in controls (OR = 1.19, 95% CI 1.03–1.37). Meta-analysis of rs1344706 by pooling all available data showed that rs1344706 was significantly associated with BD (P = 0.001). Besides, positive association of rs1344706 with schizophrenia was observed in Northern Chinese (P = 0.005). Furthermore, ZNF804A is highly expressed in human and mouse brains, especially in prenatal stage.
Collapse
|
18
|
Zhang C, Wu Z, Hong W, Peng D, Fang Y. Evaluating the association between the SHANK3 gene and bipolar disorder. Psychiatry Res 2016; 244:284-8. [PMID: 27512916 DOI: 10.1016/j.psychres.2016.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have shown that the genes involved in synaptic density and plasticity were downregulated in bipolar disorder (BD) postmortem brains. The SHANK3 (SH3 and multiple ankyrin repeat domain 3) protein is a scaffold protein enriched in the postsynaptic density of excitatory synapses, and recent findings were suggestive of a possible role of SHANK3 in the development of BD. In this study, we aimed to evaluate the genetic association between the gene encoding SHANK3 (SHANK3) and BD in Han Chinese. METHODS Ten variants in SHANK3 were genotyped among 1482 individuals with or without BD. We measured the mRNA expression level of SHANK3 in patients with BD and controls. We then performed an eQTL analysis. RESULTS In our sample set, there were no significant differences in allele, genotype and haplotype frequencies between the BD and control groups. Our results showed no significant difference in the level of peripheral SHANK3 expression between the BD patients and healthy controls. Further eQTL analysis showed that rs9616915 has functional effect on SHANK3 expression in the hippocampus. CONCLUSION This study does not provide evidence for a major role of SHANK3 in the pathogenesis of BD.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Zhang C, Wu Z, Zhao G, Wang F, Fang Y. Identification of IL6 as a susceptibility gene for major depressive disorder. Sci Rep 2016; 6:31264. [PMID: 27502736 PMCID: PMC4977523 DOI: 10.1038/srep31264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023] Open
Abstract
Our previous work implied that interleukin 6 (IL6) may be a biological marker for major depressive disorder (MDD). In this study, we performed a comprehensive genetic study to determine the association between the gene encoding IL6 (IL6) and MDD in Han Chinese. There were 50 drug-naïve MDD patients and 50 healthy controls undergoing an mRNA expression study. A sample of 772 patients with MDD and 759 healthy controls were used for genetic analysis. Next, we performed an eQTL analysis to identify whether risk SNP(s) is associated with IL6 expression in brain. Our results showed that patients with MDD have higher levels of IL6 than healthy controls (P = 0.008). The SNP rs1800797 has a significant association with MDD (P = 0.01) in a dominant model. The eQTL analysis showed a marginally significant association between the rs1800797 and IL6 expression in the frontal cortex (P = 0.087). Our preliminary findings are suggestive of an association between rs1800797 and the risk of MDD. Further investigations are required to evaluate this association in larger samples to increase statistical power, and to examine the correlation between rs1800797 and IL6 methylation patterns.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
ZHANG C. Genetic findings are challenging the symptom-based diagnostic classification system of mental disorders. SHANGHAI ARCHIVES OF PSYCHIATRY 2016; 28:42-7. [PMID: 27688643 PMCID: PMC4984613 DOI: 10.11919/j.issn.1002-0829.216015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The present diagnostic classification of mental illnesses is primarily based on symptomatology. A recent cross-disorder genome-wide association study revealed that there were genetic similarities between multiple clinically defined diagnoses (including schizophrenia, bipolar disorder, depression, attention deficit hyperactivity disorder, and autism spectrum disorder) on regions of chromosomes 3p21 and 10q24 and single-nucleotide polymorphisms (SNPs) within two L-type voltage-gated calcium channel subunits of CACNA1C and CACNB2. These findings suggest that the pathogenesis of these five independent disorders are related. Such cross-disorder genetic studies challenge the current symptom-based diagnostic classification of mental disorders. Researchers need to identify creative ways to bridge the gap between these two approaches to understanding and labelling mental disorders.
Collapse
Affiliation(s)
- Chen ZHANG
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Wang P, Cai J, Ni J, Zhang J, Tang W, Zhang C. The NCAN gene: schizophrenia susceptibility and cognitive dysfunction. Neuropsychiatr Dis Treat 2016; 12:2875-2883. [PMID: 27853371 PMCID: PMC5104293 DOI: 10.2147/ndt.s118160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cognitive dysfunction has been recognized as a cardinal feature of schizophrenia. Elucidating the neurobiological substrates of cognitive dysfunction in schizophrenia would help identify the underlying mechanism of this disorder. The rs1064395 single nucleotide polymorphism, within the gene encoding neurocan (NCAN), is reported to be associated with schizophrenia in European populations and may influence brain structure in patients with schizophrenia. METHODS In this study, we aimed to explore whether NCAN rs1064395 confers some risk for schizophrenia and cognitive dysfunction in Han Chinese. We recruited 681 patients with schizophrenia and 699 healthy subjects. Two hundred and fifty-four patients were evaluated according to Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS There were no significant differences in genotype or allele distributions of the rs1064395 polymorphism between the schizophrenia and control groups. Patients showed significantly poorer performance than controls on immediate memory, visuospatial skill, language, attention, delayed memory, and total RBANS score. Patients with the A/A or A/G genotype of rs1064395 had lower scores of immediate memory, visuospatial skill, attention, and total RBANS score than those with the G/G genotype. We performed an expression quantitative trait loci analysis and observed a significant association between rs1064395 and NCAN expression in the frontal (P=0.0022, P=0.022 after Bonferroni correction) and cerebellar cortex (P=0.0032, P=0.032 after Bonferroni correction). CONCLUSION Our findings indicate that this single nucleotide polymorphism may be a risk factor for cognitive dysfunction in patients with schizophrenia. Further investigations are warranted for validation purposes and to identify the precise mechanism by which rs1064395 influences cognitive performance in patients with schizophrenia.
Collapse
Affiliation(s)
- Peirong Wang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jianliang Ni
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jiangtao Zhang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou, Zhejiang, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|