1
|
Guo X, Deng Y, Jiang W, Li H, Luo Y, Zhang H, Wu H. Single cell transcriptomic analysis reveals tumor immune infiltration by macrophage cells gene signature in lung adenocarcinoma. Discov Oncol 2025; 16:261. [PMID: 40029500 DOI: 10.1007/s12672-025-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play pivotal roles in innate immunity and contribute to the advancement of lung cancer. We aimed to identify novel TAM-related biomarkers and significance of macrophage infiltration in lung adenocarcinoma (LUAD) through an integrative analysis of single-cell RNA-sequencing (scRNA-seq) data. To describe the cell atlas and construct a novel prognostic signature in LUAD. METHODS The gene signature linked to TAMs was identified utilizing Scanpy from the scRNA-seq dataset GSE131907. Subsequent analysis involved evaluating the expression levels of these genes, their potential molecular mechanisms, and prognostic significance in LUAD using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We also constructed a risk score models through LASSO Cox regression for these genes. The underlying mechanism was further elucidated through the application of GSEA, ESTIMATE, TIDE, and other bioinformatic algorithms. RESULTS Single-cell atlas was described by analyze 29 scRNA-seq samples from 19 LUAD patients. The TAMs-related gene signature (TGS) was identified as an independent prognostic factor by LASSO Cox regression analysis using differential expression genes (DEGs) derived from pro- and anti-inflammatory macrophage cells. Risk score model including nine TAMs-related genes (FOSL1, ZNF697, ADM, UBE2S, TICAM1, S100P, BIRC3, TLE1, and DEFB1) were obtained for prognosis construction. Moreover, the risk model underwent additional validation in four external GEO cohorts: GSE31210, GSE72094, GSE26939, and GSE30219. Interestingly, TGS-high tumors revealed enrichments in TGF-β signaling and hypoxia pathways, which shown low immune infiltration and immunosuppression by ESTIMATE and TIDE algorithm. The TGS-high risk group exhibited lower richness and diversity in the T-cell receptor (TCR) repertoire. CONCLUSION This study introduces a novel TGS score developed through LASSO Cox regression analysis, utilizing DEGs in pro- and anti-inflammatory macrophage cells. High TGS tumors exhibited enrichment in TGF-β signaling and hypoxia pathways, suggesting their potential utility in predicting prognosis and immune responses in patients with LUAD. These results offer promising implications for the development of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Wenjun Jiang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Hospital of Oncology, Kunming, China
| | - Yisheng Luo
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Barcutean L, Farczadi L, Manescu IB, Imre S, Maier S, Balasa R. Short and Medium Chain Fatty Acids in a Cohort of Naïve Multiple Sclerosis Patients: Pre- and Post-Interferon Beta Treatment Assessment. Biologics 2024; 18:349-361. [PMID: 39569059 PMCID: PMC11577435 DOI: 10.2147/btt.s489523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Introduction Alterations in intestinal permeability and microbiota dysregulation have been linked to the development of multiple sclerosis (MS). Short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) are products of gut bacteria fermentation which are involved in immune regulation processes. In MS, SCFA have important immunomodulatory properties both in the periphery and the central compartment. Interferon β (IFNβ) was the first disease-modifying therapy approved for the treatment of MS and its effects on the gut microbiota are not fully elucidated. Patients and Methods We performed a prospective observational study aimed to assess peripheral levels of SCFA and MCFA in 23 newly diagnosed, treatment-naïve MS patients (nMS) before and after one year of IFNβ treatment and 23 healthy controls (HC). We investigated their associations with inflammation, interleukin-10 (IL-10), and blood-brain barrier permeability, matrix metalloproteinase 9 (MMP9). Results No significant differences in SCFA/MCFA levels were observed between baseline and after IFNβ treatment. Caproic acid levels were significantly higher in nMS compared to HC (1.64 vs 1.27 µM, p=0.005). The butyric acid/caproic acid ratio was higher in HC compared to nMS (5.47 vs 2.55, p=0.005). Correlation analysis revealed associations between SCFA/MCFA levels and inflammatory biomarkers. Conclusion nMS have a higher gut-inflammatory activity as seen by the caproic acid ratio as opposed to HC. In this cohort, IFNβ does not appear to modify the peripheral SCFA/MCFA levels after one year of treatment. The quantifications of peripheral SCFA/MCFA may prove to be a useful biomarker for gut-brain axis disruption in MS patients.
Collapse
Affiliation(s)
- Laura Barcutean
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
| | - Ion-Bogdan Manescu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Silvia Imre
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Smaranda Maier
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| |
Collapse
|
3
|
Correia JC, Jannig PR, Gosztyla ML, Cervenka I, Ducommun S, Præstholm SM, Dias JM, Dumont KD, Liu Z, Liang Q, Edsgärd D, Emanuelsson O, Gregorevic P, Westerblad H, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Teixeira AI, Yeo GW, Ruas JL. Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2319724121. [PMID: 39141348 PMCID: PMC11348326 DOI: 10.1073/pnas.2319724121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.
Collapse
Affiliation(s)
- Jorge C. Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Maya L. Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Stine M. Præstholm
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - José M. Dias
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Kyle D. Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Daniel Edsgärd
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Håkan Westerblad
- Muscle Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Johanna T. Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Ana I. Teixeira
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
- Department of Pharmacology and Stanley & Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
4
|
Khorrami M, Saneipour M, Moridnia A, Shaygannejad V, Sadeghi E, Kassani A, Sarmadi A, Mirmosayyeb O. Interdependency of NINJ2 gene expression and polymorphism with susceptibility and response to interferon beta in patients with multiple sclerosis. Int J Neurosci 2024; 134:347-352. [PMID: 35912872 DOI: 10.1080/00207454.2022.2102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/30/2022] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a multifactorial inflammatory and autoimmune condition that lead to chronic neurodegeneration and central nervous system (CNS) demyelination that mainly affects young adults. The incidence and prevalence rate of MS considerably vary in ethnicities and geographic regions and affecting women more than men. Interferon-β (IFN-β) is the first-line disease management for MS, while the majority of affected members does not respond to the IFN-β. Numerous recent studies shown a significant relationship between genetic variations and responsiveness to the IFN-β. Therefore, determining the genetic differences in the drug response could help determine precise treatment strategies. METHODS The genotyping of the rs7298096 polymorphism (SNP) and NINJ2 gene expression were assessed in 99 responders and 106 non-responder patients with IFN-β treated RRMS. RESULTS The distribution of rs7298096 SNP was significantly different in the responders and non-responder patients and the NINJ2 gene expression considerably increased in the non-responder patients compare to the responders. The NINJ2 gene expression level in the AA genotype of the non-responder group was higher than to the other genotypes of both groups. CONCLUSION Our results showed that the NINJ2 gene expression level and rs7298096 genotype possibly affect the response to the IFN-β in patients with RRMS.
Collapse
Affiliation(s)
- Mehdi Khorrami
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Saneipour
- Department of Genetics and Molecular Biology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Abbas Moridnia
- Department of Genetics and Molecular Biology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Vahid Shaygannejad
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Sadeghi
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences Isfahan Iran, Isfahan, Iran
| | - Aziz Kassani
- Department of Community Medicine, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Akram Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Correia JC, Jannig PR, Gosztyla ML, Cervenka I, Ducommun S, Præstholm SM, Dumont K, Liu Z, Liang Q, Edsgärd D, Emanuelsson O, Gregorevic P, Westerblad H, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Yeo GW, Ruas JL. Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544338. [PMID: 37398033 PMCID: PMC10312635 DOI: 10.1101/2023.06.12.544338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Muscular atrophy is a mortality risk factor that happens with disuse, chronic disease, and aging. Recovery from atrophy requires changes in several cell types including muscle fibers, and satellite and immune cells. Here we show that Zfp697/ZNF697 is a damage-induced regulator of muscle regeneration, during which its expression is transiently elevated. Conversely, sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Myofiber-specific Zfp697 ablation hinders the inflammatory and regenerative response to muscle injury, compromising functional recovery. We uncover Zfp697 as an essential interferon gamma mediator in muscle cells, interacting primarily with ncRNAs such as the pro-regenerative miR-206. In sum, we identify Zfp697 as an integrator of cell-cell communication necessary for tissue regeneration.
Collapse
Affiliation(s)
- Jorge C. Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Maya L. Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Stine M. Præstholm
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Kyle Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology. Department of Physiology and Pharmacology, Biomedicum. Karolinska Institutet. SE-171 77, Stockholm. Sweden
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Edsgärd
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Håkan Westerblad
- Muscle Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Johanna T. Lanner
- Molecular Muscle Physiology and Pathophysiology. Department of Physiology and Pharmacology, Biomedicum. Karolinska Institutet. SE-171 77, Stockholm. Sweden
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| |
Collapse
|
6
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Gezmis H, Doran T, Mayda Domac F, Yucel D, Karaci R, Kirac D. CD4+ and CD25+ T-cell response to short-time interferon-beta therapy on IL10, IL23A and FOXP3 genes in multiple sclerosis patients. Int J Clin Pract 2021; 75:e14238. [PMID: 33884734 DOI: 10.1111/ijcp.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
AIM OF THE STUDY Interferon-beta (IFN-β), multiple sclerosis (MS) drug for years, does not have therapeutic effects on each patient. Yet, a considerable portion has experienced no therapeutic response to IFN-β. Therefore, it is necessary to determine disease-specific biomarkers that affect drug response. Here, we aimed to determine the effects of interleukin 10 (IL10) and 23 (IL23A), as well as forkhead box P3 (FOXP3) genes on MS after IFN-β therapy. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) of 42 MS patients were isolated to obtain CD4+ and CD25+ T cells. Both cell types were characterised by flow cytometry. To determine optimum drug concentration of IFN-β, cytotoxicity assays were assessed on each cell type for 4, 16, 24 and 48 hours respectively. Then, cells were cultured in the presence of 500 IU/mL of IFN-β. cDNA synthesis was performed after mRNA extraction. RT-PCR was performed to measure gene expressions of IL10, IL23A and FOXP3. Results were evaluated statistically. RESULTS It was found that the cytotoxic effect of IFN-β was more efficient as the exposure time was expanded regardless of drug concentration. Moreover, CD25+ T lymphocytes were more resistant to IFN-β. IL23A was down-regulated, whereas FOXP3 was up-regulated at 48 hours in CD4+ T cells. For CD25+ T cells, the graded increase in FOXP3 was obtained while IL10 expression was gradually decreased throughout the drug intake. CONCLUSION Although a considerable change in expression was obtained, the long-term IFN-β effect on both genes and cells should be determined by follow-up at least a year.
Collapse
Affiliation(s)
- Hazal Gezmis
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Materials, University of Oxford, Oxfordshire, OX1 3PH, UK
| | - Tansu Doran
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fusun Mayda Domac
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Yucel
- Department of Histology and Embryology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Rahsan Karaci
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
8
|
Pharmacogenetic Predictors of Response to Interferon Beta Therapy in Multiple Sclerosis. Mol Neurobiol 2021; 58:4716-4726. [PMID: 34169444 DOI: 10.1007/s12035-021-02454-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023]
Abstract
First-line therapy with interferon beta (IFN-β), involved in gene expression modulation in immune response, is widely used for multiple sclerosis. However, 30-50% of patients do not respond optimally. Variants in CBLB, CTSS, GRIA3, OAS1 and TNFRSF10A genes have been proposed to contribute to the variation in the individual response. The purpose of this study was to evaluate the influence of gene polymorphisms on the IFN-β response in relapsing-remitting multiple sclerosis (RRMS) patients. CBLB (rs12487066), GRIA3 (rs12557782), CTSS (rs1136774), OAS1 (rs10774671) and TNFRSF10A (rs20576) polymorphisms were analysed by Taqman in 137 RRMS patients. Response to IFN-β and change in the Expanded Disability Status Scale (EDSS) after 24 months were evaluated using multivariable logistic regression analysis. Carriers of at least one copy of the C allele of CTSS-rs1136774 had a better response to IFN-β (p = 0.0423; OR = 2.94; CI95% = 1.03, 8.40). Carriers of TT genotype of TNFRSF10A-rs20576 had a higher probability of maintaining their EDSS stable after 24 months of IFN-β treatment (p = 0.0251; OR = 5.71; CI95% = 1.39, 31.75). No influence of CBLB (rs12487066), OAS1 (rs10774671) and GRIA3 (rs12557782) gene polymorphisms in the variation of the individual response to IFN-β was shown. Our results suggest that the TNFRSF10A-rs20576 and CTSS-rs1136774 gene polymorphisms influence the response to IFN-β after 24 months, while the CBLB (rs12487066), OAS1 (rs10774671) or GRIA3 (rs12557782) gene polymorphisms had no effect on the variation of the individual response to IFN-β.
Collapse
|
9
|
An interdependence between GAPVD1 gene polymorphism, expression level and response to interferon beta in patients with multiple sclerosis. J Neuroimmunol 2021; 353:577507. [PMID: 33548618 DOI: 10.1016/j.jneuroim.2021.577507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022]
Abstract
Interferon-β (IFN-β) is among the first drugs used for reducing the symptoms of multiple sclerosis (MS). Many studies show that the genetic predisposition of patients might modulate their response to IFN-β treatment. In this study GAPVD1 gene expression and the genotyping of rs2291858 variant were analysed in 100 responder and 100 non-responder patients with MS treated using IFN-β. Moreover, rs2291858 genotyping was performed for 200 patients with MS and 200 healthy controls. GAPVD1 expression was significantly increased in the responder patients than in non-responders and the distribution of rs2291858 polymorphism was significantly different between them. The GAPVD1 expression level in AA genotype of the responder group was higher than that in other genotypes of these two groups. The results show that the GAPVD1 expression level and rs2291858 genotype probably affect the response to IFN- β in patients with MS.
Collapse
|
10
|
Hassan R, Allali I, Agamah FE, Elsheikh SSM, Thomford NE, Dandara C, Chimusa ER. Drug response in association with pharmacogenomics and pharmacomicrobiomics: towards a better personalized medicine. Brief Bioinform 2020; 22:6012864. [PMID: 33253350 DOI: 10.1093/bib/bbaa292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Researchers have long been presented with the challenge imposed by the role of genetic heterogeneity in drug response. For many years, Pharmacogenomics and pharmacomicrobiomics has been investigating the influence of an individual's genetic background to drug response and disposition. More recently, the human gut microbiome has proven to play a crucial role in the way patients respond to different therapeutic drugs and it has been shown that by understanding the composition of the human microbiome, we can improve the drug efficacy and effectively identify drug targets. However, our knowledge on the effect of host genetics on specific gut microbes related to variation in drug metabolizing enzymes, the drug remains limited and therefore limits the application of joint host-microbiome genome-wide association studies. In this paper, we provide a historical overview of the complex interactions between the host, human microbiome and drugs. While discussing applications, challenges and opportunities of these studies, we draw attention to the critical need for inclusion of diverse populations and the development of an innovative and combined pharmacogenomics and pharmacomicrobiomics approach, that may provide an important basis in personalized medicine.
Collapse
Affiliation(s)
- Radia Hassan
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Imane Allali
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Francis E Agamah
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | | | - Nicholas E Thomford
- Lecturers at the Department of Medical Biochemistry School of Medical Sciences, University of Cape Coast, Ghana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town
| |
Collapse
|
11
|
Ferrè L, Filippi M, Esposito F. Involvement of Genetic Factors in Multiple Sclerosis. Front Cell Neurosci 2020; 14:612953. [PMID: 33335478 PMCID: PMC7735985 DOI: 10.3389/fncel.2020.612953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura Ferrè
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Cafiero C, Re A, Micera A, Palmirotta R, Monaco D, Romano F, Fabrizio C, Di Francia R, Cacciamani A, Surico PL, D’Amato G, Pisconti S. Pharmacogenomics and Pharmacogenetics: In Silico Prediction of Drug Effects in Treatments for Novel Coronavirus SARS-CoV2 Disease. Pharmgenomics Pers Med 2020; 13:463-484. [PMID: 33116761 PMCID: PMC7568633 DOI: 10.2147/pgpm.s270069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The latest developments in precision medicine allow the modulation of therapeutic approaches in different pathologies on the basis of the specific molecular characterization of the patient. This review of the literature coupled with in silico analysis was to provide a selected screening of interactions between single-nucleotide polymorphisms (SNPs) and drugs (repurposed, investigational, and biological agents) showing efficacy and toxicityin counteracting Covid-19 infection. In silico analysis of genetic variants related to each drug was performed on such databases as PharmGKB, Ensembl Genome Browser, www.drugs.com, and SNPedia, with an extensive literature review of papers (to May 10, 2020) on Covid-19 treatments using Medline, Embase, International Pharmaceutical Abstracts, PharmGKB, and Google Scholar. The clinical relevance of SNPs, known as both drug targets and markers, considering genetic variations with known drug responses, and the therapeutic consequences are discussed. In the context of clinical treatment of Covid-19, including infection prevention, control measures, and supportive care, this review highlights the importance of a personalized approach in the final selection of therapy, which is probably essential in the management of the Covid-19 pandemic.
Collapse
Affiliation(s)
| | - Agnese Re
- CNR-IASI, Catholic University of Sacred Heart, Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS — Fondazione Bietti, Rome, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Clinical Oncology, Oncogenomic Research Center, Aldo Moro University of Bari, Bari, Italy
| | | | - Francesca Romano
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Napoli, Italy
| | | | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics, Ancona, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS — Fondazione Bietti, Rome, Italy
| | - Pier Luigi Surico
- Oncology and Hematology Department, F Miulli Hospital, Acquaviva delle Fonti, Italy
| | - Gerardo D’Amato
- Endocrine and Metabolic Surgery, A Gemelli Polyclinic Foundation, Rome, Italy
| | | |
Collapse
|
13
|
Martínez-Aguilar L, Pérez-Ramírez C, Maldonado-Montoro MDM, Carrasco-Campos MI, Membrive-Jiménez C, Martínez-Martínez F, García-Collado C, Calleja-Hernández MÁ, Ramírez-Tortosa MC, Jiménez-Morales A. Effect of genetic polymorphisms on therapeutic response in multiple sclerosis relapsing-remitting patients treated with interferon-beta. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 785:108322. [PMID: 32800273 DOI: 10.1016/j.mrrev.2020.108322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
Treatment with interferon beta (IFNβ) is one of the first-line treatments for multiple sclerosis. In clinical practice, however, many patients present suboptimal response to IFNβ, with the proportion of non-responders ranging from 20 to 50%. This variable response can be affected by genetic factors, such as polymorphisms in the genes involved in the disease state, pharmacodynamics, metabolism or in the action mechanism of IFNβ, which can affect the efficacy of this drug. This review assesses the impact of pharmacogenetics studies on response to IFNβ treatment among patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The results suggest that the detection of polymorphisms in several genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3, MxA, PELI3 and ZNF697) could be used in the future as predictive markers of response to IFNβ treatment in patients diagnosed with RRMS. However, few studies have been carried out and they have been performed on small sample sizes, which makes it difficult to generalize the role of these genes in IFNβ treatment. Studies on large sample sizes with longer term follow-up are therefore required to confirm these results.
Collapse
Affiliation(s)
- Laura Martínez-Aguilar
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Cristina Pérez-Ramírez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen Macarena, Dr. Fedriani, 3, 41009 Sevilla, Spain.
| | | | - María Isabel Carrasco-Campos
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Cristina Membrive-Jiménez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Fernando Martínez-Martínez
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Carlos García-Collado
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | | | - María Carmen Ramírez-Tortosa
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n 18071 Granada, Spain.
| | - Alberto Jiménez-Morales
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| |
Collapse
|
14
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
15
|
Meta-Analysis of Polymyositis and Dermatomyositis Microarray Data Reveals Novel Genetic Biomarkers. Genes (Basel) 2019; 10:genes10110864. [PMID: 31671645 PMCID: PMC6895911 DOI: 10.3390/genes10110864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Polymyositis (PM) and dermatomyositis (DM) are both classified as idiopathic inflammatory myopathies. They share a few common characteristics such as inflammation and muscle weakness. Previous studies have indicated that these diseases present aspects of an auto-immune disorder; however, their exact pathogenesis is still unclear. In this study, three gene expression datasets (PM: 7, DM: 50, Control: 13) available in public databases were used to conduct meta-analysis. We then conducted expression quantitative trait loci analysis to detect the variant sites that may contribute to the pathogenesis of PM and DM. Six-hundred differentially expressed genes were identified in the meta-analysis (false discovery rate (FDR) < 0.01), among which 317 genes were up-regulated and 283 were down-regulated in the disease group compared with those in the healthy control group. The up-regulated genes were significantly enriched in interferon-signaling pathways in protein secretion, and/or in unfolded-protein response. We detected 10 single nucleotide polymorphisms (SNPs) which could potentially play key roles in driving the PM and DM. Along with previously reported genes, we identified 4 novel genes and 10 SNP-variant regions which could be used as candidates for potential drug targets or biomarkers for PM and DM.
Collapse
|
16
|
Tavakolpour S, Darvishi M, Ghasemiadl M. Pharmacogenetics: A strategy for personalized medicine for autoimmune diseases. Clin Genet 2019; 93:481-497. [PMID: 29194620 DOI: 10.1111/cge.13186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
For many years, a considerable number of patients with autoimmune diseases (ADs) have suffered from a lack of drug response and drug-related toxicity. Despite the emergence of new therapeutic options such as biological agents, patients continue to struggle with these problems. Unfortunately, new challenges, including the paradoxical effects of biological drugs, have complicated the situation. In recent decades, efforts have been made to predict drug response as well as drug-related side effects. Thanks to the many advances in genetics, evaluation of markers to predict drug response/toxicity before the initiation of treatment may be an avenue toward personalizing treatments. Implementing pharmacogenetics and pharmacogenomics in the clinic could improve clinical care; however, obstacles remain to effective personalized medicine for ADs. The present study attempted to clarify the concept of pharmacogenetics/pharmacogenomics for ADs. After an overview on the pathogenesis of the most common types of treatments, this paper focuses on pharmacogenetic studies related to the selected ADs. Bridging the gap between pharmacogenetics and personalized medicine is also discussed. Moreover, the advantages, disadvantages and recommendations related to making personalized medicine practical for ADs have been addressed.
Collapse
Affiliation(s)
- S Tavakolpour
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - M Ghasemiadl
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Tsareva EY, Favorova OO, Boyko AN, Kulakova OG. Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis. Mol Biol 2019. [DOI: 10.1134/s0026893319040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Werneck LC, Lorenzoni PJ, Kay CSK, Scola RH. Multiple sclerosis: disease modifying therapy and the human leukocyte antigen. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:697-704. [PMID: 30427510 DOI: 10.1590/0004-282x20180103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the potential relationship between the human leukocyte antigen (HLA) type (class I and II) and the response to several disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS). METHODS We analyzed clinical data of 87 patients with MS at the beginning and end of each type of DMT including the disease duration, Expanded Disability Status Scale and Multiple Sclerosis Severity Score (MSSS). Genotyping of HLA-DRB1, HLA-DPB1, HLA-DQB1, HLA-A, HLA-B and HLA-C alleles were identified using high-resolution techniques. Statistical correlation between the HLA type and response to DMTs was done using the initial and final MSSS. RESULTS Statistical relationships (p < 0.05) were found for only 15 of 245 alleles tested. There was a reduction in the MSSS for patients treated with corticosteroids (DRB1*15:01, DPB1*04:01, DQB1*02:01 and DQB1*03:01), azathioprine (DRB1*03:01, DPB1*04:01, DQB1*03:02, DQB1*06:02, HLA-C*07:02), interferon β-1a 22 mcg (DRB1*11:04, DQB1*03:01 and DQB1*03:02), interferon β-1a 30 mcg (DPB1*02:01, HLA-C*05:01) and interferon β-1b (DQB1*02:01). CONCLUSION These findings suggest a few relationships between the HLA and response to DMTs in the disability for some types of HLA class I and II alleles in a specific subset of MS patients.
Collapse
Affiliation(s)
- Lineu Cesar Werneck
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| |
Collapse
|
19
|
Rana HK, Akhtar MR, Ahmed MB, Liò P, Quinn JM, Huq F, Moni MA. Genetic effects of welding fumes on the progression of neurodegenerative diseases. Neurotoxicology 2019; 71:93-101. [DOI: 10.1016/j.neuro.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
|
20
|
Hočevar K, Ristić S, Peterlin B. Pharmacogenomics of Multiple Sclerosis: A Systematic Review. Front Neurol 2019; 10:134. [PMID: 30863357 PMCID: PMC6399303 DOI: 10.3389/fneur.2019.00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Over the past two decades, various novel disease-modifying drugs for multiple sclerosis (MS) have been approved. However, there is high variability in the patient response to the available medications, which is hypothesized to be partly attributed to genetics. Objectives: To conduct a systematic review of the current literature on the pharmacogenomics of MS therapy. Methods: A systematic literature search was conducted using PubMed/MEDLINE database searching for articles investigating a role of genetic variation in response to disease-modifying MS treatments, published in the English language up to October 9th, 2018. PRISMA guidelines for systematic reviews were applied. Studies were included if they investigated response or nonresponse to MS treatment defined as relapse rate, by expanded disability status scale score or based on magnetic resonance imaging. The following data were extracted: first author's last name, year of publication, PMID number, sample size, ethnicity of patients, method, genes, and polymorphisms tested, outcome, significant associations with corresponding P-values and confidence intervals, response criteria, and duration of the follow-up period. Results: Overall, 48 articles published up to October 2018, evaluating response to interferon-beta, glatiramer acetate, mitoxantrone, and natalizumab, met our inclusion criteria and were included in this review. Among those, we identified 42 (87.5%) candidate gene studies and 6 (12.5%) genome-wide association studies. Existing pharmacogenomic evidence is mainly based on the results of individual studies, or on results of multiple studies, which often lack consistency. In recent years, hypothesis-free approaches identified novel candidate genes that remain to be validated. Various study designs, including the definition of clinical response, duration of the follow-up period, and methodology as well as moderate sample sizes, likely contributed to discordances between studies. However, some of the significant associations were identified in the same genes, or in the genes involved in the same biological pathways. Conclusions: At the moment, there is no available clinically actionable pharmacogenomic biomarker that would enable more personalized treatment of MS. More large-scale studies with uniform design are needed to identify novel and validate existing pharmacogenomics findings. Furthermore, studies investigating associations between rare variants and treatment response in MS patients, using next-generation sequencing technologies are warranted.
Collapse
Affiliation(s)
- Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Smiljana Ristić
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
22
|
Coyle PK. Pharmacogenetic Biomarkers to Predict Treatment Response in Multiple Sclerosis: Current and Future Perspectives. Mult Scler Int 2017; 2017:6198530. [PMID: 28804651 PMCID: PMC5540248 DOI: 10.1155/2017/6198530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Disease-modifying therapies (DMTs) have significantly advanced the treatment of relapsing multiple sclerosis (MS), decreasing the frequency of relapses, disability, and magnetic resonance imaging lesion formation. However, patients' responses to and tolerability of DMTs vary considerably, creating an unmet need for biomarkers to identify likely responders and/or those who may have treatment-limiting adverse reactions. Most studies in MS have focused on the identification of pharmacogenetic markers, using either the candidate-gene approach, which requires prior knowledge of the genetic marker and its role in the target disease, or genome-wide association, which examines multiple genetic variants, typically single nucleotide polymorphisms (SNPs). Both approaches have implicated numerous alleles and SNPs in response to selected MS DMTs. None have been validated for use in clinical practice. This review covers pharmacogenetic markers in clinical practice in other diseases and then reviews the current status of MS DMT markers (interferon β, glatiramer acetate, and mitoxantrone). For a complex disease such as MS, multiple biomarkers may need to be evaluated simultaneously to identify potential responders. Efforts to identify relevant biomarkers are underway and will need to be expanded to all MS DMTs. These will require extensive validation in large patient groups before they can be used in clinical practice.
Collapse
Affiliation(s)
- Patricia K. Coyle
- Department of Neurology and MS Comprehensive Care Center, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| |
Collapse
|
23
|
Ross CJ, Towfic F, Shankar J, Laifenfeld D, Thoma M, Davis M, Weiner B, Kusko R, Zeskind B, Knappertz V, Grossman I, Hayden MR. A pharmacogenetic signature of high response to Copaxone in late-phase clinical-trial cohorts of multiple sclerosis. Genome Med 2017; 9:50. [PMID: 28569182 PMCID: PMC5450152 DOI: 10.1186/s13073-017-0436-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 01/18/2023] Open
Abstract
Background Copaxone is an efficacious and safe therapy that has demonstrated clinical benefit for over two decades in patients with relapsing forms of multiple sclerosis (MS). On an individual level, patients show variability in their response to Copaxone, with some achieving significantly higher response levels. The involvement of genes (e.g., HLA-DRB1*1501) with high inter-individual variability in Copaxone’s mechanism of action (MoA) suggests the potential contribution of genetics to treatment response. This study aimed to identify genetic variants associated with Copaxone response in patient cohorts from late-phase clinical trials. Methods Single nucleotide polymorphisms (SNPs) associated with high and low levels of response to Copaxone were identified using genome-wide SNP data in a discovery cohort of 580 patients from two phase III clinical trials of Copaxone. Multivariable Bayesian modeling on the resulting SNPs in an expanded discovery cohort with 1171 patients identified a multi-SNP signature of Copaxone response. This signature was examined in 941 Copaxone-treated MS patients from seven independent late-phase trials of Copaxone and assessed for specificity to Copaxone in 310 Avonex-treated and 311 placebo-treated patients, also from late-phase trials. Results A four-SNP signature consisting of rs80191572 (in UVRAG), rs28724893 (in HLA-DQB2), rs1789084 (in MBP), and rs139890339 (in ZAK(CDCA7)) was identified as significantly associated with Copaxone response. Copaxone-treated signature-positive patients had a greater reduction in annualized relapse rate (ARR) compared to signature-negative patients in both discovery and independent cohorts, an effect not observed in Avonex-treated patients. Additionally, signature-positive placebo-treated cohorts did not show a reduction in ARR, demonstrating the predictive as opposed to prognostic nature of the signature. A 10% subset of patients, delineated by the signature, showed marked improvements across multiple clinical parameters, including ARR, MRI measures, and higher proportion with no evidence of disease activity (NEDA). Conclusions This study is the largest pharmacogenetic study in MS reported to date. Gene regions underlying the four-SNP signature have been linked with pathways associated with either Copaxone’s MoA or the pathophysiology of MS. The pronounced association of the four-SNP signature with clinical improvements in a ~10% subset of the MS patient population demonstrates the complex interplay of immune mechanisms and the individualized nature of response to Copaxone. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0436-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | - Iris Grossman
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel.
| | | |
Collapse
|
24
|
Dendrou CA, McVean G, Fugger L. Neuroinflammation - using big data to inform clinical practice. Nat Rev Neurol 2016; 12:685-698. [PMID: 27857124 DOI: 10.1038/nrneurol.2016.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is emerging as a central process in many neurological conditions, either as a causative factor or as a secondary response to nervous system insult. Understanding the causes and consequences of neuroinflammation could, therefore, provide insight that is needed to improve therapeutic interventions across many diseases. However, the complexity of the pathways involved necessitates the use of high-throughput approaches to extensively interrogate the process, and appropriate strategies to translate the data generated into clinical benefit. Use of 'big data' aims to generate, integrate and analyse large, heterogeneous datasets to provide in-depth insights into complex processes, and has the potential to unravel the complexities of neuroinflammation. Limitations in data analysis approaches currently prevent the full potential of big data being reached, but some aspects of big data are already yielding results. The implementation of 'omics' analyses in particular is becoming routine practice in biomedical research, and neuroimaging is producing large sets of complex data. In this Review, we evaluate the impact of the drive to collect and analyse big data on our understanding of neuroinflammation in disease. We describe the breadth of big data that are leading to an evolution in our understanding of this field, exemplify how these data are beginning to be of use in a clinical setting, and consider possible future directions.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|