1
|
Swenson C, Argueta-Gonzalez HS, Sterling SA, Robichaux R, Knutson SD, Heemstra JM. Forced Intercalation Peptide Nucleic Acid Probes for the Detection of an Adenosine-to-Inosine Modification. ACS OMEGA 2023; 8:238-248. [PMID: 36643573 PMCID: PMC9835161 DOI: 10.1021/acsomega.2c03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The deamination of adenosine to inosine is an important modification in nucleic acids that functionally recodes the identity of the nucleobase to a guanosine. Current methods to analyze and detect this single nucleotide change, such as sequencing and PCR, typically require time-consuming or costly procedures. Alternatively, fluorescent "turn-on" probes that result in signal enhancement in the presence of target are useful tools for real-time detection and monitoring of nucleic acid modification. Here we describe forced-intercalation PNA (FIT-PNA) probes that are designed to bind to inosine-containing nucleic acids and use thiazole orange (TO), 4-dimethylamino-naphthalimide (4DMN), and malachite green (MG) fluorogenic dyes to detect A-to-I editing events. We show that incorporation of the dye as a surrogate base negatively affects the duplex stability but does not abolish binding to targets. We then determined that the identity of the adjacent nucleobase and temperature affect the overall signal and fluorescence enhancement in the presence of inosine, achieving an 11-fold increase, with a limit of detection (LOD) of 30 pM. We determine that TO and 4DMN probes are viable candidates to enable selective inosine detection for biological applications.
Collapse
Affiliation(s)
- Colin
S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Sierra A. Sterling
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan Robichaux
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steve D. Knutson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
4
|
Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules 2020; 25:molecules25030559. [PMID: 32012929 PMCID: PMC7038079 DOI: 10.3390/molecules25030559] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.
Collapse
|
5
|
Sabale P, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS OMEGA 2018; 3:15343-15352. [PMID: 30556003 PMCID: PMC6289544 DOI: 10.1021/acsomega.8b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
The ability to bind strongly to complementary nucleic acid sequences, invade complex nucleic acid structures, and resist degradation by cellular enzymes has made peptide nucleic acid (PNA) oligomers as very useful hybridization probes in molecular diagnosis. For such applications, the PNA oligomers have to be labeled with appropriate reporters as they lack intrinsic labels that can be used in biophysical assays. Although solid-phase synthesis is commonly used to attach reporters onto PNA, development of milder and modular labeling methods will provide access to PNA oligomers labeled with a wider range of biophysical tags. Here, we describe the establishment of a postsynthetic modification strategy based on bioorthogonal chemical reactions in functionalizing PNA oligomers in solution with a variety of tags. A toolbox composed of alkyne- and azide-modified monomers were site-specifically incorporated into PNA oligomers and postsynthetically click-functionalized with various tags, ranging from sugar, amino acid, biotin, to fluorophores, by using copper(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, and Staudinger ligation reactions. As a proof of utility of this method, fluorescent PNA hybridization probes were developed and used in imaging human telomeres in chromosomes and poly(A) RNAs in cells. Taken together, this simple approach of generating a wide range of functional PNA oligomers will expand the use of PNA in molecular diagnosis.
Collapse
|
6
|
Sabale PM, Ambi UB, Srivatsan SG. A Lucifer-Based Environment-Sensitive Fluorescent PNA Probe for Imaging Poly(A) RNAs. Chembiochem 2018; 19:826-835. [PMID: 29396904 PMCID: PMC5972818 DOI: 10.1002/cbic.201700661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence‐based oligonucleotide (ON) hybridization probes greatly aid the detection and profiling of RNA sequences in cells. However, certain limitations such as target accessibility and hybridization efficiency in cellular environments hamper their broad application because RNAs can form complex and stable structures. In this context, we have developed a robust hybridization probe suitable for imaging RNA in cells by combining the properties of 1) a new microenvironment‐sensitive fluorescent nucleobase analogue, obtained by attaching the Lucifer chromophore (1,8‐naphthalimide) at the 5‐position of uracil, and 2) a peptide nucleic acid (PNA) capable of forming stable hybrids with RNA. The fluorescence of the PNA base analogue labeled with the Lucifer chromophore, when incorporated into PNA oligomers and hybridized to complementary and mismatched ONs, is highly responsive to its neighboring base environment. Notably, the PNA base reports the presence of an adenine repeat in an RNA ON with reasonable enhancement in fluorescence. This feature of the emissive analogue enabled the construction of a poly(T) PNA probe for the efficient visualization of polyadenylated [poly(A)] RNAs in cells—poly(A) being an important motif that plays vital roles in the lifecycle of many types of RNA. Our results demonstrate that such responsive fluorescent nucleobase analogues, when judiciously placed in PNA oligomers, could generate useful hybridization probes to detect nucleic acid sequences in cells and also to image them.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Uddhav B Ambi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
7
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017; 259:148-159. [PMID: 28764969 PMCID: PMC7114329 DOI: 10.1016/j.jbiotec.2017.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/23/2017] [Accepted: 07/23/2017] [Indexed: 02/01/2023]
Abstract
Peptide Nucleic Acids − DNA/RNA analogues. Different Modifications on PNA backbone and their effects. Neutral backbone − remarkable hybridization properties. PNA based biosensors and their diverse biomedical applications. Potential antigene and antisense agents.
Peptide Nucleic Acids (PNAs) are the DNA/RNA analogues in which sugar-phosphate backbone is replaced by N-2-aminoethylglycine repeating units. PNA contains neutral backbone hence due to the absence of electrostatic repulsion, its hybridization shows remarkable stability towards complementary oligonucleotides. PNAs are highly resistant to cleavage by chemicals and enzymes due to the substrate specific nature of enzymes and therefore not degraded inside the cells. PNAs are emerging as new tools in the market due to their applications in antisense and antigene therapies by inhibiting translation and transcription respectively. Hence, several methods based on PNAs have been developed for designing various anticancer and antigene drugs, detection of mutations or modulation of PCR reactions. The duplex homopurine sequence of DNA may also be recognized by PNA, forming firm PNA/DNA/PNA triplex through strand invasion with a looped-out DNA strand. PNAs have also been found to replace DNA probes in varied investigative purposes. There are several disadvantages regarding cellular uptake of PNA, so modifications in PNA backbone or covalent coupling with cell penetrating peptides is necessary to improve its delivery inside the cells. In this review, hybridization properties along with potential applications of PNA in the field of diagnostics and pharmaceuticals are elaborated.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Anuradha Mishra
- School of Vocational Studies & Applied Sciences, Gautam Buddha University, Greater Noida, U.P., India
| | - Nidhi Puri
- Department of Applied Science & Humanities, I.T.S Engineering College, Greater Noida, U.P., India
| |
Collapse
|
9
|
Manukyan AK. Structural characteristics of cyclopentane-modified peptide nucleic acids from molecular dynamics simulations. Struct Chem 2017. [DOI: 10.1007/s11224-017-0970-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Sabale PM, Srivatsan SG. Responsive Fluorescent PNA Analogue as a Tool for Detecting G-quadruplex Motifs of Oncogenes and Activity of Toxic Ribosome-Inactivating Proteins. Chembiochem 2016; 17:1665-73. [PMID: 27271025 DOI: 10.1002/cbic.201600192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/13/2022]
Abstract
Fluorescent oligomers that are resistant to enzymatic degradation and report their binding to target oligonucleotides (ONs) by changes in fluorescence properties are highly useful in developing nucleic-acid-based diagnostic tools and therapeutic strategies. Here, we describe the synthesis and photophysical characterization of fluorescent peptide nucleic acid (PNA) building blocks made of microenvironment-sensitive 5-(benzofuran-2-yl)- and 5-(benzothiophen-2-yl)-uracil cores. The emissive monomers, when incorporated into PNA oligomers and hybridized to complementary ONs, are minimally perturbing and are highly sensitive to their neighboring base environment. In particular, benzothiophene-modified PNA reports the hybridization process with significant enhancement in fluorescence intensity, even when placed in the vicinity of guanine residues, which often quench fluorescence. This feature was used in the turn-on detection of G-quadruplex-forming promoter DNA sequences of human proto-oncogenes (c-myc and c-kit). Furthermore, the ability of benzothiophene-modified PNA oligomer to report the presence of an abasic site in RNA enabled us to develop a simple fluorescence hybridization assay to detect and estimate the depurination activity of ribosome-inactivating protein toxins. Our results demonstrate that this approach with responsive PNA probes will provide new opportunities to develop robust tools to study nucleic acids.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
11
|
Sabale PM, George JT, Srivatsan SG. A base-modified PNA-graphene oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. NANOSCALE 2014; 6:10460-9. [PMID: 24981293 DOI: 10.1039/c4nr00878b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | |
Collapse
|
12
|
Radhakrishnan K, Burgula LN, Kundu LM. Watson–Crick and Hoogsteen tri-base pairing: a co-crystal structure of a 2 : 1 complex of 6-isopropyluracil and adenine nucleobases. RSC Adv 2013. [DOI: 10.1039/c3ra40766g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Coppock MB, Williams ME. Nucleic Acid Mimetics. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
St Amant AH, Hudson RHE. Synthesis and oligomerization of Fmoc/Boc-protected PNA monomers of 2,6-diaminopurine, 2-aminopurine and thymine. Org Biomol Chem 2011; 10:876-81. [PMID: 22159214 DOI: 10.1039/c1ob06582c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Boc-protecting group strategy for Fmoc-based PNA (peptide nucleic acid) oligomerization has been developed for thymine, 2,6-diaminopurine (DAP) and 2-aminopurine (2AP). The monomers may be used interchangeably with standard Fmoc PNA monomers. The DAP monomer was incorporated into a PNA and was found to selectively bind to T (ΔT(m)≥ +6 °C) in a complementary DNA strand. The 2AP monomer showed excellent discrimination of T (ΔT(m)≥ +12 °C) over the other nucleobases. 2AP also acted as a fluorescent probe of the PNA:DNA duplexes and displayed fluorescence quenching dependent on the opposite base.
Collapse
Affiliation(s)
- André H St Amant
- Department of Chemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
15
|
Gokhale SS, Kumar VA. Amino/guanidino-functionalized N-(pyrrolidin-2-ethyl)glycine-based pet-PNA: design, synthesis and binding with DNA/RNA. Org Biomol Chem 2010; 8:3742-50. [PMID: 20539879 DOI: 10.1039/c004005c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-(pyrrolidin-2-ethyl) glycine-based PNA (pet-PNA) backbone, with 4-amino or 4-guanidino-functionalized pyrrolidine ring, confers constrained conformational flexibility on aegPNA. The oligomers bind to the target DNA and RNA sequences with increased sequence specificity and antiparallel versus parallel orientation selectivity. The easy post-synthetic guanidination gives very good access to the positively charged PNA oligomers.
Collapse
Affiliation(s)
- Sachin S Gokhale
- Division of Organic Chemistry, National Chemical Laboratory, Pune 411008, India
| | | |
Collapse
|
16
|
Pensato S, Saviano M, Romanelli A. New peptide nucleic acid analogues: synthesis and applications. Expert Opin Biol Ther 2007; 7:1219-32. [PMID: 17696820 DOI: 10.1517/14712598.7.8.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide nucleic acids are oligonucleotide mimics characterised by high chemical and enzymatic stability, high specificity and affinity toward complementary DNA/RNA. The lack of charge and polar groups in the backbone decrease their solubility in aqueous environment and their ability to cross cell membranes, reducing their performance in in vivo applications. To improve solubility, increase affinity and specificity of binding and to control recognition between nucleic acids, several analogues bearing modifications on the nucleobase, nucleobase-backbone linker and on the backbone were synthesised. This paper describes the synthesis and applications of Peptide nucleic acid analogues and discusses the potential of analogues for which no application is reported.
Collapse
Affiliation(s)
- Soccorsa Pensato
- Università degli Studi di Napoli Federico II, Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Napoli, Italy
| | | | | |
Collapse
|
17
|
Gangamani BP, Decosta M, Kumar VA, Ganesh KN. Conformationally Restrained Chiral PNA Conjugates: Synthesis and DNA Complementation Studies. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Jarikote DV, Köhler O, Socher E, Seitz O. Divergent and Linear Solid-Phase Synthesis of PNA Containing Thiazole Orange as Artificial Base. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500201] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Köhler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem 2005; 6:69-77. [PMID: 15584015 DOI: 10.1002/cbic.200400260] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent base analogues in DNA are versatile probes of nucleic acid-nucleic acid and nucleic acid-protein interactions. New peptide nucleic acid (PNA) based probes are described in which the intercalator dye thiazole orange (TO) serves as a base surrogate. The investigation of six TO derivatives revealed that the linker length and the conjugation site decided whether a base surrogate conveys sequence-selective DNA binding and whether fluorescence is increased or decreased upon single-mismatched hybridization. One TO derivative conferred universal PNA-DNA base pairing while maintaining duplex stability and hybridization selectivity. TO fluorescence increased up to 26-fold upon hybridization. In contrast to most other probes, in which fluorescence is invariant once hybridization had occurred, the emission of TO-containing PNA probes is attenuated when forced to intercalate next to a mismatched base pair. The specificity of DNA detection is therefore not limited by the selectivity of probe-target binding and a DNA target can be distinguished from its single-base mutant under nonstringent hybridization conditions. This property should be of advantage for real-time quantitative PCR and nucleic acid detection within living cells.
Collapse
Affiliation(s)
- Olaf Köhler
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
20
|
de la Torre BG, Eritja R. Synthesis of labelled PNA oligomers by a post-synthetic modification approach. Bioorg Med Chem Lett 2003; 13:391-3. [PMID: 12565936 DOI: 10.1016/s0960-894x(02)00994-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The preparation of t-butoxycarbonyl (Boc)-protected O(4)-(o-nitrophenyl) thymine peptide nucleic acid (PNA) monomer is described. This PNA monomer was incorporated into PNA oligomer sequences. The post-synthetic modification of the oligomers to yield fluorescently-labelled PNA oligomers was studied before and after the removal of the protecting groups. In both cases, the desired fluorescently-labelled PNA oligomer was obtained in good yields.
Collapse
Affiliation(s)
- Beatriz G de la Torre
- Institut de Biologia Molecular de Barcelona, C.S.I.C., Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | |
Collapse
|
21
|
Seitz O, Köhler O. Convergent strategies for the attachment of fluorescing reporter groups to peptide nucleic acids in solution and on solid phase. Chemistry 2001; 7:3911-25. [PMID: 11596933 DOI: 10.1002/1521-3765(20010917)7:18<3911::aid-chem3911>3.0.co;2-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The site-selective conjugation of peptide nucleic acids (PNA) with fluorescent reporter groups is essential for the construction of hybridisation probes that can report the presence of a particular DNA sequence. This paper describes convergent methods for the solution- and solid-phase synthesis of multiply labelled PNA oligomers. The solid-phase synthesis of protected PNA enabled the selective attachment of fluorescent labels at the C-terminal end (3' in DNA) which demonstrated that further manipulations on protected PNA fragments are feasible. For the conjugation to internal sites, a method is introduced that allows for the on-resin assembly of modified monomers thereby omitting the need to synthesise an entire monomer in solution. Furthermore, it is shown that the application of a highly orthogonal protecting group strategy in combination with chemoselective conjugation reactions provides access to a rapid and automatable solid-phase synthesis of dual labelled PNA probes. Real-time measurements of nucleic acid hybridisation were possible by taking advantage of the fluorescence resonance energy transfer (FRET) between suitably appended fluorophoric groups. Analogously to DNA-based molecular beacons, the dual labelled PNA probes were only weakly fluorescing in the single-stranded state. Hybridisation to a complementary oligonucleotide, however, induced a structural reorganisation and conferred a vivid fluorescence enhancement.
Collapse
Affiliation(s)
- O Seitz
- Department of Chemical Biology and Institut für Organische Chemie, Universität Dortmund, Germany.
| | | |
Collapse
|
22
|
Pedireddi VR, Ranganathan A, Ganesh KN. Cyanurate mimics of hydrogen-bonding patterns of nucleic bases: crystal structure of a 1:1 molecular complex of 9-ethyladenine and N-methylcyanuric acid. Org Lett 2001; 3:99-102. [PMID: 11429883 DOI: 10.1021/ol006811p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[figure: see text] 9-Ethyladenine forms a unique molecular complex with N-methylcyanuric acid consisting of homomeric and heteromeric hydrogen-bonding patterns. Also, the homomeric hydrogen bond pattern is different than that observed in its pure crystal structures.
Collapse
Affiliation(s)
- V R Pedireddi
- Division of Organic Chemistry, National Chemical Laboratory, Pune 411008, India.
| | | | | |
Collapse
|
23
|
Abstract
[structure: see text] The chemical synthesis and crystal structure of the peptide nucleic acid (PNA) monomer 11 having cyanuric acid as the nucleobase is reported. The crystal structure of 11 shows molecular tapes arising from continuous intermolecular dimeric hydrogen bonding, with successive tapes held by single hydrogen bonds in the backbone.
Collapse
Affiliation(s)
- G J Sanjayan
- Division of Organic chemistry (Synthesis), National Chemical Laboratory, Pune 411008, India
| | | | | |
Collapse
|
24
|
Abstract
A simple and effective strategy for preparing fluorophore-labelled PNA is described. A C-terminal S-t-butylmercaptocysteine-derivatized PNA was prepared on solid-phase using Fmoc chemistry. Selective deprotection of the S-t-butylmercapto group on-bead, allowed the free thiol to be reacted with a fluorophore derivatized via an iodoacetamido or maleimido linker. Subsequent cleavage and sidechain deprotection yielded C-terminal labelled PNA in good yield and purity. Dual labelled PNA was also prepared by using both C-terminal (-SH) and N-terminal (-NH(2)) labelling chemistries.
Collapse
Affiliation(s)
- Xiaohai Liu
- Department of Chemistry, University of Cambridge, Lensfield, Cambridge CB2 1EW, UK
| | | |
Collapse
|