1
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores. eNeuro 2025; 12:ENEURO.0361-24.2025. [PMID: 40032532 PMCID: PMC11927052 DOI: 10.1523/eneuro.0361-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Early psychosis (EP) is a critical period for psychotic disorders during which the brain undergoes rapid and significant functional and structural changes ( Shinn et al., 2017). The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in health and disease. Here we focus on HCP-EP subjects (i.e., those within 5 years of the initial psychotic episode) to determine macro- and microstructural alterations in EP (HCP-EP sample, n = 179: EP, n = 123, controls, n = 56) and their association with clinical outcomes (i.e., symptoms severity) in HCP-EP. We carried out analyses of deformation-based morphometry (DBM), scalar indices from the diffusion tensor imaging (DTI), and tract-based spatial statistics (TBSS). Lastly, we conducted correlation analyses focused on the midbrain (DBM and DTI) to examine associations between its structure and clinical symptoms. Our results show that the midbrain displays robust alteration in its structure (DBM and DTI) in the voxel-based analysis. Complimentary alterations were also observed for the hippocampus and putamen. A seed-based analysis centered around the midbrain confirms the voxel-based analysis of DBM and DTI. TBSS displays structural differences within the midbrain and complementary alterations in the corticospinal tract and cingulum. Correlations between the midbrain structures and behavior showed that the quantified features correlate with cognition and clinical scores. Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and provide a path for future investigations to inform specific brain-based biomarkers of EP.
Collapse
Affiliation(s)
- Zicong Zhou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Kylie Jones
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
2
|
Gaughan C, Nasa A, Roman E, Cullinane D, Kelly L, Riaz S, Brady C, Browne C, Sooknarine V, Mosley O, Almulla A, Alsehli A, Kelliher A, Murphy C, O'Hanlon E, Cannon M, Roddy DW. A Pilot Study of Adolescents with Psychotic Experiences: Potential Cerebellar Circuitry Disruption Early Along the Psychosis Spectrum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1772-1782. [PMID: 37351730 PMCID: PMC11489369 DOI: 10.1007/s12311-023-01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
A berrant connectivity in the cerebellum has been found in psychotic conditions such as schizophrenia corresponding with cognitive and motor deficits found in these conditions. Diffusion differences in the superior cerebellar peduncles, the white matter connecting the cerebellar circuitry to the rest of the brain, have also been found in schizophrenia and high-risk states. However, white matter diffusivity in the peduncles in individuals with sub-threshold psychotic experiences (PEs) but not reaching the threshold for a definitive diagnosis remains unstudied. This study investigates the cerebellar peduncles in adolescents with PEs but no formal psychiatric diagnosis.Sixteen adolescents with PEs and 17 age-matched controls recruited from schools underwent High-Angular-Resolution-Diffusion neuroimaging. Following constrained spherical deconvolution whole-brain tractography, the superior, inferior and middle peduncles were isolated and virtually dissected out using ExploreDTI. Differences for macroscopic and microscopic tract metrics were calculated using one-way between-group analyses of covariance controlling for age, sex and estimated Total Intracranial Volume (eTIV). Multiple comparisons were corrected using Bonferroni correction.A decrease in fractional anisotropy was identified in the right (p = 0.045) and left (p = 0.058) superior cerebellar peduncle; however, this did not survive strict Bonferroni multiple comparison correction. There were no differences in volumes or other diffusion metrics in either the middle or inferior peduncles.Our trend level changes in the superior cerebellar peduncle in a non-clinical sample exhibiting psychotic experiences complement similar but more profound changes previously found in ultra-high-risk individuals and those with psychotic disorders. This suggests that superior cerebellar peduncle circuitry perturbations may occur early along in the psychosis spectrum.
Collapse
Affiliation(s)
- Caoimhe Gaughan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Elena Roman
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Dearbhla Cullinane
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Linda Kelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Sahar Riaz
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Conan Brady
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ciaran Browne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Vitallia Sooknarine
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Olivia Mosley
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ahmad Almulla
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Assael Alsehli
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Allison Kelliher
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Cian Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
3
|
Patel J, Schöttner M, Tarun A, Tourbier S, Alemán-Gómez Y, Hagmann P, Bolton TAW. Modeling the impact of MRI acquisition bias on structural connectomes: Harmonizing structural connectomes. Netw Neurosci 2024; 8:623-652. [PMID: 39355442 PMCID: PMC11340995 DOI: 10.1162/netn_a_00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/26/2024] [Indexed: 10/03/2024] Open
Abstract
One way to increase the statistical power and generalizability of neuroimaging studies is to collect data at multiple sites or merge multiple cohorts. However, this usually comes with site-related biases due to the heterogeneity of scanners and acquisition parameters, negatively impacting sensitivity. Brain structural connectomes are not an exception: Being derived from T1-weighted and diffusion-weighted magnetic resonance images, structural connectivity is impacted by differences in imaging protocol. Beyond minimizing acquisition parameter differences, removing bias with postprocessing is essential. In this work we create, from the exhaustive Human Connectome Project Young Adult dataset, a resampled dataset of different b-values and spatial resolutions, modeling a cohort scanned across multiple sites. After demonstrating the statistical impact of acquisition parameters on connectivity, we propose a linear regression with explicit modeling of b-value and spatial resolution, and validate its performance on separate datasets. We show that b-value and spatial resolution affect connectivity in different ways and that acquisition bias can be reduced using a linear regression informed by the acquisition parameters while retaining interindividual differences and hence boosting fingerprinting performance. We also demonstrate the generative potential of our model, and its generalization capability in an independent dataset reflective of typical acquisition practices in clinical settings.
Collapse
Affiliation(s)
- Jagruti Patel
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Mikkel Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Anjali Tarun
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Sebastien Tourbier
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Thomas A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
4
|
Moghaddam HS, Parsaei M, Taghavizanjani F, Cattarinussi G, Aarabi MH, Sambataro F. White matter alterations in affective and non-affective early psychosis: A diffusion MRI study. J Affect Disord 2024; 351:615-623. [PMID: 38290585 DOI: 10.1016/j.jad.2024.01.238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The early years after the onset of psychotic disorders, known as "early psychosis" (EP) are critical to determining the path of psychosis trajectory. We used a Diffusion Magnetic Resonance Imaging (DMRI) connectometry approach to assess the microstructural changes of white matter (WM) associated with EP. METHODS We used the Human Connectome Project in Early Psychosis (HCP-EP) dataset to collect DMRI data from patients with EP. The imaging data were processed in the Montreal Neuroimaging Initiative space and transformed into quantitative anisotropy (QA). The QA value was translated into the WM connectivity of each tract and used in the subsequent analysis. RESULTS 121 patients with EP (94 non-affective/27 affective) and 56 healthy controls were recruited. EP was associated with increased QA in the body and tapetum of corpus callosum (CC) and decreased QA in the bilateral cerebellum, and middle cerebellar peduncle. Compared to non-affective psychosis, affective psychosis showed increased QA in the bilateral cerebellum and vermis and decreased QA in the forceps minor, body of CC, right cingulum, and bilateral inferior fronto-occipital fasciculus. Furthermore, QA changes in several WM tracts were correlated with positive and negative symptom scale scores. LIMITATIONS DMRI intrinsic limitations, limited sample size, and neurobiological effects of psychotropic treatment. CONCLUSIONS EP is associated with alterations in WM connectivity primarily in the CC and cerebellar regions. Also, affective and non-affective psychosis have distinct alterations in WM connectivity. These results can be used for the early diagnosis and differentiation of psychotic disorders.
Collapse
Affiliation(s)
| | - Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Taghavizanjani
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
5
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Micro-Structural Alterations in the Midbrain in Early Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588901. [PMID: 38645197 PMCID: PMC11030414 DOI: 10.1101/2024.04.10.588901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Introduction Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1 . Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
Collapse
|
6
|
Barth C, Nerland S, Jørgensen KN, Haatveit B, Wortinger LA, Melle I, Haukvik UK, Ueland T, Andreassen OA, Agartz I. Altered Sex Differences in Hippocampal Subfield Volumes in Schizophrenia. Schizophr Bull 2024; 50:107-119. [PMID: 37354490 PMCID: PMC10754184 DOI: 10.1093/schbul/sbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS The hippocampus is a heterogenous brain structure that differs between the sexes and has been implicated in the pathophysiology of psychiatric illnesses. Here, we explored sex and diagnostic group differences in hippocampal subfield volumes, in individuals with schizophrenia spectrum disorder (SZ), bipolar disorders (BD), and healthy controls (CTL). STUDY DESIGN One thousand and five hundred and twenty-one participants underwent T1-weighted magnetic resonance imaging (SZ, n = 452, mean age 30.7 ± 9.2 [SD] years, males 59.1%; BD, n = 316, 33.7 ± 11.4, 41.5%; CTL, n = 753, 34.1 ± 9.1, 55.6%). Total hippocampal, subfield, and intracranial volumes were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple regression models were fitted to examine sex-by-diagnostic (sub)group interactions in volume. In SZ and BD, separately, associations between volumes and clinical as well as cognitive measures were examined between the sexes using regression models. STUDY RESULTS Significant sex-by-group interactions were found for the total hippocampus, dentate gyrus, molecular layer, presubiculum, fimbria, hippocampal-amygdaloid transition area, and CA4, indicating a larger volumetric deficit in male patients relative to female patients when compared with same-sex CTL. Subgroup analyses revealed that this interaction was driven by males with schizophrenia. Effect sizes were overall small (partial η < 0.02). We found no significant sex differences in the associations between hippocampal volumes and clinical or cognitive measures in SZ and BD. CONCLUSIONS Using a well-powered sample, our findings indicate that the pattern of morphological sex differences in hippocampal subfields is altered in individuals with schizophrenia relative to CTL, due to higher volumetric deficits in males.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Kjetil N Jørgensen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Beathe Haatveit
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Unn K Haukvik
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
7
|
Geng Y, Zhang H, Zhang G, Zhou J, Zhu M, Ma L, Wang X, James TD, Wang Z. Near-Infrared Fluorescent Probe for the In Situ Visualization of Oxidative Stress in the Brains of Neuroinflammatory and Schizophrenic Mice. Anal Chem 2023; 95:11943-11952. [PMID: 37526416 PMCID: PMC10433243 DOI: 10.1021/acs.analchem.3c01447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023]
Abstract
Schizophrenia is a common mental disorder with unclear mechanisms. Oxidative stress and neuroinflammation play important roles in the pathological process of schizophrenia. Superoxide anion (O2•-) is an important oxidative stress biomarker in vivo. However, due to the existence of the blood-brain barrier (BBB), few near-infrared (NIR) fluorescent probes have been used for the sensing and detection of O2•- in the brain. With this research, we developed the first near-infrared fluorescent probe (named CT-CF3) for noninvasive detection of endogenous O2•- in the brain of mice. Enabling fluorescence monitoring of the dynamic changes in O2•- flux due to the prolonged activation of microglia in neuroinflamed and schizophrenic (SZ) mice brains, thereby providing direct evidence for the relationship between oxidative stress, neuroinflammation, and schizophrenia. Furthermore, we confirmed the O2•- burst in the brains of first-episode schizophrenic mice and assessed the effect of two atypical antipsychotic drugs (risperidone and olanzapine) on redox homeostasis.
Collapse
Affiliation(s)
- Yujie Geng
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hanchen Zhang
- Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, 100190 Beijing, P. R. China
| | - Guoyang Zhang
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiaying Zhou
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mingguang Zhu
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, P. R. China
- Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, 100190 Beijing, P. R. China
| | - Xuefei Wang
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, P. R. China
| | - Zhuo Wang
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
8
|
Bhatt S, Upadhyay T, Patil CR, Pai KSR, Chellappan DK, Dua K. Role of Oxidative Stress in Pathophysiological Progression of
Schizophrenia. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2023; 19:11-27. [DOI: 10.2174/2666082218666220822154558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative stress (OS) is a chief contributing factor to the pathological
advancement of Schizophrenia (SCZ). In recent years, OS has emerged as an important aspect
in SCZ research and provides abundant opportunities and expectations for a better understanding
of its pathophysiology, which may lead to novel treatment strategies.
Introduction:
The increased OS and formation of reactive oxygen species (ROS) leads to damage
to cellular macromolecules. The excessive OS is associated with several physiological processes,
such as dysfunction of mitochondria and neuroglia, inflammation, underactive Nmethyl-
D-aspartate (NMDA) receptors, and the abnormalities of fast-spiking gammaaminobutyric
acid (GABA) interneurons.
Methods:
The methods adopted for the study are mainly based on the secondary search through
a systemic literature review. The role of various anti-oxidants, including vitamins, is discussed
in the reduction of SCZ.
Results:
Various preclinical and clinical studies suggest the involvement of OS and ROS in the
progression of the disease. Recent human trials have shown the treatment with antioxidants to
be effective in ameliorating symptoms and delaying the progression of SCZ pathology. The
studies have demonstrated that innate and dietary antioxidants exert beneficial effects by reducing
the severity of positive symptoms (PS) and/or negative symptoms (NS) of SCZ.
Conclusion:
The present review critically evaluates the effect of antioxidants and highlights
the role of OS in SCZ.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - CR Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research,
Karwand Naka, Shirpur 425405, Maharashtra, India
| | - K. Sreedhara R. Pai
- Manipal College of Pharmaceutical Sciences
(MCOPS), Manipal Academy of Higher Education (MAHE), Manipal -576104, Karnataka, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil
57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University
of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in
Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007
Australia
| |
Collapse
|
9
|
Jia R, Yuan X, Zhang X, Song P, Han S, Wang S, Li Y, Zhang S, Zhao X, Zhang Y, Cheng J, Song X. Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naïve, first-episode schizophrenia. Front Neurosci 2023; 17:1153439. [PMID: 37139526 PMCID: PMC10149877 DOI: 10.3389/fnins.2023.1153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of the present study was to explore influencing factors of cognitive impairments and their interrelationships in drug-naïve, first-episode schizophrenia (SCZ). Methods Patients with drug naïve, first episode SCZ and healthy controls (HCs) were enrolled. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Serum levels of oxidative stress indices, including folate, superoxide dismutase (SOD), uric acid (UA) and homocysteine (Hcy), were determined after an overnight fast. Hippocampal subfield volumes were measured using FreeSurfer. Mediation models were conducted using the SPSS PROCESS v3.4 macro. A false discovery rate (FDR) correction was applied for multiple comparisons. Results Sixty-seven patients with SCZ and 65 HCs were enrolled in our study. The patient group had significantly lower serum levels of folate and SOD and higher serum levels of HCY compared with the HCs (all p < 0.05). The patient group had a significantly smaller volume of the whole hippocampus than the HC group (p < 0.05). We also found significant volume differences between the two groups in the following subfields: CA1, molecular layer, GC-ML-DG and fimbria (all p < 0.05, uncorrected). The partial correlation analysis controlling for age and sex showed that the fimbria volume in the patient group was significantly positively associated with NAB scores (r = 0.382, pFDR = 0.024); serum levels of SOD in the patient group showed a significantly positive correlation with fimbria volume (r = 0.360, pFDR = 0.036). Mediation analyses controlling for age and sex showed that the serum levels of SOD in patients with SCZ had significant indirect effects on the NAB scores which were mediated by the fimbria volume [indirect effect = 0.0565, 95% CI from the bootstrap test excluding zero (0.0066 to 0.0891)]. Conclusion Oxidative stress, a reduction in hippocampal subfield volumes and cognitive impairments occur in early SCZ. Oxidative stress impairs cognitive function by affecting hippocampal subfield volumes.
Collapse
Affiliation(s)
- Rufei Jia
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yajun Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Siwei Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xinyi Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jingliang Cheng, ;10
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
10
|
Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis. Mol Psychiatry 2022; 27:5135-5143. [PMID: 36131045 PMCID: PMC9763118 DOI: 10.1038/s41380-022-01779-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/14/2023]
Abstract
Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n = 340, cases/controls: 208/132), a sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n = 352, 224/128). Our results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status. Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p = 0.03) and PAFIP samples (p = 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a focus on specific pathways, emphasizing the need to build and study functionally informed risk scores.
Collapse
|
11
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
12
|
Buck G, Makowski C, Chakravarty MM, Misic B, Joober R, Malla A, Lepage M, Lavigne KM. Sex-specific associations in verbal memory brain circuitry in early psychosis. J Psychiatr Res 2022; 151:411-418. [PMID: 35594601 DOI: 10.1016/j.jpsychires.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
Hippocampal circuitry and related cortical connections are altered in first episode psychosis (FEP) and are associated with verbal memory deficits, as well as positive and negative symptoms. There are robust sex differences in the clinical presentation of psychosis, including poorer verbal memory in male patients. Consideration of sex differences in hippocampal-cortical circuitry and their associations with different behavioral dimensions may be useful for understanding the underlying pathophysiology of verbal memory deficits and related symptomatology in psychosis. Here, we use a data-driven approach to simultaneously capture the complex links between sex, verbal memory, symptoms, and cortical-hippocampal brain metrics in FEP. Structural magnetic resonance imaging and behavioral data were acquired from 100 FEP patients (75 males, 25 females) and 87 controls (55 males, 32 females). Multivariate brain-behavior associations were examined in FEP using partial least squares to map sociodemographic, verbal memory, and clinical data onto brain morphometry. The analysis identified two sex-dependent patterns of verbal memory, symptoms, and brain structure. In male patients, verbal memory deficits and core psychotic symptoms were associated with both increased and decreased frontal and temporal cortical thickness and reductions in CA2/3 hippocampal subfield and fornix volumes. In female patients, fewer negative/depressive symptoms were associated with a more attenuated cortical thickness pattern and more diffuse reductions in hippocampal white matter regions. Taken together, the results contribute towards better understanding the underlying pathophysiology of psychosis by highlighting the unique contribution of specific hippocampal subfields and surrounding white matter and their connections with broader cortical networks in a sex-dependent manner.
Collapse
Affiliation(s)
- Gabriella Buck
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Carolina Makowski
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montréal, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Ashok Malla
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Katie M Lavigne
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
14
|
N-acetylcysteine facilitates extinction of cued fear memory in rats via reestablishing basolateral amygdala glutathione homeostasis. Acta Pharmacol Sin 2022; 43:260-272. [PMID: 33927360 PMCID: PMC8791957 DOI: 10.1038/s41401-021-00661-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Individual differences in the development of uncontrollable fear in response to traumatic stressors have been observed in clinic, but the underlying mechanisms remain unknown. In the present study we first conducted a meta-analysis of published clinical data and found that malondialdehyde, an oxidative stress biomarker, was significantly elevated in the blood of patients with fear-related anxiety disorders. We then carried out experimental study in rats subjected to fear conditioning. We showed that reestablishing redox homeostasis in basolateral amygdale (BLA) after exposure to fear stressors determined the capacity of learned fear inhibition. Intra-BLA infusion of buthionine sulfoximine (BSO) to deplete the most important endogenous antioxidant glutathione (GSH) blocked fear extinction, whereas intra-BLA infusion of dithiothreitol or N-acetylcysteine (a precursor of GSH) facilitated extinction. In electrophysiological studies conducted on transverse slices, we showed that fear stressors induced redox-dependent inhibition of NMDAR-mediated synaptic function, which was rescued by extinction learning or reducing agents. Our results reveal a novel pharmacological strategy for reversing impaired fear inhibition and highlight the role of GSH in the treatment of psychiatric disorders.
Collapse
|
15
|
Volumetric Segmentation of White Matter Tracts with Label Embedding. Neuroimage 2022; 250:118934. [PMID: 35091078 DOI: 10.1016/j.neuroimage.2022.118934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Convolutional neural networks have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). However, the segmentation can still be difficult for challenging WM tracts with thin bodies or complicated shapes; the segmentation is even more problematic in challenging scenarios with reduced data quality or domain shift between training and test data, which can be easily encountered in clinical settings. In this work, we seek to improve the segmentation of WM tracts, especially for challenging WM tracts in challenging scenarios. In particular, our method is based on volumetric WM tract segmentation, where voxels are directly labeled without performing tractography. To improve the segmentation, we exploit the characteristics of WM tracts that different tracts can cross or overlap and revise the network design accordingly. Specifically, because multiple tracts can co-exist in a voxel, we hypothesize that the different tract labels can be correlated. The tract labels at a single voxel are concatenated as a label vector, the length of which is the number of tract labels. Due to the tract correlation, this label vector can be projected into a lower-dimensional space-referred to as the embedded space-for each voxel, which allows the segmentation network to solve a simpler problem. By predicting the coordinate in the embedded space for the tracts at each voxel and subsequently mapping the coordinate to the label vector with a reconstruction module, the segmentation result can be achieved. To facilitate the learning of the embedded space, an auxiliary label reconstruction loss is integrated with the segmentation accuracy loss during network training, and network training and inference are end-to-end. Our method was validated on two dMRI datasets under various settings. The results show that the proposed method improves the accuracy of WM tract segmentation, and the improvement is more prominent for challenging tracts in challenging scenarios.
Collapse
|
16
|
Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, MacKinley M, Théberge J, Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110297. [PMID: 33691200 DOI: 10.1016/j.pnpbp.2021.110297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
Disrupted serotonergic and glutamatergic signaling interact and contribute to the pathophysiology of schizophrenia, which is particularly relevant for the hippocampus where diverse expression of serotonin receptors is noted. Hippocampal atrophy is a well-established feature of schizophrenia, with select subfields hypothesized as particularly vulnerable due to variation in glutamate receptor densities. We investigated hippocampal anomalies in first-episode psychosis (FEP) in relation to receptor distributions by leveraging 4 sources of data: (1) ultra high-field (7-Tesla) structural neuroimaging, and (2) proton magnetic resonance spectroscopy (1H-MRS) of glutamate from 27 healthy and 41 FEP subjects, (3) gene expression data from the Allen Human Brain Atlas and (4) atlases of the serotonin receptor system. Automated methods delineated the hippocampus to map receptor density across subfields. We used gene expression data to correlate serotonin and glutamate receptor genes across the hippocampus. Measures of individual hippocampal shape-receptor alignment were derived through normative modelling and correlations to receptor distributions, termed Receptor-Specific Morphometric Signatures (RSMS). We found reduced hippocampal volumes in FEP, while CA4-dentate gyrus showed greatest reductions. Gene expression indicated 5-HT1A and 5-HT4 to correlate with AMPA and NMDA expression, respectively. Magnitudes of subfield volumetric reduction in FEP correlated most with 5-HT1A (R = 0.64, p = 4.09E-03) and 5-HT4 (R = 0.54, p = 0.02) densities as expected, and replicated using previously published data from two FEP studies. Right-sided 5-HT4-RSMS was correlated with MRS glutamate (R = 0.357, p = 0.048). We demonstrate a putative glutamate-driven hippocampal variability in FEP through a serotonin receptor-density gated mechanism, thus outlining a mechanistic interplay between serotonin and glutamate in determining the hippocampal morphology in schizophrenia.
Collapse
Affiliation(s)
- Min Tae M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada
| | - Kara Dempster
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - M Mallar Chakravarty
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Lawson Health Research Institute, London, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada; Lawson Health Research Institute, London, Canada.
| |
Collapse
|
17
|
A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia. Mol Psychiatry 2021; 26:3502-3511. [PMID: 33077854 PMCID: PMC9650557 DOI: 10.1038/s41380-020-00901-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Involvement of oxidative stress in the pathophysiology of schizophrenia (SZ) is suggested by studies of peripheral tissue. Nonetheless, it is unclear how such biological changes are linked to relevant, pathological neurochemistry, and brain function. We designed a multi-faceted study by combining biochemistry, neuroimaging, and neuropsychology to test how peripheral changes in a key marker for oxidative stress, glutathione (GSH), may associate with central neurochemicals or neuropsychological performance in health and in SZ. GSH in dorsal anterior cingulate cortex (dACC) was acquired as a secondary 3T 1H-MRS outcome using a MEGA-PRESS sequence. Fifty healthy controls and 46 patients with SZ were studied cross-sectionally, and analyses were adjusted for effects of confounding variables. We observed lower peripheral total GSH in SZ compared to controls in extracellular (plasma) and intracellular (lymphoblast) pools. Total GSH levels in plasma positively correlated with composite neuropsychological performance across the total population and within patients. Total plasma GSH levels were also positively correlated with the levels of Glx in the dACC across the total population, as well as within each individual group (controls, patients). Furthermore, the levels of dACC Glx and dACC GSH positively correlated with composite neuropsychological performance in the patient group. Exploring the relationship between systemic oxidative stress (in particular GSH), central glutamate, and cognition in SZ will benefit further from assessment of patients with more varied neuropsychological performance.
Collapse
|
18
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
19
|
Li XR, Xiu MH, Guan XN, Wang YC, Wang J, Leung E, Zhang XY. Altered Antioxidant Defenses in Drug-Naive First Episode Patients with Schizophrenia Are Associated with Poor Treatment Response to Risperidone: 12-Week Results from a Prospective Longitudinal Study. Neurotherapeutics 2021; 18:1316-1324. [PMID: 33791970 PMCID: PMC8423973 DOI: 10.1007/s13311-021-01036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal redox regulation is thought to contribute to schizophrenia (SCZ). Accumulating studies have shown that the plasma antioxidant enzyme activity is closely associated with the course and outcome in antipsychotics-naïve first-episode (ANFE) patients with SCZ. The main purpose of this study was to investigate the effect of risperidone on oxidative stress markers in ANFE patients and the relationship between risperidone response and changes in oxidative stress markers. Plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) enzyme, total antioxidant status (TAS), and malondialdehyde (MDA) levels were measured in 354 ANFE patients and 152 healthy controls. The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Patients received risperidone monotherapy for 12 weeks and oxidative stress markers and PANSS were measured at baseline and at follow-up. Compared with healthy controls, the patients exhibited higher activities of SOD, CAT, and TAS levels, but lower MDA levels and GPx activity. A comparison between 168 responders and 50 non-responders at baseline and 12-week follow-up showed that GPx activity decreased in both groups after treatment. Moreover, GPx activity decreased less in responders and was higher in responders than in non-responders at follow-up. These results demonstrate that the redox regulatory system and antioxidant defense enzymes may have predictive value for the response of ANFE patients to risperidone treatment.
Collapse
Affiliation(s)
- Xi Rong Li
- Department of Sleep Medicine, Shandong Mental Health Center, Jinan, China
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China.
| | - Xiao Ni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Yue Chan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
20
|
Cruz BF, de Campos-Carli SM, de Oliveira AM, de Brito CB, Garcia ZM, do Nascimento Arifa RD, de Souza DDG, Teixeira AL, Salgado JV. Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia. Psychiatry Res 2021; 298:113832. [PMID: 33652247 DOI: 10.1016/j.psychres.2021.113832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Deficits in neurocognition and social cognition play a critical role in the functional impairment of patients with schizophrenia. Increased oxidative stress has been evidenced in schizophrenia. Increased oxidative stress can affect neuronal function and lead to impairments in neurocognitive functions (especially working memory) and social cognition. OBJECTIVE To investigate deficits in neurocognition and social cognition and their potential association with oxidative stress biomarkers in schizophrenia. MATERIAL AND METHODS Eight-five clinically stable patients with schizophrenia and 75 controls were enrolled in this study. Neurocognition was evaluated through the Brief Assessment of Cognition in Schizophrenia (BACS). Social cognition was assessed through the Hinting Task - a test of theory of mind - and an emotion processing test, Facial Emotion Recognition Test (FERT-100). Oxidative stress was assessed by measuring serum levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). RESULTS Patients had decreased serum levels of GSH (Z=3.56; p<0.001) and increased TBARS (Z=5.51; P<0.001) when compared with controls. TBARS levels are higher in patients using first generation antipsychotics. Higher serum levels of TBARS in patients were associated with poor performance in working memory test (r=-0.39; p=0.002), even when controlling for age and negative symptoms (Standard Beta: -0.36; CI= -2.52 a -13.71). DISCUSSION The association between greater lipid peroxidation, as assessed by TBARS, and worse performance in working memory corroborates theoretical models of greater vulnerability of schizophrenia to oxidative stress.
Collapse
Affiliation(s)
- Breno Fiuza Cruz
- Mental Health Department, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Amanda Margarida de Oliveira
- Neuroscience Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Zélia Menezes Garcia
- Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Antonio Lucio Teixeira
- Institute of Education and Research, Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, UTHealth Houston, TX, United States
| | - João Vinícius Salgado
- Neuroscience Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Biase MD, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. MK-Curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. Neuroimage 2021; 226:117564. [PMID: 33285331 PMCID: PMC7873589 DOI: 10.1016/j.neuroimage.2020.117564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI parameters such as mean kurtosis (MK) provide additional subtle information to that provided by popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect white matter abnormalities, especially in populations that are not expected to show severe brain pathologies. However, DKI parameters often yield artifactual output values that are outside of the biologically plausible range, which diminish sensitivity to identify true microstructural changes. Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with implausible DKI parameters, and demonstrated its improved performance against other approaches that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve method to improve the identification of white matter abnormalities in group comparisons. To do so, we compared group differences, with and without the MK-Curve correction, between 115 individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also compared the correlation of the corrected and uncorrected DKI parameters with clinical characteristics. Following the MK-curve correction, the group differences had larger effect sizes and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI parameters displayed stronger correlations with clinical variables in CHR individuals, demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve correction our analyses found widespread lower MK in CHR that overlapped with lower fractional anisotropy (FA), and both measures were significantly correlated with a decline in functioning and with more severe symptoms. These observations further characterize white matter alterations in the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. The improvement in group differences and stronger correlation with clinical variables suggest that applying MK-curve would be beneficial for the detection and characterization of subtle group differences in other experiments as well.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Maria Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL,USA
| | - Keshevan Matcheri
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA; The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M, Charfi N, Ayadi F. Predictive value of oxidative stress biomarkers in drug‑free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 2020; 293:113467. [PMID: 33198042 DOI: 10.1016/j.psychres.2020.113467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that oxidative stress may represent one of the primary etiological mechanisms of schizophrenia (SZ) and schizoaffective disorder (SAD) which can be targeted by therapeutic intervention. The present study was conducted over a period of 24 months, between June 2016 and June 2018. All enrolled subjects were Tunisian, forty five drug‑free male patients with SZ (mean age: 37.6 years), twenty one drug‑free male patients with SAD (mean age: 28.8 years) and hundred and one age and gender matched controls (mean age: 34.2 years) were enrolled in the study. Plasma reduced glutathione (GSH) and Total thiols levels were significantly decreased in patients compared to controls (respectively p<0.001; p=0.050). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP) and protein carbonyls (PC) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p<0.001; p<0.001; p<0.001 and p=0.003 respectively). The binary logistic regression analysis revealed that MDA, AOPP, PC and GSH-Px could be considered as independent risk factors for SZ and SAD. When using ROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC and GSH-Px combined markers was observed. The present study indicated that the identification of the predictive value of this four-selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of SZ or SAD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sana Omri
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Jihène Ben Thabet
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
23
|
Christova P, James LM, Carpenter AF, Lewis SM, Johnson RA, Engdahl BE, Georgopoulos AP. Gulf War Illness: C-Reactive Protein is Associated with Reduction of the Volume of Hippocampus and Decreased Fractional Anisotropy of the Fornix. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2020; 5:6-15. [PMID: 40371006 PMCID: PMC12077250 DOI: 10.29245/2572.942x/2020/3.1272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Memory and mood impairments are among the most commonly reported symptoms in veterans with Gulf War Illness (GWI), suggesting hippocampal involvement. Several studies have also documented evidence of inflammation in GWI. The aim of the present study was to evaluate the association between C-reactive protein (CRP), a marker of inflammation, and hippocampal volume and microstructural alterations of its major output, the fornix. Sixty-three veterans with GWI provided blood samples for evaluation of CRP and underwent a 3T magnetic resonance imaging scan from which hippocampal volume and fornix fractional anisotropy (FA) were obtained. Results demonstrated that CRP was significantly and negatively associated with hippocampal volume and fornix FA in GWI. Given the known closely interwoven associations between inflammation and neurodegeneration, it is possible that the effects we observed could be due to neurodegeneration, secondary to chronic neuroinflammation. Finally, given the known association of hippocampus to memory and mood disorders, our findings provide new insights into memory and mood alterations associated with GWI.
Collapse
Affiliation(s)
- Peka Christova
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lisa M. James
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, US
| | - Adam F. Carpenter
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Scott M. Lewis
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Rachel A. Johnson
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
| | - Brian E. Engdahl
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Apostolos P. Georgopoulos
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, US
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Makowski C, Lewis JD, Khundrakpam B, Tardif CL, Palaniyappan L, Joober R, Malla A, Shah JL, Bodnar M, Chakravarty MM, Evans AC, Lepage M. Altered hippocampal centrality and dynamic anatomical covariance of intracortical microstructure in first episode psychosis. Hippocampus 2020; 30:1058-1072. [PMID: 32485018 DOI: 10.1002/hipo.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022]
Abstract
Hippocampal circuitry has been posited to be fundamental to positive symptoms in psychosis, but its contributions to other factors important for outcome remains unclear. We hypothesized that longitudinal changes in the hippocampal circuit and concomitant changes of intracortical microstructure are altered in first episode psychosis (FEP) patients and that such changes are associated with negative symptoms and verbal memory. Longitudinal brain scans (2-4 visits over 3-15 months) were acquired for 27 FEP and 29 age- and sex-matched healthy controls. Quantitative T1 maps, sensitive to myelin content, were used to sample the microstructure of the hippocampal subfields and output circuitry (fimbria, alveus, fornix, mammillary bodies), and intracortical regions. Dynamic anatomical covariance in pair-wise regional trajectories were assessed for each subject, and graph theory was used to calculate a participation coefficient metric that quantifies the similarity/divergence between hippocampal and intracortical microstructure. The mean participation coefficient of the hippocampus was significantly reduced in FEP patients compared with controls, reflecting differences in output hippocampal regions. Importantly, lower participation coefficient of the hippocampal circuit was associated with worse negative symptoms, a relationship that was mediated by changes in verbal memory. This study provides evidence for reduced hippocampal centrality in FEP and concomitant changes in intracortical anatomy. Myelin-rich output regions of the hippocampus may be an important biological trigger in early psychosis, with cascading effects on broader cortical networks and resultant clinical profiles.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | - Christine L Tardif
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ridha Joober
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ashok Malla
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jai L Shah
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michael Bodnar
- Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Martin Lepage
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Calvo A, Roddy DW, Coughlan H, Kelleher I, Healy C, Harley M, Clarke M, Leemans A, Frodl T, O’Hanlon E, Cannon M. Reduced hippocampal volume in adolescents with psychotic experiences: A longitudinal population-based study. PLoS One 2020; 15:e0233670. [PMID: 32492020 PMCID: PMC7269246 DOI: 10.1371/journal.pone.0233670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
AIMS Smaller hippocampal volumes are among the most consistently reported neuroimaging findings in schizophrenia. However, little is known about hippocampal volumes in people who report psychotic experiences. This study investigated differences in hippocampal volume between young people without formal diagnoses who report psychotic experiences (PEs) and those who do not report such experiences. This study also investigated if any differences persisted over two years. METHODS A nested case-control study of 25 adolescents (mean age 13.5 years) with reported PEs and 25 matched controls (mean age 13.36 years) without PEs were drawn from a sample of 100 local schoolchildren. High-resolution T1-weighted anatomical imaging and subsequent automated cortical segmentation (Freesurfer 6.0) was undertaken to determine total hippocampal volumes. Comprehensive semi-structured clinical interviews were also performed including information on PEs, mental diagnoses and early life stress (bullying). Participants were invited for a second scan at two years. RESULTS 19 adolescents with PEs and 19 controls completed both scans. Hippocampal volumes were bilaterally lower in the PE group compared to the controls with moderate effects sizes both at baseline [left hippocampus p = 0.024 d = 0.736, right hippocampus p = 0.018, d = 0.738] and at 2 year follow up [left hippocampus p = 0.027 d = 0.702, right = 0.048 d = 0.659] throughout. These differences survived adjustment for co-morbid mental disorders and early life stress. CONCLUSIONS Psychotic experiences are associated with total hippocampal volume loss in young people and this volume loss appears to be independent of possible confounders such as co-morbid disorders and early life stress.
Collapse
Affiliation(s)
- Ana Calvo
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Faculty of Health Sciences, Universidad Internacional de la Rioja (UNIR), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Darren W. Roddy
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Helen Coughlan
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ian Kelleher
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm Healy
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michelle Harley
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Clarke
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alexander Leemans
- Image Sciences Institute University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department and Hospital of Psychiatry and Psychotherapy, Otto von Guericke University Mageburg, Mageburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, Magdeburg, Germany
| | - Erik O’Hanlon
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mary Cannon
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Gazes Y, Li P, Sun E, Razlighi Q, Tsapanou A. Age specificity in fornix-to-hippocampus association. Brain Imaging Behav 2020; 13:1444-1452. [PMID: 30187206 DOI: 10.1007/s11682-018-9958-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both white and grey matter atrophy with age, but it is still unclear how decline in white matter relates to decline in grey matter, and how this relationship varies with age. In a group of healthy adults from 20 to 80 years old, divided into three age groups by tertiles, we cross-sectionally examined the white-to-grey matter associations in the fornix and the hippocampus, and tested if and how the fornix-to-hippocampus relationship differs across the age groups. Both structures were also tested as predictors for performance on a memory test, the Selective Reminding Task (SRT). Participants were imaged with T1-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI), from which the hippocampal volume, fractional anisotropy (FA), and mean diffusivity (MD) for the bilateral crus and body of the fornix were calculated. Our data showed that even after accounting for age, sex, and motion parameters, fornix integrity predicted hippocampal volume in the two older age groups (middle and old age) for the crus of the fornix, and only in the oldest age group for the body of the fornix. Furthermore, fornix integrity significantly predicted SRT performance, whereas hippocampal volume did not; this relationship was also observed only in the oldest age group, and absent in the two younger age groups. The age specificity of the relationships suggests that the fornix-to-hippocampus relationship only manifests once brain structures begin to atrophy in old age, and that fornix integrity is a more sensitive measure for episodic memory than is hippocampal volume.
Collapse
Affiliation(s)
- Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center, 630 W 168th Street, P&S Box 16, New York, NY, 10032, USA.
| | - Peipei Li
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center, 630 W 168th Street, P&S Box 16, New York, NY, 10032, USA
| | - Emily Sun
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center, 630 W 168th Street, P&S Box 16, New York, NY, 10032, USA
| | - Qolamreza Razlighi
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center, 630 W 168th Street, P&S Box 16, New York, NY, 10032, USA
| | - Angeliki Tsapanou
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center, 630 W 168th Street, P&S Box 16, New York, NY, 10032, USA
| |
Collapse
|
28
|
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol 2019; 33:1199-1214. [PMID: 31039654 DOI: 10.1177/0269881119845820] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glutathione is among the important antioxidants to prevent oxidative stress. However, the relationships between abnormality in the glutathione system and pathophysiology of schizophrenia remain uncertain due to inconsistent findings on glutathione levels and/or glutathione-related enzyme activities in patients with schizophrenia. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies, in which three metabolite levels (glutathione, glutathione disulfide, and total glutathione (glutathione+glutathione disulfide)) and five enzyme activities (glutathione peroxidase, glutathione reductase, glutamate-cysteine ligase, glutathione synthetase, and glutathione S-transferase) were measured with any techniques in both patients with schizophrenia and healthy controls, were included. Standardized mean differences were calculated to determine the group differences in the glutathione levels with a random-effects model. RESULTS We identified 41, 9, 15, 38, and seven studies which examined glutathione, glutathione disulfide, total glutathione, glutathione peroxidase, and glutathione reductase, respectively. Patients with schizophrenia had lower levels of both glutathione and total glutathione and decreased activity of glutathione peroxidase compared to controls. Glutathione levels were lower in unmedicated patients with schizophrenia than those in controls while glutathione levels did not differ between patients with first-episode psychosis and controls. CONCLUSIONS Our findings suggested that there may be glutathione deficits and abnormalities in the glutathione redox cycle in patients with schizophrenia. However, given the small number of studies examined the entire glutathione system, further studies are needed to elucidate a better understanding of disrupted glutathione function in schizophrenia, which may pave the way for the development of novel therapeutic strategies in this disorder.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Pharmacogenetic Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Muhammad Elsalhy
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Minori Kuromiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Tunç S, Atagün Mİ, Başbuğ HS, Erel Ö. Serum ceruloplasmin-ferroxidase activity in bipolar disorder is elevated compared to major depressive disorder and schizophrenia: a controlled study. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1584489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Serhat Tunç
- Department of Psychiatry, Kafkas University, Faculty of Medicine, Kars, Turkey
| | - Murat İlhan Atagün
- Department of Psychiatry, Yildirim Beyazit University, Faculty of Medicine, Ankara, Turkey
| | - Hamit Serdar Başbuğ
- Department of Cardiovascular Surgery, Kafkas University, Faculty of Medicine, Kars, Turkey
| | - Özcan Erel
- Department of Biochemistry, Yildirim Beyazit University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
30
|
Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A 2018; 115:12495-12500. [PMID: 30455310 PMCID: PMC6298080 DOI: 10.1073/pnas.1812821115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early traumatic experiences interact with redox regulation and oxidative stress. Blood glutathione peroxidase (GPx) activity, involved in reducing peroxides, may reflect the oxidation status of the organism, thus allowing for the stratification of patients. Traumatized patients with psychosis who have a high blood oxidation status (high-GPx) have smaller hippocampal volumes (but not a smaller amygdala or intracranial volume), and this is associated with more severe clinical symptoms, while those with a lower oxidation status (low-GPx) showed better cognition and a correlated activation of the antioxidant thioredoxin/peroxiredoxin system. Thus, in patients with psychosis, traumatic experiences during childhood may interact with various redox systems, leading to long-term neuroanatomical and clinical defects. This redox profile may represent important biomarkers for patient stratification, defining treatment strategies at early stages of psychosis. Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.
Collapse
|
31
|
Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in microstructural diffusion neuroimaging for psychiatric disorders. Neuroimage 2018; 182:259-282. [PMID: 29729390 PMCID: PMC6420686 DOI: 10.1016/j.neuroimage.2018.04.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Valerie J Sydnor
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Veteran Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
32
|
Klauser P, Xin L, Fournier M, Griffa A, Cleusix M, Jenni R, Cuenod M, Gruetter R, Hagmann P, Conus P, Baumann PS, Do KQ. N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Transl Psychiatry 2018; 8:220. [PMID: 30315150 PMCID: PMC6185923 DOI: 10.1038/s41398-018-0266-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Mechanism-based treatments for schizophrenia are needed, and increasing evidence suggests that oxidative stress may be a target. Previous research has shown that N-acetylcysteine (NAC), an antioxidant and glutathione (GSH) precursor almost devoid of side effects, improved negative symptoms, decreased the side effects of antipsychotics, and improved mismatch negativity and local neural synchronization in chronic schizophrenia. In a recent double-blind randomized placebo-controlled trial by Conus et al., early psychosis patients received NAC add-on therapy (2700 mg/day) for 6 months. Compared with placebo-treated controls, NAC patients showed significant improvements in neurocognition (processing speed) and a reduction of positive symptoms among patients with high peripheral oxidative status. NAC also led to a 23% increase in GSH levels in the medial prefrontal cortex (GSHmPFC) as measured by 1H magnetic resonance spectroscopy. A subgroup of the patients in this study were also scanned with multimodal MR imaging (spectroscopy, diffusion, and structural) at baseline (prior to NAC/placebo) and after 6 months of add-on treatment. Based on prior translational research, we hypothesized that NAC would protect white matter integrity in the fornix. A group × time interaction indicated a difference in the 6-month evolution of white matter integrity (as measured by generalized fractional anisotropy, gFA) in favor of the NAC group, which showed an 11% increase. The increase in gFA correlated with an increase in GSHmPFC over the same 6-month period. In this secondary study, we suggest that NAC add-on treatment may be a safe and effective way to protect white matter integrity in early psychosis patients.
Collapse
Affiliation(s)
- Paul Klauser
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Lijing Xin
- 0000000121839049grid.5333.6Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Margot Fournier
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Alessandra Griffa
- 0000 0001 0423 4662grid.8515.9Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland ,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martine Cleusix
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Raoul Jenni
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Michel Cuenod
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Rolf Gruetter
- 0000000121839049grid.5333.6Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Philipp S. Baumann
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| | - Kim Q. Do
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,National Center of Competence in Research (NCCR) “SYNAPSY – The Synaptic Bases of Mental Diseases”, Lausanne, Switzerland
| |
Collapse
|
33
|
Yamada K, Suzuki Y, Okuyama M, Watanabe M, Nakada T. Developmental abnormalities of the brain exposed to childhood maltreatment detected by diffusion tensor imaging. Neurol Res 2018; 41:19-25. [PMID: 30213254 DOI: 10.1080/01616412.2018.1522413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: This study aimed to investigate brain developmental alterations in individuals exposed to childhood maltreatment (CM) with dissociative experiences and motor coordination symptoms using diffusion tensor imaging on a 3Tesla (3T) magnetic resonance (MR) system. Methods: Five individuals exposed to CM who manifest behavioral and developmental problems with dissociative experiences and motor coordination symptoms (age range: 14-18 years; all female), as well as seven age- and gender-matched normal control individuals, participated in the study using a 3T MR system. Diffusion characteristics, as indexed by fractional anisotropy (FA), were assessed for cerebral white matter structures. A preliminary whole brain analysis was performed complementary to an anatomically guided region of interest (ROI) analysis. Results: In individuals exposed to CM, scattered decreases in FA were detected in multiple brain regions over the frontoparietal and temporal areas in the whole brain map. ROI analysis subsequently identified significant decreases in FA (p < 0.05) in the right parietal white matter area as well as in the right prefrontal, bilateral premotor, bilateral orbitofrontal, and temporal white matter areas in CM-exposed individuals compared to that in controls. Conclusion: The observed altered diffusion characteristics indicate attendant developmental abnormalities within the white matter structures, which are associated with the observed clinical and behavioral patterns including dissociative experiences and coordination symptoms in individuals exposed to CM. The study provides objective evidence regarding the effects of CM on brain microstructure.
Collapse
Affiliation(s)
- Kenichi Yamada
- a Center for Integrated Human Brain Science, Brain Research Institute , University of Niigata , Niigata , Japan
| | - Yuji Suzuki
- a Center for Integrated Human Brain Science, Brain Research Institute , University of Niigata , Niigata , Japan
| | - Makiko Okuyama
- b Department of Psychosocial Medicine , National Center for Child Health and Development , Tokyo , Japan
| | - Masaki Watanabe
- a Center for Integrated Human Brain Science, Brain Research Institute , University of Niigata , Niigata , Japan
| | - Tsutomu Nakada
- a Center for Integrated Human Brain Science, Brain Research Institute , University of Niigata , Niigata , Japan
| |
Collapse
|
34
|
The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell Tissue Res 2018; 375:243-258. [DOI: 10.1007/s00441-018-2849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
|