1
|
Bennani Y, Ben Hassine K, Gencaslan M, Boudal‐Khoshbeen M, Samer C, Ansari M, Daali Y, Satyanarayana Uppugunduri CR. In vitro screening of UGT2B10 in silico prioritized putative ligands from drugs used in the pediatric hematopoietic stem cell transplantation setting. Pharmacol Res Perspect 2024; 12:e70011. [PMID: 39611692 PMCID: PMC11605732 DOI: 10.1002/prp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 11/30/2024] Open
Abstract
UGT2B10 is a phase II drug metabolizing enzyme with limited information on its role in the metabolism of drugs, especially in the pediatric hematopoietic stem cell transplantation setting. Previously, we investigated UGT2B10's role through in silico analyses and prioritized acetaminophen (APAP), lorazepam (LOR), mycophenolic acid (MPA), and voriconazole N-oxide (VCZ N-oxide) for in vitro investigations. In this report, we present in vitro screening of these candidates and of voriconazole (VCZ) to assess their potential to be substrates and/or inhibitors of UGT2B10. Enzyme kinetics experiments included recombinant UGT2B10 and analytical methods based on ultra high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS). To determine potential substrates, candidates were incubated at various therapeutically observed concentrations with recombinant UGT2B10 to identify the corresponding glucuronide metabolite. Inhibition capacity was tested using the selective probe cotinine for its glucuronidation to cotinine N-ß-d-glucuronide. IC50 was determined for compounds exhibiting inhibition. Among the tested compounds, LOR (IC50 = 0.01 μM, R2 = 0.9257) and MPA (IC50 = 0.38 mM, R2 = 0.9212) exhibited inhibition potential for UGT2B10. None of the other tested compounds featured inhibition potential and none of the compounds tested exhibited metabolism through UGT2B10. Further exploration on the clinical relevance of this inhibition using modeling strategies, overlapping nature with other UGT isoforms, and screening other molecules for their inhibition potential on UGT2B10 is warranted.
Collapse
Affiliation(s)
- Yahia Bennani
- Division of Clinical Pharmacology and ToxicologyGeneva University HospitalsGenevaSwitzerland
- Geneva Lausanne School of PharmacyUniversity of GenevaGenevaSwitzerland
| | - Khalil Ben Hassine
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and ObstetricsUniversity of GenevaGenevaSwitzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and AdolescentUniversity Geneva HospitalsGenevaSwitzerland
| | | | - Mary Boudal‐Khoshbeen
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and ObstetricsUniversity of GenevaGenevaSwitzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and AdolescentUniversity Geneva HospitalsGenevaSwitzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and ToxicologyGeneva University HospitalsGenevaSwitzerland
- Geneva Lausanne School of PharmacyUniversity of GenevaGenevaSwitzerland
- Swiss Center for Applied Human ToxicologyGenevaSwitzerland
- Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and ObstetricsUniversity of GenevaGenevaSwitzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and AdolescentUniversity Geneva HospitalsGenevaSwitzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and ToxicologyGeneva University HospitalsGenevaSwitzerland
- Geneva Lausanne School of PharmacyUniversity of GenevaGenevaSwitzerland
- Swiss Center for Applied Human ToxicologyGenevaSwitzerland
- Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and ObstetricsUniversity of GenevaGenevaSwitzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and AdolescentUniversity Geneva HospitalsGenevaSwitzerland
- Department of Medical OncologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| |
Collapse
|
2
|
Larkin T, Kashif R, Elsayed AH, Greer B, Mangrola K, Raffiee R, Nguyen N, Shastri V, Horn B, Lamba JK. Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study. JCO Precis Oncol 2023; 7:e2200580. [PMID: 36952646 PMCID: PMC10309546 DOI: 10.1200/po.22.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.
Collapse
Affiliation(s)
- Trisha Larkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
- St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL
| | - Reema Kashif
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Abdelrahman H. Elsayed
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Beate Greer
- Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Karna Mangrola
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Roya Raffiee
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Nam Nguyen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Vivek Shastri
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Biljana Horn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
3
|
Robin S, Hassine KB, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, Uppugunduri CRS, Ansari M. A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol Cell Biol 2022; 23:5. [PMID: 35062878 PMCID: PMC8781437 DOI: 10.1186/s12860-021-00402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs. Methods To shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy). Results Four potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10. Conclusions These results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00402-5.
Collapse
|
4
|
Olivera GG, Urtasun A, Sendra L, Aliño SF, Yáñez Y, Segura V, Gargallo P, Berlanga P, Castel V, Cañete A, Herrero MJ. Pharmacogenetics in Neuroblastoma: What Can Already Be Clinically Implemented and What Is Coming Next? Int J Mol Sci 2021; 22:9815. [PMID: 34575974 PMCID: PMC8466270 DOI: 10.3390/ijms22189815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenetics is one of the cornerstones of Personalized Precision Medicine that needs to be implemented in the routine of our patients' clinical management in order to tailor their therapies as much as possible, with the aim of maximizing efficacy and minimizing toxicity. This is of great importance, especially in pediatric cancer and even more in complex malignancies such as neuroblastoma, where the rates of therapeutic success are still below those of many other types of tumors. The studies are mainly focused on germline genetic variants and in the present review, state of the art is presented: which are the variants that have a level of evidence high enough to be implemented in the clinic, and how to distinguish them from the ones that still need validation to confirm their utility. Further aspects as relevant characteristics regarding ontogeny and future directions in the research will also be discussed.
Collapse
Affiliation(s)
- Gladys G. Olivera
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Hospital La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (G.G.O.); (M.J.H.)
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Andrea Urtasun
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
- Oncohematology Department, Hospital Sant Joan de Deu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Luis Sendra
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Hospital La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (G.G.O.); (M.J.H.)
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Salvador F. Aliño
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Hospital La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (G.G.O.); (M.J.H.)
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Yania Yáñez
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
| | - Vanessa Segura
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
| | - Pablo Gargallo
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Institute Gustave Roussy Center, Rue Edouard Vaillant 114, 94800 Villejuif, France;
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.U.); (Y.Y.); (V.S.); (P.G.); (V.C.); (A.C.)
| | - María José Herrero
- Pharmacogenetics and Gene Therapy Platform, IIS La Fe, Hospital La Fe, Torre A-Lab 4.03, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (G.G.O.); (M.J.H.)
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| |
Collapse
|
5
|
Sueiro-Olivares M, Scott J, Gago S, Petrovic D, Kouroussis E, Zivanovic J, Yu Y, Strobel M, Cunha C, Thomson D, Fortune-Grant R, Thusek S, Bowyer P, Beilhack A, Carvalho A, Bignell E, Filipovic MR, Amich J. Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biol 2021; 19:e3001247. [PMID: 34061822 PMCID: PMC8168846 DOI: 10.1371/journal.pbio.3001247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.
Collapse
Affiliation(s)
- Monica Sueiro-Olivares
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer Scott
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Gago
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dunja Petrovic
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Emilia Kouroussis
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Jasmina Zivanovic
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Yidong Yu
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Marlene Strobel
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/Biomaterials, Biodegradables and Biomimetics (3B’s)—PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Darren Thomson
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sina Thusek
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Paul Bowyer
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/Biomaterials, Biodegradables and Biomimetics (3B’s)—PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Elaine Bignell
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
6
|
Waespe N, Strebel S, Jurkovic Mlakar S, Krajinovic M, Kuehni CE, Nava T, Ansari M. Genetic Predictors for Sinusoidal Obstruction Syndrome-A Systematic Review. J Pers Med 2021; 11:jpm11050347. [PMID: 33925809 PMCID: PMC8145271 DOI: 10.3390/jpm11050347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Sinusoidal obstruction syndrome (SOS) is a potentially life-threatening complication after hematopoietic stem cell transplantation (HSCT) or antineoplastic treatment without HSCT. Genetic variants were investigated for their association with SOS, but the evidence is inconclusive. We performed a systematic literature review to identify genes, gene variants, and methods of association analyses of genetic markers with SOS. We identified 23 studies after HSCT and 4 studies after antineoplastic treatment without HSCT. One study (4%) performed whole-exome sequencing (WES) and replicated the analysis in an independent cohort, 26 used a candidate-gene approach. Three studies included >200 participants (11%), and six were of high quality (22%). Variants in 34 genes were tested in candidate gene studies after HSCT. Variants in GSTA1 were associated with SOS in three studies, MTHFR in two, and CPS1, CTH, CYP2B6, GSTM1, GSTP1, HFE, and HPSE in one study each. UGT2B10 and LNPK variants were identified in a WES analysis. After exposure to antineoplastic agents without HSCT, variants in six genes were tested and only GSTM1 was associated with SOS. There was a substantial heterogeneity of populations within and between studies. Future research should be based on sufficiently large homogenous samples, adjust for covariates, and replicate findings in independent cohorts.
Collapse
Affiliation(s)
- Nicolas Waespe
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Sven Strebel
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Graduate School for Health Sciences (GHS), University of Bern, 3012 Bern, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Department of Pediatrics, Montreal, QC H3T 1C5, Canada;
- Clinical Pharmacology Unit, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Claudia Elisabeth Kuehni
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Tiago Nava
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Department of Women, Children and Adolescents, Division of Pediatric Oncology and Hematology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Department of Women, Children and Adolescents, Division of Pediatric Oncology and Hematology, Geneva University Hospital, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-553-6100
| |
Collapse
|
7
|
Liu Y, Sun LY, Zhu ZJ, Wei L, Qu W, Zeng ZG. Is sinusoidal obstructive syndrome a recurrent disease after liver transplantation? A case report. World J Clin Cases 2021; 9:489-495. [PMID: 33521120 PMCID: PMC7812902 DOI: 10.12998/wjcc.v9.i2.489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sinusoidal obstructive syndrome (SOS) is a disease that damages hepatic sinusoidal endothelial cells, resulting in progressive occlusion and fibrosis of the lobular central vein and the occurrence of intrahepatic sinusoidal portal hypertension. However, SOS after liver transplantation (LT) is uncommon and potentially fatal. Here, we report a rare case of second-time recurrence of SOS after liver retransplantation (rLT).
CASE SUMMARY A 22-year-old woman received a living donor LT due to SOS. Four years later, she developed abdominal distention and ascites with no apparent cause. She was diagnosed with recurrence of SOS and underwent rLT. But 2 mo post rLT, the patient suffered from aggravated jaundice and ascites again. She was diagnosed with second-time recurrence of SOS post-rLT according to computed tomography and liver pathology. After treatment with warfarin anticoagulation and immunosuppressant conversion, she gradually recovered with improvement of liver function and liver pathology. During the 17-mo follow-up period, she was in good condition with normal liver function and no ascites.
CONCLUSION SOS can be a recurrent disease after LT, and autoimmune antibody and genetic sequencing should be screened before LT. For susceptible patients, anticoagulant drugs should be used for an extended period, and tacrolimus or other pathogenic agents should be avoided. Early diagnosis and treatment can improve the prognosis of patients and avoid graft failure or death.
Collapse
Affiliation(s)
- Ying Liu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Ben Hassine K, Powys M, Svec P, Pozdechova M, Versluys B, Ansari M, Shaw PJ. Total Body Irradiation Forever? Optimising Chemotherapeutic Options for Irradiation-Free Conditioning for Paediatric Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:775485. [PMID: 34956984 PMCID: PMC8705537 DOI: 10.3389/fped.2021.775485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Total-body irradiation (TBI) based conditioning prior to allogeneic hematopoietic stem cell transplantation (HSCT) is generally regarded as the gold-standard for children >4 years of age with acute lymphoblastic leukaemia (ALL). Retrospective studies in the 1990's suggested better survival with irradiation, confirmed in a small randomised, prospective study in the early 2000's. Most recently, this was reconfirmed by the early results of the large, randomised, international, phase III FORUM study published in 2020. But we know survivors will suffer a multitude of long-term sequelae after TBI, including second malignancies, neurocognitive, endocrine and cardiometabolic effects. The drive to avoid TBI directs us to continue optimising irradiation-free, myeloablative conditioning. In chemotherapy-based conditioning, the dominant myeloablative effect is provided by the alkylating agents, most commonly busulfan or treosulfan. Busulfan with cyclophosphamide is a long-established alternative to TBI-based conditioning in ALL patients. Substituting fludarabine for cyclophosphamide reduces toxicity, but may not be as effective, prompting the addition of a third agent, such as thiotepa, melphalan, and now clofarabine. For busulfan, it's wide pharmacokinetic (PK) variability and narrow therapeutic window is well-known, with widespread use of therapeutic drug monitoring (TDM) to individualise dosing and control the cumulative busulfan exposure. The development of first-dose selection algorithms has helped achieve early, accurate busulfan levels within the targeted therapeutic window. In the future, predictive genetic variants, associated with differing busulfan exposures and toxicities, could be employed to further tailor individualised busulfan-based conditioning for ALL patients. Treosulfan-based conditioning leads to comparable outcomes to busulfan-based conditioning in paediatric ALL, without the need for TDM to date. Future PK evaluation and modelling may optimise therapy and improve outcome. More recently, the addition of clofarabine to busulfan/fludarabine has shown encouraging results when compared to TBI-based regimens. The combination shows activity in ALL as well as AML and deserves further evaluation. Like busulfan, optimization of chemotherapy conditioning may be enhanced by understanding not just the PK of clofarabine, fludarabine, treosulfan and other agents, but also the pharmacodynamics and pharmacogenetics, ideally in the context of a single disease such as ALL.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Madeleine Powys
- Blood Transplant and Cell Therapies, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, Comenius University, Bratislava, Slovakia.,Bone Marrow Transplantation Unit, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miroslava Pozdechova
- Department of Pediatric Hematology and Oncology, Comenius University, Bratislava, Slovakia.,Bone Marrow Transplantation Unit, National Institute of Children's Diseases, Bratislava, Slovakia
| | | | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Peter J Shaw
- Blood Transplant and Cell Therapies, Children's Hospital at Westmead, Sydney, NSW, Australia.,Speciality of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Review of the Pharmacokinetics and Pharmacodynamics of Intravenous Busulfan in Paediatric Patients. Clin Pharmacokinet 2020; 60:17-51. [PMID: 33128207 DOI: 10.1007/s40262-020-00947-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
We aimed to review the pharmacokinetics (PK) of intravenous busulfan in paediatric patients, identify covariate factors influencing exposure, investigate evidence of changes in PK behaviour over time, and correlate exposure with efficacy and toxicity outcomes. A literature review was undertaken of original research published between 2007 and 2019, investigating the PK and pharmacodynamics (PD) of intravenous busulfan in patients ≤ 18 years of age. The review identified 41 publications characterising the PK, and 45 publications describing the PD, of busulfan. Median typical clearance (CL) was 0.22 L/h/kg and median typical volume of distribution was 0.69 L/kg. Patient weight, age, glutathione-S-transferase A1 (GSTA1) genotype and busulfan dosing day/time were the most commonly identified factors affecting CL. Of nine studies investigating changes in CL, seven reported reduced CL over the 4-day course of treatment. Exposure monitoring methods and therapeutic targets were heterogeneous across studies. Relationships between busulfan exposure and patient outcomes were observed in five studies. One study observed a cumulative area under the concentration-time curve over all days of treatment of between 78 and 101 mg/L·h, and two studies observed an average concentration at first dose of < 600 ng/mL improved overall survival, transplant-related mortality, or relapse. One study observed increased sinusoidal obstructive syndrome with maximum busulfan concentration > 1.88 ng/mL. Patient weight, age and GSTA1 genotype are important covariates to consider when individualising busulfan therapy. Reduced busulfan CL over time may need to be accounted for, particularly in patients not receiving phenytoin co-therapy. Standardised monitoring of busulfan exposure over the entire course of treatment and further investigation of the role of busulfan metabolites and pharmacogenomics is warranted.
Collapse
|
10
|
Genetic Susceptibility to Hepatic Sinusoidal Obstruction Syndrome in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:920-927. [PMID: 31790828 DOI: 10.1016/j.bbmt.2019.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.
Collapse
|
11
|
Michaud V, Tran M, Pronovost B, Bouchard P, Bilodeau S, Alain K, Vadnais B, Franco M, Bélanger F, Turgeon J. Impact of GSTA1 Polymorphisms on Busulfan Oral Clearance in Adult Patients Undergoing Hematopoietic Stem Cell Transplantation. Pharmaceutics 2019; 11:pharmaceutics11090440. [PMID: 31480560 PMCID: PMC6781287 DOI: 10.3390/pharmaceutics11090440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Busulfan pharmacokinetics exhibit large inter-subject variability. Our objective was to evaluate the influence of glutathione S-transferase A1 (GSTA1) gene variants on busulfan oral clearance (CLo) in a population of patients undergoing hematopoietic stem cell transplantation. Methods: This is a quasi-experimental retrospective study in adult patients (n = 87 included in the final analyses) receiving oral busulfan. Pharmacokinetics data (area under the plasma concentration-time curve (AUC) determined from 10 blood samples) were retrieved from patients’ files and GSTA1 *A and *B allele polymorphisms determined from banked DNA samples. Three different limited sampling methods (LSM) using four blood samples were also compared. Results: Carriers of GSTA1*B exhibited lower busulfan CLo than patients with an *A/*A genotype (p < 0.002): Busulfan CLo was 166 ± 31, 187 ± 37 vs. 207 ± 47 mL/min for GSTA1*B/*B,*A/*B and *A/*A genotypes, respectively. Similar results were obtained with the tested LSMs. Using the standard AUC method, distribution of patients above the therapeutic range after the first dose was 29% for GSTA1*A/*A, 50% for *A/*B, and 65% for *B/*B. The LSMs correctly identified ≥91% of patients with an AUC above the therapeutic range. The misclassified patients had a mean difference less than 5% in their AUCs. Conclusion: Patients carrying GSTA1 loss of function *B allele were at increased risk of overdosing on their initial busulfan oral dose. Genetic polymorphisms associated with GSTA1 explain a significant part of busulfan CLo variability which could be captured by LSM strategies.
Collapse
Affiliation(s)
- Veronique Michaud
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- CRCHUM, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - My Tran
- College of Pharmacy, Lake Nona Campus, University of Florida, Orlando, FL 32827, USA
| | - Benoit Pronovost
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Philippe Bouchard
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Sarah Bilodeau
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Karine Alain
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Barbara Vadnais
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Martin Franco
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - François Bélanger
- CRCHUM, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jacques Turgeon
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- CRCHUM, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
12
|
Corbacioglu S, Carreras E, Ansari M, Balduzzi A, Cesaro S, Dalle JH, Dignan F, Gibson B, Guengoer T, Gruhn B, Lankester A, Locatelli F, Pagliuca A, Peters C, Richardson PG, Schulz AS, Sedlacek P, Stein J, Sykora KW, Toporski J, Trigoso E, Vetteranta K, Wachowiak J, Wallhult E, Wynn R, Yaniv I, Yesilipek A, Mohty M, Bader P. Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transplant 2018; 53:138-145. [PMID: 28759025 PMCID: PMC5803572 DOI: 10.1038/bmt.2017.161] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022]
Abstract
The advances in hematopoietic cell transplantation (HCT) over the last decade have led to a transplant-related mortality below 15%. Hepatic sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD) is a life-threatening complication of HCT that belongs to a group of diseases increasingly identified as transplant-related, systemic endothelial diseases. In most cases, SOS/VOD resolves within weeks; however, severe SOS/VOD results in multi-organ dysfunction/failure with a mortality rate >80%. A timely diagnosis of SOS/VOD is of critical importance, given the availability of therapeutic options with favorable tolerability. Current diagnostic criteria are used for adults and children. However, over the last decade it has become clear that SOS/VOD is significantly different between the age groups in terms of incidence, genetic predisposition, clinical presentation, prevention, treatment and outcome. Improved understanding of SOS/VOD and the availability of effective treatment questions the use of the Baltimore and Seattle criteria for diagnosing SOS/VOD in children. The aim of this position paper is to propose new diagnostic and severity criteria for SOS/VOD in children on behalf of the European Society for Blood and Marrow Transplantation.
Collapse
Affiliation(s)
- S Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - E Carreras
- Hematology Department, Josep Carreras Foundation & Leukemia Research Institute, Hospital Clínic, Barcelona, Spain
| | - M Ansari
- Hemato-Oncology Unit, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - A Balduzzi
- Pediatric Clinic, University of Milano-Bicocca, San Gerardo Hospital, Milan, Italy
| | - S Cesaro
- Department of Pediatric Oncohematology, Giambattista Rossi University Hospital, Verona, Italy
| | - J-H Dalle
- Department of Hematology and Immunology, Hospital Robert Debre, Paris 7-Paris Diderot University, Paris, France
| | - F Dignan
- Department of Clinical Haematology, Manchester Royal Infirmary, Manchester, UK
| | - B Gibson
- Royal Hospital for Sick Children, Glasgow, UK
| | - T Guengoer
- Division of Blood and Marrow Transplantation, University Children’s Hospital, Zurich, Switzerland
| | - B Gruhn
- Department of Pediatrics, University Hospital of Jena, Jena, Germany
| | - A Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, University of Pavia, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A Pagliuca
- Department of Haematology, King’s College Hospital, London, UK
| | - C Peters
- Department of Pediatrics, St Anna Kinderspital, Vienna, Austria
| | - P G Richardson
- Division of Hematologic Malignancy, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - A S Schulz
- Department of Pediatrics, University Children’s Hospital, Ulm, Germany
| | - P Sedlacek
- Department of Pediatrics, University Hospital Motol, Prague, Czech Republic
| | - J Stein
- Schneider Children's Medical Center of Israel and Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv, Israel
| | - K-W Sykora
- Pediatric Hematology-Oncology, Children’s Hospital, Medical School, Hannover, Germany
| | | | - E Trigoso
- University Hospital and Polytechnic La Fe, Valencia, Spain
| | - K Vetteranta
- Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - J Wachowiak
- Department of Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, University of Medical Sciences, Poznan, Poland
| | - E Wallhult
- Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - R Wynn
- Royal Manchester Children’s Hospital, Manchester, UK
| | - I Yaniv
- Schneider Children's Medical Center of Israel and Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv, Israel
| | - A Yesilipek
- Pediatric Stem Cell Transplantation Unit, Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - M Mohty
- Hôpital Saint-Antoine, APHP, Université Pierre & Marie Curie, INSERM UMRS 938, Paris, France
| | - P Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|