1
|
González-Rodríguez L, González LM, García-Herráiz A, Mota-Zamorano S, Flores I, Gervasini G. Association of genetic variation in the leptin-melanocortin system with drive for thinness in patients with eating disorders: A pilot study. Gene 2025; 949:149364. [PMID: 40015467 DOI: 10.1016/j.gene.2025.149364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
We aimed to investigate whether genetic variants in the leptin-melanocortin system involved in anorexigenic signaling influence personality dimensions and psychopathological symptoms in eating disorders (ED) patients. The population consisted of 309 ED patients [221 with anorexia nervosa (AN) and 88 with bulimia nervosa (BN)] and 396 healthy controls. Patients underwent psychometric assessment using the Eating Disorders Inventory Test-2 (EDI-2) and the Symptom Checklist 90 Revised (SCL-90R) questionnaires. Fourteen tag-SNPs in the LEP, POMC, and MC4R genes, were determined. Drive for thinness (DT) was significantly affected by genetic variability. After correction for multiple testing, regression models showed that AN patients carrying the LEP rs11761556 CC variant genotype scored higher in this scale than AA/CA carriers did [mean difference = 4.43 (2.18-6.68), p < 0.001], although the significance was restrained to the restrictive subtype [4.92 (2.00-7.83), p = 0.001]. BN patients with the LEP rs10954173 AA genotype displayed lower scores [-8.7 (-12.31--3.91); p < 0.001]. Finally, gene-gene interaction analyses revealed two SNP pairs associated with body-mass index in AN patients (LEPrs3828942-POMCrs1009388, p < 0.001 and LEP rs11763517-POMCrs1009388, p = 0.002). Regarding DT scores, the POMCrs6545975-LEP11763517 SNP pair showed the strongest effect (p < 0.001) in AN. Genetic variants in the leptin-melanocortin system, may interact to influence personality dimensions in ED patients, which highlights the importance of considering genetic factors in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Laura González-Rodríguez
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Luz María González
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | | | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain; Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Isalud Flores
- Eating Disorders Unit, Health Service of Extremadura, Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain; Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.
| |
Collapse
|
2
|
Breton É, Kaufmann T. An evolutionary perspective on the genetics of anorexia nervosa. Transl Psychiatry 2025; 15:59. [PMID: 39971893 PMCID: PMC11840024 DOI: 10.1038/s41398-025-03270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Anorexia nervosa (AN) typically emerges around adolescence and predominantly affects females. Recent progress has been made in identifying biological correlates of AN, but more research is needed to pinpoint the specific mechanisms that lead to its development and maintenance. There is a known phenotypic link between AN, growth and sexual maturation, yet the genetic overlap between these phenotypes remains enigmatic. One may hypothesize that shared factors between AN, energy metabolism and reproductive functions may have been under recent evolutionary selection. Here, we characterize the genetic overlap between AN, BMI and age at menarche, and aimed to reveal recent evolutionary factors that may help explain the origin of AN. We obtained publicly available GWAS summary statistics of AN, BMI and age at menarche and studied the polygenic overlap between them. Next, we used Neandertal Selective Sweep scores to explore recent evolutionary selection. We found 22 loci overlapping between AN and BMI, and 9 loci between AN and age at menarche, with 7 of these not previously associated with AN. We found that loci associated with AN may have been under particular evolutionary dynamic. Chronobiology appeared relevant to the studied genetic overlaps and prone to recent evolutionary selection, offering a promising avenue for future research. Taken together, our findings contribute to the understanding of the genetic underpinning of AN. Ultimately, better knowledge of the biological origins of AN may help to target specific biological processes and facilitate early intervention in individuals who are most at risk.
Collapse
Affiliation(s)
- Édith Breton
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada.
| | - Tobias Kaufmann
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
González-Rodríguez L, González LM, García-Herráiz A, Mota-Zamorano S, Flores I, Gervasini G. Association of OPRD1 Gene Variants with Changes in Body Weight and Psychometric Indicators in Patients with Eating Disorders. J Clin Med 2024; 13:5189. [PMID: 39274402 PMCID: PMC11396092 DOI: 10.3390/jcm13175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: This study aimed to investigate whether genetic variations in the OPRD1 gene affect psychopathological symptoms and personality dimensions in eating disorders (ED) patients and/or contribute to ED risk. Methods: The study involved 221 female patients with anorexia nervosa (AN), 88 with bulimia nervosa (BN), and 396 controls. Sixteen tag-single nucleotide polymorphisms (SNPs) in OPRD1 were identified. Psychometric evaluations were conducted using the Symptom Checklist 90 Revised (SCL-90R) and the Eating Disorders Inventory Test-2 (EDI-2). p-values obtained by regression models were corrected for multiple testing by the False Discovery Rate (FDR) method. Results: In AN patients, genotypes rs204077TT and rs169450TT were linked to lower body-mass index (BMI) values (FDR-q = 0.035 and 0.017, respectively), as was rs2234918 in a log-additive model (BMI: 18.0 ± 0.28, 17.22 ± 0.18 and 16.59 ± 0.39 for TT, TC and CC carriers, FDR-q = 0.012). Additionally, AN patients carrying the rs72665504AA genotype had higher scores in interpersonal distrust (FDR-q = 0.030), whilst BN carriers of rs513269TT and rs2873795TT showed lower scores in ineffectiveness (FDR-q = 0.041 and FDR-q = 0.021). In the AN group, BMI correlated with variability in a distal haplotype (rs508448/rs204077/rs223491, FDR-q = 0.028), which was also associated with the global positive symptom total (PST) index of SCL-90R (FDR-q = 0.048). Associations were more noticeable in BN patients; again, the distal region of the gene was linked to EDI-2 total scores (FDR-q = 0.004-0.048 for the four last haplotypes) and two global SCL-90R indices (GSI: FDR-q = 0.011 and positive symptom distress index (PSDI): FDR-q = 0.003 for the last s204077/rs2234918/rs169450 combination). No associations with ED risk were observed. Conclusions: Genetic variation in the OPRD1 gene, particularly in its distal region, is associated with BMI and psychopathological comorbidities in ED patients.
Collapse
Affiliation(s)
- Laura González-Rodríguez
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
| | - Luz María González
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
| | | | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06010 Badajoz, Spain
| | - Isalud Flores
- Eating Disorders Unit, Health Service of Extremadura, 06010 Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, 06006 Badajoz, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06010 Badajoz, Spain
| |
Collapse
|
4
|
Ramsay S, Allison K, Temples HS, Boccuto L, Sarasua SM. Inclusion of the severe and enduring anorexia nervosa phenotype in genetics research: a scoping review. J Eat Disord 2024; 12:53. [PMID: 38685102 PMCID: PMC11059621 DOI: 10.1186/s40337-024-01009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Anorexia nervosa has one of the highest mortality rates of all mental illnesses. For those who survive, less than 70% fully recover, with many going on to develop a more severe and enduring phenotype. Research now suggests that genetics plays a role in the development and persistence of anorexia nervosa. Inclusion of participants with more severe and enduring illness in genetics studies of anorexia nervosa is critical. OBJECTIVE The primary goal of this review was to assess the inclusion of participants meeting the criteria for the severe enduring anorexia nervosa phenotype in genetics research by (1) identifying the most widely used defining criteria for severe enduring anorexia nervosa and (2) performing a review of the genetics literature to assess the inclusion of participants meeting the identified criteria. METHODS Searches of the genetics literature from 2012 to 2023 were performed in the PubMed, PsycINFO, and Web of Science databases. Publications were selected per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The criteria used to define the severe and enduring anorexia nervosa phenotype were derived by how often they were used in the literature since 2017. The publications identified through the literature search were then assessed for inclusion of participants meeting these criteria. RESULTS most prevalent criteria used to define severe enduring anorexia nervosa in the literature were an illness duration of ≥ 7 years, lack of positive response to at least two previous evidence-based treatments, a body mass index meeting the Diagnostic and Statistical Manual of Mental Disorders-5 for extreme anorexia nervosa, and an assessment of psychological and/or behavioral severity indicating a significant impact on quality of life. There was a lack of consistent identification and inclusion of those meeting the criteria for severe enduring anorexia nervosa in the genetics literature. DISCUSSION This lack of consistent identification and inclusion of patients with severe enduring anorexia nervosa in genetics research has the potential to hamper the isolation of risk loci and the development of new, more effective treatment options for patients with anorexia nervosa.
Collapse
Affiliation(s)
- Sarah Ramsay
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA.
| | - Kendra Allison
- School of Nursing, Clemson University , Clemson, SC 29634, USA
| | - Heide S Temples
- School of Nursing, Clemson University , Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Sara M Sarasua
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Variability in the antioxidant MSRA gene affects the psychopathology of patients with anorexia nervosa. Acta Neuropsychiatr 2021; 33:307-316. [PMID: 34396949 DOI: 10.1017/neu.2021.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective is to determine whether variability in the MSRA gene, related to obesity and several psychiatric conditions, may be relevant for psychopathological symptoms common in Anorexia Nervosa (AN) and/or for the susceptibility to the disorder. A total of 629 women (233 AN patients and 396 controls) were genotyped for 14 tag-SNPs. Psychometric evaluation was performed with the EDI-2 and SCL-90R questionnaires. Genetic associations were carried out by logistic regression controlling for age and adjusting for multiple comparisons (FDR method). Two tag-SNPs, rs11249969 and rs81442 (with a pairwise r2 value of 0.41), were associated with the global EDI-2 score, which measures EDI-related psychopathology (adjusted FDR-q = 0.02 and 0.04, respectively). Moreover, rs81442 significantly modulated all the scales of the SCL-90R test that evaluates general psychopathology (FDR-q values ranged from 4.1E-04 to 0.011). A sliding-window analysis using adjacent 3-SNP haplotypes revealed a proximal region of the MSRA gene spanning 187.8 Kbp whose variability deeply affected psychopathological symptoms of the AN patients. Depression was the symptom that showed the strongest association with any of the constructed haplotypes (FDR-q = 3.60E-06). No variants were found to be linked to AN risk or anthropometric parameters in patients or controls. Variability in the MSRA gene locus modulates psychopathology often presented by AN patients.
Collapse
|
6
|
Variability in cannabinoid receptor genes is associated with psychiatric comorbidities in anorexia nervosa. Eat Weight Disord 2021; 26:2597-2606. [PMID: 33575982 DOI: 10.1007/s40519-021-01106-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The endocannabinoid system plays a key role in eating behavior regulating appetite and reward mechanisms, but the impact of its genetic variability has been scarcely studied in Anorexia Nervosa (AN). We aimed to analyze the association of genetic variants in cannabinoid receptors with the risk for AN and with psychiatric comorbidities that are commonplace in these patients. METHODS We screened 221 AN patients and 396 controls for 14 tag-SNPs in the CNR1 and CNR2 genes, coding for cannabinoids receptors CB1 and CB2, respectively. Patients were diagnosed according to DSM-5 criteria and interviewed with the SCL-90R and the EDI-2 inventories to identify AN-coupled and general psychopathology. RESULTS None of the tag-SNPs was significantly related to AN risk. However, the rs806369-TT genotype and haplotype rs806368/rs1049353/rs806369 of CNR1 were respectively associated with lower weight (mean difference = - 4.92 kg, FDR-q = 0.044) and BMI (FDR-q = 0.042) in AN patients. CNR1 rs806374-TT and CNR2 rs3003335-AA and rs6658703-GG genotypes correlated with higher scores in the Positive Symptom Distress Index (PSDI, FDR-q = 0.011 and 0.009, respectively). These three genotypes were also linked to increased Hostility in the patients (FDR-q < 0.05). Remarkably, a proximal area of the CNR1 gene locus (positions 88,143,916-88,149,832) correlated with PSDI, Hostility, Asceticism and EDI-2 total scores after correcting by multiple testing (FDR-q < 0.05 in all instances). Finally, significant CNR1/CNR2 epistasis was observed in relation to Hostility (p < 0.01) and Maturity Fears (p < 0.001). CONCLUSION The CNR1 and CNR2 genes, coding for cannabinoid receptors, may constitute important loci regarding psychiatric comorbidities in AN patients. LEVEL III Evidence obtained from well-designed cohort or case-control analytic studies.
Collapse
|
7
|
Kaare M, Mikheim K, Lilleväli K, Kilk K, Jagomäe T, Leidmaa E, Piirsalu M, Porosk R, Singh K, Reimets R, Taalberg E, Schäfer MKE, Plaas M, Vasar E, Philips MA. High-Fat Diet Induces Pre-Diabetes and Distinct Sex-Specific Metabolic Alterations in Negr1-Deficient Mice. Biomedicines 2021; 9:1148. [PMID: 34572334 PMCID: PMC8466019 DOI: 10.3390/biomedicines9091148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kalle Kilk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany;
| | - Maria Piirsalu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Rando Porosk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Egon Taalberg
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| |
Collapse
|
8
|
Zhuang Z, Yao M, Wong JYY, Liu Z, Huang T. Shared genetic etiology and causality between body fat percentage and cardiovascular diseases: a large-scale genome-wide cross-trait analysis. BMC Med 2021; 19:100. [PMID: 33910581 PMCID: PMC8082910 DOI: 10.1186/s12916-021-01972-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating evidences have suggested that high body fat percentage (BF%) often occurs in parallel with cardiovascular diseases (CVDs), implying a common etiology between them. However, the shared genetic etiology underlying BF% and CVDs remains unclear. METHODS Using large-scale genome-wide association study (GWAS) data, we investigated shared genetics between BF% (N = 100,716) and 10 CVD-related traits (n = 6968-977,323) with linkage disequilibrium score regression, multi-trait analysis of GWAS, and transcriptome-wide association analysis, and evaluated causal associations using Mendelian randomization. RESULTS We found strong positive genetic correlations between BF% and heart failure (HF) (Rg = 0.47, P = 1.27 × 10- 22) and coronary artery disease (CAD) (Rg = 0.22, P = 3.26 × 10- 07). We identified 5 loci and 32 gene-tissue pairs shared between BF% and HF, as well as 16 loci and 28 gene-tissue pairs shared between BF% and CAD. The loci were enriched in blood vessels and brain tissues, while the gene-tissue pairs were enriched in the nervous, cardiovascular, and exo-/endocrine system. In addition, we observed that BF% was causally related with a higher risk of HF (odds ratio 1.63 per 1-SD increase in BF%, P = 4.16 × 10-04) using a MR approach. CONCLUSIONS Our findings suggest that BF% and CVDs have shared genetic etiology and targeted reduction of BF% may improve cardiovascular outcomes. This work advances our understanding of the genetic basis underlying co-morbid obesity and CVDs and opens up a new way for early prevention of CVDs.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, China. 38 Xueyuan Road, Beijing, 100191, China
| | - Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China.
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, China. 38 Xueyuan Road, Beijing, 100191, China. .,Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
9
|
González LM, García-Herráiz A, Mota-Zamorano S, Flores I, Albuquerque D, Gervasini G. Variants in the Obesity-Linked FTO gene locus modulates psychopathological features of patients with Anorexia Nervosa. Gene 2021; 783:145572. [PMID: 33737121 DOI: 10.1016/j.gene.2021.145572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Our aim was to determine whether variability in the fat mass obesity (FTO) gene locus, consistently related to obesity, affects the risk of eating disorders (ED) and/or the psychopathology displayed by these patients. We analyzed 26 tag-single nucleotide polymorphisms (SNPs) that capture FTO variability in 352 ED patients [233 with Anorexia Nervosa (AN) and 119 with binge-eating] and 396 controls. Psychopathological symptoms and traits were evaluated by the Eating Disorders Inventory Test 2 (EDI-2) and Symptoms Checklist 90 Revised (SCL-90R) questionnaires. No associations were found for ED risk. The rs7205987 CC genotype correlated with higher scores in all but one of the EDI-2 scales in the AN group. Associations with Bulimia (p = 0.0019) and Interoceptive Awareness (p = 0.00007) retained significance after False Discovery Rate (FDR) correction for multiple testing. A 3-SNP sliding window analysis showed that FTO haplotypes were again highly associated with Interoceptive Awareness (rs9921255/rs6499662/rs7205987 haplotype; FDR-q = 0.04), Bulimia (rs1125338/rs2192872/rs708258; FDR-q = 0.00037), and Maturity Fears (rs708258/rs12599672/rs11076017; FDR-q = 0.041). In addition, a distal region of the gene between rs9924877 (position 53947509) and rs2192872 (54040715) was linked to Anxiety, Depression and Phobic Anxiety in AN patients, with FDR-q values ranging from 0.023 to 0.045. The results suggest that the FTO gene might be an important locus regarding traits and psychopathological symptoms often displayed by AN patients.
Collapse
Affiliation(s)
- Luz M González
- Dpt. Medical-Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Angustias García-Herráiz
- Eating Disorders Unit, Institute of Mental Disorders, Health Service of Extremadura, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Dpt. Medical-Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Isalud Flores
- Eating Disorders Unit, Institute of Mental Disorders, Health Service of Extremadura, Badajoz, Spain
| | - David Albuquerque
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
| | - Guillermo Gervasini
- Dpt. Medical-Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain.
| |
Collapse
|
10
|
González LM, Mota-Zamorano S, García-Herráiz A, López-Nevado E, Gervasini G. Genetic variants in dopamine pathways affect personality dimensions displayed by patients with eating disorders. Eat Weight Disord 2021; 26:93-101. [PMID: 31786797 DOI: 10.1007/s40519-019-00820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We aimed to analyze the association between common polymorphisms in dopamine pathways with personality dimensions frequently present in patients with eating disorders (ED). METHODS A total of 324 patients [210 with anorexia nervosa (AN), 80 with bulimia nervosa (BN) and 34 with binge-eating disorder (BED)] were diagnosed according to DSM-5 criteria and interviewed using the EDI 2 and SCL-90R questionnaires at the eating disorders unit. Blood samples were drawn and the DNA screened for polymorphisms in dopamine receptor genes (DRD2 A2/A1 and DRD3 Ser9Gly) and in the dopamine transporter DAT1 10R/9R. RESULTS AN patients who carried the DRD3 Gly9Gly genotype displayed significantly higher EDI-2 total scores than patients with the Ser9 allele (118.09 ± 8.75 vs. 97.23 ± 2.73, p = 0.010). In these patients, Gly9Gly carriers also showed higher scores in all the individuals' EDI-2 scales. Differences were especially relevant for bulimia (p = 0.004), ineffectiveness (p = 0.044), interpersonal distrust (p = 0.037), interoceptive awareness (p = 0.006) and maturity fears (p = 0.038). Epistasis analyses showed a strong effect of the interaction between DRD3 Ser9Gly and DRD2 A2A1 on the bulimia (p < 0.05), ineffectiveness (p < 0.05) and asceticism (p < 0.01) scales, as well as on the EDI-2 total score (p < 0.05). The scores of the SCL-90R inventory were largely unaffected by the presence of the polymorphisms. CONCLUSION Whilst no associations were found for the BN and BED groups, our results suggest that women with AN carrying the homozygous variant Gly9Gly genotype in the dopamine D3 receptor have significantly worse ED-related symptomatology. LEVEL OF EVIDENCE Level III (evidence obtained from well-designed cohort or case-control analytic studies).
Collapse
Affiliation(s)
- Luz M González
- Department Medical-Surgical Therapeutics, Medical School, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department Medical-Surgical Therapeutics, Medical School, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain
| | - Angustias García-Herráiz
- Eating Disorders Unit, Institute of Mental Disorders, Health Service of Extremadura, Badajoz, Spain
| | - Estefanía López-Nevado
- Eating Disorders Unit, Institute of Mental Disorders, Health Service of Extremadura, Badajoz, Spain
| | - Guillermo Gervasini
- Department Medical-Surgical Therapeutics, Medical School, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
11
|
Tubbs JD, Ding J, Baum L, Sham PC. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur Neuropsychopharmacol 2020; 39:1-18. [PMID: 32896454 DOI: 10.1016/j.euroneuro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Depression is the world's leading cause of disability. Greater understanding of the neurobiological basis of depression is necessary for developing novel treatments with improved efficacy and acceptance. Recently, major advances have been made in the search for genetic variants associated with depression which may help to elucidate etiological mechanisms. The present review has two major objectives. First, we offer a brief review of two major biological systems with strong evidence for involvement in depression pathology: neurotransmitter systems and the stress response. Secondly, we provide a synthesis of the functions of the 269 genes implicated by the most recent genome-wide meta-analysis, supporting the importance of these systems in depression and providing insights into other possible mechanisms involving neurodevelopment, neurogenesis, and neurodegeneration. Our goal is to undertake a broad, preliminary stock-taking of the most recent hypothesis-free findings and examine the weight of the evidence supporting these existing theories and highlighting novel directions. This qualitative review and accompanying gene function table provides a valuable resource and guide for basic and translational researchers, with suggestions for future mechanistic research, leveraging genetics to prioritize studies on the neurobiological processes involved in depression etiology and treatment.
Collapse
Affiliation(s)
- Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Venkannagari H, Kasper JM, Misra A, Rush SA, Fan S, Lee H, Sun H, Seshadrinathan S, Machius M, Hommel JD, Rudenko G. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Structural and Biological Outcomes. J Mol Biol 2020; 432:5287-5303. [PMID: 32710982 DOI: 10.1016/j.jmb.2020.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Neuronal growth regulator 1 (NEGR1) and neurotrimin (NTM) are abundant cell-surface proteins found in the brain and form part of the IgLON (Immunoglobulin LSAMP, OBCAM, Neurotrimin) family. In humans, NEGR1 is implicated in obesity and mental disorders, while NTM is linked to intelligence and cognitive function. IgLONs dimerize homophilically and heterophilically, and they are thought to shape synaptic connections and neural circuits by acting in trans (spanning cellular junctions) and/or in cis (at the same side of a junction). Here, we reveal homodimeric structures of NEGR1 and NTM. They assemble into V-shaped complexes via their Ig1 domains, and disruption of the Ig1-Ig1 interface abolishes dimerization in solution. A hydrophobic ridge from one Ig1 domain inserts into a hydrophobic pocket from the opposing Ig1 domain producing an interaction interface that is highly conserved among IgLONs but remarkably plastic structurally. Given the high degree of sequence conservation at the interaction interface, we tested whether different IgLONs could elicit the same biological effect in vivo. In a small-scale study administering different soluble IgLONs directly into the brain and monitoring feeding, only NEGR1 altered food intake significantly. Taking NEGR1 as a prototype, our studies thus indicate that while IgLONs share a conserved mode of interaction and are able to bind each other as homomers and heteromers, they are structurally plastic and can exert unique biological action.
Collapse
Affiliation(s)
- Harikanth Venkannagari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James M Kasper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott A Rush
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suchithra Seshadrinathan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
13
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
14
|
Noh K, Park JC, Han JS, Lee SJ. From Bound Cells Comes a Sound Mind: The Role of Neuronal Growth Regulator 1 in Psychiatric Disorders. Exp Neurobiol 2020; 29:1-10. [PMID: 32122104 PMCID: PMC7075657 DOI: 10.5607/en.2020.29.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell adhesion is important for maintenance of brain structure and function. Abnormal neuronal cell adhesion and loss of its connectivity are considered a main cause of psychiatric disorders such as major depressive disorder (MDD). Various cell adhesion molecules (CAMs) are involved in neuronal cell adhesions and thereby affect brain functions such as learning and memory, cognitive functions, and psychiatric functions. Compared with other CAMs, neuronal growth regulator 1 (Negr1) has a distinct functioning mechanism in terms of its cross-talk with cytokine receptor signaling. Negr1 is a member of the immunoglobulin LON (IgLON) family of proteins and is involved in neuronal outgrowth, dendritic arborization, and synapse formation. In humans, Negr1 is a risk gene for obesity based on a genome-wide association study. More recently, accumulating evidence supports that it also plays a critical role in psychiatric disorders. In this review, we discuss the recent findings on the role of Negr1 in MDD, focusing on its regulatory mechanism. We also provide evidence of putative involvement of Negr1 in other psychiatric disorders based on the novel behavioral phenotypes of Negr1 knockout mice.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Jung-Cheol Park
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| |
Collapse
|
15
|
Breton E, Gagné-Ouellet V, Thibeault K, Guérin R, Van Lieshout R, Perron P, Hivert M, Bouchard L. Placental NEGR1 DNA methylation is associated with BMI and neurodevelopment in preschool-age children. Epigenetics 2019; 15:323-335. [PMID: 31510847 DOI: 10.1080/15592294.2019.1666653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Studies have linked maternal pre-pregnancy obesity and hyperglycaemia with metabolic and neurodevelopmental complications in childhood. DNA methylation (DNAm) might enable foetal adaptations to environmental adversities through important gene loci. NEGR1 is involved in both energy balance and behaviour regulation. The aim of this study was to investigate associations between placental DNAm at the NEGR1 gene locus and childhood anthropometric and neurodevelopmental profiles in preschoolers. We analysed 276 mother-child dyads from Gen3G, a prospective birth cohort from Sherbrooke. At 3yo (40.4 ± 3.0 months), we measured body mass index (BMI) and the mothers reported on offspring neurobehavior using the Strengths and Difficulties Questionnaire (SDQ). We quantified DNAm levels at 30 CpGs at the NEGR1 locus using the MethylationEPIC Array in placental biopsies. DNAm at four CpGs located before NEGR1 second exon predicted child's BMI z-score (cg26153364: β=-0.16 ± 0.04; p=0.008, cg23166710: β=0.14 ± 0.08; p=0.03) and SDQ total score (cg04932878: β=0.22 ± 1.0; p= 3.0x10-4, cg16525738: β=-0.14 ± 0.18; p=0.01, cg23166710: β=-0.13 ± 0.36; p= 0.04), explaining 4.2% (p=0.003) and 7.3% (p= 1.3 x 10-4) of BMI-z and SDQ variances. cg23166710 was associated with both childhood phenotypes and correlated with NEGR1 placental expression (r=-0.22, p=0.04), suggesting its possible functional role. Together, maternal metabolic characteristics during pregnancy with NEGR1 DNAm levels explained 7.4% (p=4.2 x 10-4) of BMI-z and 14.2% (p=2.8 x 10-7) of SDQ variance at 3yo. This longitudinal study suggests that placental NEGR1 DNAm is associated with adiposity and neurodevelopment in preschool children and highlights its potential role in their comorbidity.
Collapse
Affiliation(s)
- E Breton
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - V Gagné-Ouellet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - K Thibeault
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - R Guérin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| | - Rj Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - P Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mf Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - L Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| |
Collapse
|
16
|
Zhang Q, Liu C, Li Q, Li J, Wu Y, Liu J. MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells. Biochimie 2019; 165:141-149. [PMID: 31365884 DOI: 10.1016/j.biochi.2019.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
MicroRNA-25-5p (miR-25-5p) may be involved in the pathogenesis and processes of vascular diseases. The aim of this study was to investigate the role of miR-25-5p in oxidized low-density lipoprotein (ox-LDL)-treated human brain microvessel endothelial cells (HBMECs) and the underlying mechanisms. RT-qPCR and/or Western blot were used to detect the expression levels of miR-25-5p and neuronal growth regulator 1 (NEGR1). The effect of miR-25-5p overexpression and NEGR1 silencing on cell proliferation, migration, apoptosis and reactive oxygen species (ROS) production of HBMECs were measured by using CCK-8 assay, transwell assay and flow cytometry, respectively. The expression levels of apoptosis-related protein (cleaved caspase-3 and pro-caspase-3) were detected using Western blot, and the nitric oxide (NO) production was measured by a nitric oxide assay kit. The expression level of miR-25-5p was decreased in HBMECs treated with ox-LDL. Compared with the control group, miR-25-5p overexpression significantly promoted the proliferation and migration of HBMECs treated with ox-LDL (p < 0.01). Overexpression of miR-25-5p significantly suppressed cell apoptosis, ROS production and NO reduction of ox-LDL-induced HBMECs (p < 0.01). In addition, the target gene of miR-25-5p was predicted to be NEGR1 through Targetscan online analysis. The effect of NEGR1 silencing on cell proliferation, migration, apoptosis, ROS and NO production of ox-LDL-induced HBMECs was similar to that of miR-25-5p overexpression. Furthermore, miR-25-5p overexpression and NEGR1 silencing significantly downregulated the protein expression levels of JAK2 and STAT3. Thus, miR-25-5p neutralizes the effects of ox-LDL on multiple functions of HBMECs through suppressing the expression of NEGR1 via regulating the JAK/STA signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China.
| | - Chun Liu
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianan Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Yina Wu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomäe T, Heinla I, Hickey MA, Kaasik A, Schäfer MK, Innos J, Lilleväli K, Philips MA, Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci Rep 2019; 9:5457. [PMID: 30932003 PMCID: PMC6443666 DOI: 10.1038/s41598-019-41991-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) belongs to the immunoglobulin (IgLON) superfamily of cell adhesion molecules involved in cortical layering. Recent functional and genomic studies implicate the role of NEGR1 in a wide spectrum of psychiatric disorders, such as major depression, schizophrenia and autism. Here, we investigated the impact of Negr1 deficiency on brain morphology, neuronal properties and social behavior of mice. In situ hybridization shows Negr1 expression in the brain nuclei which are central modulators of cortical-subcortical connectivity such as the island of Calleja and the reticular nucleus of thalamus. Brain morphological analysis revealed neuroanatomical abnormalities in Negr1−/− mice, including enlargement of ventricles and decrease in the volume of the whole brain, corpus callosum, globus pallidus and hippocampus. Furthermore, decreased number of parvalbumin-positive inhibitory interneurons was evident in Negr1−/− hippocampi. Behaviorally, Negr1−/− mice displayed hyperactivity in social interactions and impairments in social hierarchy. Finally, Negr1 deficiency resulted in disrupted neurite sprouting during neuritogenesis. Our results provide evidence that NEGR1 is required for balancing the ratio of excitatory/inhibitory neurons and proper formation of brain structures, which is prerequisite for adaptive behavioral profiles. Therefore, Negr1−/− mice have a high potential to provide new insights into the neural mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia. .,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str.25, 53127, Bonn, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromso, Norway
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Michael K Schäfer
- Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
18
|
Kumar P, Mahalingam K. In silico approach to identify non-synonymous SNPs with highest predicted deleterious effect on protein function in human obesity related gene, neuronal growth regulator 1 ( NEGR1). 3 Biotech 2018; 8:466. [PMID: 30402368 DOI: 10.1007/s13205-018-1463-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) is a candidate gene for human obesity, which encodes the neural cell adhesion and growth molecule. The aim of the current study was to recognize the non-synonymous SNPs (nsSNPs) with the highest predicted deleterious effect on protein function of the NEGR1 gene. We have used five computational tools, namely, PolyPhen, SIFT, PROVEAN, MutPred and M-CAP, to predict the deleterious and pathogenic nsSNPs of the NEGR1 gene. Homology modeling approach was used to model the native and mutant NEGR1 protein models. Furthermore, structural validation was performed by the PROCHECK server to interpret the stability of the predicted models. We have predicted four potential deleterious nsSNPs, i.e., rs145524630 (Ala70Thr), rs267598710 (Pro168Leu), rs373419972 (Arg239Cys) and rs375352213 (Leu158Phe), which might be involved in causing obesity phenotypes. The predicted mutant models showed higher root mean square deviation and free energy values under the PyMoL and SWISS-PDB viewer, respectively. Additionally, the FTSite server predicted one nsSNP, i.e., rs145524630 (Ala70Thr) out of four identified nsSNPs found in the NEGR1 protein-binding site. There were four potential deleterious and pathogenic nsSNPs, i.e., rs145524630, rs267598710, rs373419972 and rs375352213, identified from the above-mentioned tools. In future, further functional in vitro and in vivo analysis could lead to better knowledge about these nsSNPs on the influence of the NEGR1 gene in causing human obesity. Hence, the present computational examination suggest that predicated nsSNPs may feasibly be a drug target and play an important role in contributing to human obesity.
Collapse
Affiliation(s)
- Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| |
Collapse
|
19
|
Effect of dopamine receptor D4 ( DRD4 ) haplotypes on general psychopathology in patients with eating disorders. Gene 2018; 654:43-48. [DOI: 10.1016/j.gene.2018.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 12/30/2022]
|
20
|
Klabunde M, Collado D, Bohon C. An interoceptive model of bulimia nervosa: A neurobiological systematic review. J Psychiatr Res 2017; 94:36-46. [PMID: 28651098 PMCID: PMC6026544 DOI: 10.1016/j.jpsychires.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/18/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN.
Collapse
Affiliation(s)
- Megan Klabunde
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.
| | - Danielle Collado
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
21
|
Gamero-Villarroel C, González LM, Rodríguez-López R, Albuquerque D, Carrillo JA, García-Herráiz A, Flores I, Gervasini G. Influence of TFAP2B and KCTD15 genetic variability on personality dimensions in anorexia and bulimia nervosa. Brain Behav 2017; 7:e00784. [PMID: 28948079 PMCID: PMC5607548 DOI: 10.1002/brb3.784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/10/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION TFAP2B and KCTD15 are obesity-related genes that interact to regulate feeding behavior. We hypothesize that variability in these loci, isolated or in combination, could also be related to the risk of eating disorders (ED) and/or associated psychological traits. METHODS We screened 425 participants (169 ED patients, 75 obese subjects, and 181 controls) for 10 clinically relevant and tag single-nucleotide polymorphisms (SNPs) in KCTD15 and TFAP2B by the Sequenom MassARRAY platform and direct sequencing. Psychometric evaluation was performed with EDI-2 and SCL-90R inventories. RESULTS The KCTD15 rs287103 T variant allele was associated with increased risk of bulimia nervosa (BN) (OR = 4.34 [1.47-29.52]; p = .003) and with scores of psychopathological scales of these patients. Haplotype *6 in KCTD15 was more frequent in controls (OR = 0.40 [0.20-0.80], p = .009 for anorexia nervosa), while haplotype *4 in TFAP2B affected all three scales of the SCL-90R inventory in BN patients (p ≤ .01). Epistasis analyses revealed relevant interactions with body mass index of BN patients (p < .001). Genetic profiles in obese patients did not significantly differ from those found in ED patients. CONCLUSIONS This is the first study that evaluates the combined role of TFAP2B and KCTD15 genes in ED. Our preliminary findings suggest that the interaction of genetic variability in these loci could influence the risk for ED and/or anthropometric and psychological parameters.
Collapse
Affiliation(s)
- Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | - Luz M González
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | | | - David Albuquerque
- Service of Clinical Analyses General University Hospital Valencia Spain.,Research Center for Anthropology and Health (CIAS) University of Coimbra Coimbra Portugal
| | - Juan A Carrillo
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | | | - Isalud Flores
- Eating Disorders UnitInstitute of Mental Disorders Health Service of Extremadura Badajoz Spain
| | - Guillermo Gervasini
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| |
Collapse
|
22
|
Polimanti R, Zhang H, Smith AH, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study of body mass index in subjects with alcohol dependence. Addict Biol 2017; 22:535-549. [PMID: 26458734 PMCID: PMC5102811 DOI: 10.1111/adb.12317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Outcomes related to disordered metabolism are common in alcohol dependence (AD). To investigate alterations in the regulation of body mass that occur in the context of AD, we performed a genome-wide association study (GWAS) of body mass index (BMI) in African Americans (AAs) and European Americans (EAs) with AD. Subjects were recruited for genetic studies of AD or drug dependence and evaluated using the Semi-structured Assessment for Drug Dependence and Alcoholism. We investigated a total of 2587 AAs and 2959 EAs with DSM-IV AD diagnosis. In the stage 1 sample (N = 4137), we observed three genome-wide significant (GWS) single-nucleotide polymorphism associations, rs200889048 (P = 8.98 * 10-12 ) and rs12490016 (P = 1.44 * 10-8 ) in EAs and rs1630623 (P = 5.14 * 10-9 ) in AAs and EAs meta-analyzed. In the stage 2 sample (N = 1409), we replicated 278, 253 and 168 of the stage 1 suggestive loci (P < 5*10-4 ) in AAs, EAs, and AAs and EAs meta-analyzed, respectively. A meta-analysis of stage 1 and stage 2 samples (N = 5546) identified two additional GWS signals: rs28562191 in EAs (P = 4.46 * 10-8 ) and rs56950471 in AAs (P = 1.57 * 10-9 ). Three of the GWS loci identified (rs200889048, rs12490016 and rs1630623) were not previously reported by GWAS of BMI in the general population, and two of them raise interesting hypotheses: rs12490016-a regulatory variant located within LINC00880, where there are other GWAS-identified variants associated with birth size, adiposity in newborns and bulimia symptoms, which also interact with social stress in relation to birth size; rs1630623-a regulatory variant related to ALDH1A1, a gene involved in alcohol metabolism and adipocyte plasticity. These loci offer molecular insights regarding the regulatory mechanisms of body mass in the context of AD.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Andrew H. Smith
- Medical Scientist Training Program and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics & Genomics, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Shih PAB, Woodside DB. Contemporary views on the genetics of anorexia nervosa. Eur Neuropsychopharmacol 2016; 26:663-73. [PMID: 26944296 PMCID: PMC4801707 DOI: 10.1016/j.euroneuro.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Anorexia nervosa (AN) is a serious mental illness characterized by severe dietary restriction that leads to high rates of morbidity, chronicity, and mortality. Unfortunately, effective treatment is lacking and few options are available. High rates of familial aggregation and significant heritability suggested that the complex etiology of AN is affected by both genetic and environmental factors. In this paper, we review studies that reported common and rare genetic variation that influence susceptibility of AN through candidate gene studies, genome-wide association studies, and sequencing-based studies. We also discuss gene expression, methylation, imaging genetics, and pharmacogenetics to demonstrate that these studies have collectively advanced our knowledge of how genetic variation contributes to AN susceptibility and clinical course. Lastly, we highlight the importance of gene by environment interactions (G×E) and share our enthusiasm for the use of nutritional genomic approaches to elucidate the interaction among nutrients, metabolic intermediates, and genetic variation in AN. A deeper understanding of how nutrition alters genome stability, how genetic variation influences uptake and metabolism of nutrients, and how response to food components affects disordered eating, will lead to personalized dietary interventions and effective nutraceutical and pharmacological treatments for AN.
Collapse
Affiliation(s)
- Pei-an Betty Shih
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093-0664, USA.
| | - D Blake Woodside
- Inpatient Eating Disorders Service, Toronto General Hospital, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
24
|
Gervasini G, Gamero-Villarroel C. Discussing the putative role of obesity-associated genes in the etiopathogenesis of eating disorders. Pharmacogenomics 2015; 16:1287-1305. [DOI: 10.2217/pgs.15.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In addition to the identification of mutations clearly related to Mendelian forms of obesity; genome-wide association studies and follow-up studies have in the last years pinpointed several loci associated with BMI. These genetic alterations are located in or near genes expressed in the hypothalamus that are involved in the regulation of eating behavior. Accordingly, it seems plausible that these SNPs, or others located in related genes, could also help develop aberrant conduct patterns that favor the establishment of eating disorders should other susceptibility factors or personality dimensions be present. However, and somewhat surprisingly, with few exceptions such as BDNF, the great majority of the genes governing these pathways remain untested in patients with anorexia nervosa, bulimia nervosa or binge-eating disorder. In the present work, we review the few existing studies, but also indications and biological concepts that point to these genes in the CNS as good candidates for association studies with eating disorder patients.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| | - Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| |
Collapse
|