1
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
2
|
Tong Z, Gao F, Chen S, Song L, Hu J, Hou Y, Lu J, Leung MKH, Zhan X, Zhang Q. Slippery Porous-Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308972. [PMID: 37917884 DOI: 10.1002/adma.202308972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have received widespread attention in the antifouling field. However, the reduction in antifouling performance caused by lubricant loss limits their application in marine antifouling. Herein, inspired by the skin of a poison dart frog which contains venom glands and mucus, a porous liquid (PL) based on ZIF-8 is prepared as a lubricant and injected into a silicone polyurethane (SPU) matrix to construct a new type of SLIPS for marine antifouling applications: the slippery porous-liquid-infused porous surface (SPIPS). The SPIPS consists of a responsive antifoulant-releasing switch between "defensive" and "offensive" antifouling modes to intelligently enhance the antifouling effect after lubricant loss. The SPIPS can adjust antifouling performance to meet the antifouling requirements under different light conditions. The wastage of antifoulants is reduced, thereby effectively maintaining the durability and service life of SLIPS materials. The SPIPS exhibits efficient lubricant self-replenishment, self-cleaning, anti-protein, anti-bacterial, anti-algal, and self-healing (97.48%) properties. Furthermore, it shows satisfactory 360-day antifouling performance in actual marine fields during boom seasons, demonstrating the longest antifouling lifespan in the field tests of reported SLIPS coatings. Hence, the SPIPS can effectively promote the development of SLIPS for neritic antifouling.
Collapse
Affiliation(s)
- Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Jiankun Hu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Jianguo Lu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Michael K H Leung
- School of Energy and Environment, Ability R&D Energy Research Centre, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
3
|
Sun T, Kang L, Zhao H, Zhao Y, Gu Y. Photoacid Generators for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302875. [PMID: 38039443 PMCID: PMC10837391 DOI: 10.1002/advs.202302875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Photoacid generators (PAGs) are compounds capable of producing hydrogen protons (H+ ) upon irradiation, including irreversible and reversible PAGs, which have been widely studied in photoinduced polymerization and degradation for a long time. In recent years, the applications of PAGs in the biomedical field have attracted more attention due to their promising clinical value. So, an increasing number of novel PAGs have been reported. In this review, the recent progresses of PAGs for biomedical applications is systematically summarized, including tumor treatment, antibacterial treatment, regulation of protein folding and unfolding, control of drug release and so on. Furthermore, a concept of water-dependent reversible photoacid (W-RPA) and its antitumor effect are highlighted. Eventually, the challenges of PAGs for clinical applications are discussed.
Collapse
Affiliation(s)
- Tianzhen Sun
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Hongyou Zhao
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Ying Gu
- Department of Laser MedicineThe First Medical CentreChinese PLA General HospitalNo. 28 Fuxing Road, Haidian DistrictBeijing100853China
| |
Collapse
|
4
|
Wilm LFB, Das M, Janssen‐Müller D, Mück‐Lichtenfeld C, Glorius F, Dielmann F. Photoschaltbare Stickstoff‐Superbasen: Mit Licht Kohlenstoffdioxid reversibel fixieren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas F. B. Wilm
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Deutschland
| | - Mowpriya Das
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Daniel Janssen‐Müller
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Frank Glorius
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Fabian Dielmann
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Deutschland
- Institut für Allgemeine Anorganische und Theoretische Chemie Leopold-Franzens-Universität Innsbruck Innrain 80–82 6020 Innsbruck Österreich
| |
Collapse
|
5
|
Wilm LFB, Das M, Janssen‐Müller D, Mück‐Lichtenfeld C, Glorius F, Dielmann F. Photoswitchable Nitrogen Superbases: Using Light for Reversible Carbon Dioxide Capture. Angew Chem Int Ed Engl 2022; 61:e202112344. [PMID: 34694044 PMCID: PMC9299603 DOI: 10.1002/anie.202112344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Using light as an external stimulus to alter the reactivity of Lewis bases is an intriguing tool for controlling chemical reactions. Reversible photoreactions associated with pronounced reactivity changes are particularly valuable in this regard. We herein report the first photoswitchable nitrogen superbases based on guanidines equipped with a photochromic dithienylethene unit. The resulting N-heterocyclic imines (NHIs) undergo reversible, near quantitative electrocyclic isomerization upon successive exposure to UV and visible irradiation, as demonstrated over multiple cycles. Switching between the ring-opened and ring-closed states is accompanied by substantial pKa shifts of the NHIs by up to 8.7 units. Since only the ring-closed isomers are sufficiently basic to activate CO2 via the formation of zwitterionic Lewis base adducts, cycling between the two isomeric states enables the light-controlled capture and release of CO2 .
Collapse
Affiliation(s)
- Lukas F. B. Wilm
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Mowpriya Das
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Daniel Janssen‐Müller
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Frank Glorius
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Fabian Dielmann
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
6
|
Dey S, Bielytskyi P, Gräsing D, Das A, Kundu R, Matysik J, Maiti S, Madhu P. Precise in situ photo-induced pH modulation during NMR spectrometry. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Dicker MPM, Baker AB, Iredale RJ, Naficy S, Bond IP, Faul CFJ, Rossiter JM, Spinks GM, Weaver PM. Light-Triggered Soft Artificial Muscles: Molecular-Level Amplification of Actuation Control Signals. Sci Rep 2017; 7:9197. [PMID: 28835614 PMCID: PMC5569079 DOI: 10.1038/s41598-017-08777-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.
Collapse
Affiliation(s)
- Michael P M Dicker
- Bristol Composites Institute (ACCIS), Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, UK.
| | - Anna B Baker
- Bristol Composites Institute (ACCIS), Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, UK
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Robert J Iredale
- Bristol Composites Institute (ACCIS), Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Sina Naficy
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian P Bond
- Bristol Composites Institute (ACCIS), Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Charl F J Faul
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Jonathan M Rossiter
- Department of Engineering Mathematics, Merchant Venturers School of Engineering, University of Bristol, Bristol, BS8 1UB, UK
- Bristol Robotics Laboratory, Bristol, BS34 8QZ, UK
| | - Geoffrey M Spinks
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul M Weaver
- Bristol Composites Institute (ACCIS), Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, UK
| |
Collapse
|
8
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Kotsuchibashi Y, Takiguchi T, Ebara M, Aoyagi T. The effects of the photo-induced proton generation on the assembly formation of dual-temperature and pH responsive block copolymers. Polym Chem 2017. [DOI: 10.1039/c6py01269h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects caused by photo-induced proton generation on the assembly formation of dual-temperature/pH-responsive block copolymers are investigated.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- International Center for Young Scientists (ICYS) and International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | | | | | | |
Collapse
|
10
|
Vázquez J, Romero MA, Dsouza RN, Pischel U. Phototriggered release of amine from a cucurbituril macrocycle. Chem Commun (Camb) 2016; 52:6245-8. [DOI: 10.1039/c6cc02347a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amines are released from a cucurbituril macrocycle by photoinduced pH jump and modulation of the competitiveness of a fluorescent guest.
Collapse
Affiliation(s)
- J. Vázquez
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - M. A. Romero
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - R. N. Dsouza
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - U. Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| |
Collapse
|
11
|
Weston CE, Richardson RD, Fuchter MJ. Photoswitchable basicity through the use of azoheteroarenes. Chem Commun (Camb) 2016; 52:4521-4. [DOI: 10.1039/c5cc10380k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an azoheteroarene photoswitchable base, where proton stabilisation in Z isomer is facilitated by neighbouring imidazole rings. A 1.3 unit difference in pKa is observed between the E and Z isomers, which leads to the ability to reversibly control solution pH.
Collapse
|
12
|
Decaneto E, Abbruzzetti S, Heise I, Lubitz W, Viappiani C, Knipp M. A caged substrate peptide for matrix metalloproteinases. Photochem Photobiol Sci 2015; 14:300-7. [PMID: 25418033 DOI: 10.1039/c4pp00297k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.
Collapse
Affiliation(s)
- Elena Decaneto
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Florea L, Wagner K, Wagner P, Wallace GG, Benito-Lopez F, Officer DL, Diamond D. Photo-chemopropulsion--light-stimulated movement of microdroplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7339-7345. [PMID: 25236879 DOI: 10.1002/adma.201403007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The controlled movement of a chemical container by the light-activated expulsion of a chemical fuel, named here "photo-chemopropulsion", is an exciting new development in the array of mechanisms employed for controlling the movement of microvehicles, herein represented by lipid-based microdroplets. This "chemopropulsion" effect can be switched on and off, and is fully reversible.
Collapse
Affiliation(s)
- Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
14
|
Kohse S, Neubauer A, Lochbrunner S, Kragl U. Improving the Time Resolution for Remote Control of Enzyme Activity by a Nanosecond Laser-Induced pH Jump. ChemCatChem 2014. [DOI: 10.1002/cctc.201402442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Kotsuchibashi Y, Ebara M, Sato T, Wang Y, Rajender R, Hall DG, Narain R, Aoyagi T. Spatiotemporal control of synergistic gel disintegration consisting of boroxole- and glyco-based polymers via photoinduced proton transfer. J Phys Chem B 2014; 119:2323-9. [PMID: 25211348 DOI: 10.1021/jp506478p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We demonstrate here a local- and remote-control of gel disintegration by using photoinduced proton transfer chemistry of photoacid generator (PAG). The gels were prepared by simply mixing two polymers, poly(N-isopropylacrylamide-co-5-methacrylamido-1,2-benzoxaborole) (P(NIPAAm-co-MAAmBO)) and poly(3-gluconamidopropyl methacrylamide) (PGAPMA) via the synergistic interaction of benzoxaborole and diol groups. The o-nitrobenzaldehyde (o-NBA) was then loaded into the gel as a PAG. The benzoxaborole-diol interaction was successfully disintegrated upon UV irradiation due to the local pH decrease inside the gel. When the gel was irradiated to a specific gel region, the synergistic interactions were disintegrated only at the exposed region. Of special interest is that the whole material eventually transitioned from gel to sol state, as the generated protons diffused gradually toward the nonilluminated region. The ability of the proposed gel-sol transition system via photoinduced proton diffusion may be beneficial for not only prompt pH changes within the gel but also the design of predictive and programmable devices for drug delivery.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- International Center for Young Scientists (ICYS) and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nada AA, James R, Shelke NB, Harmon MD, Awad HM, Nagarale RK, Kumbar SG. A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3292] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ahmed A. Nada
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Textile Research Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Namdev B. Shelke
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Matthew D. Harmon
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Rajaram K. Nagarale
- Department of Chemical Engineering; Indian Institute of Technology; Kanpur Uttar Pradesh 208016 India
| | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| |
Collapse
|
17
|
Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. Photoswitching of Enzyme Activity by Laser-Induced pH-Jump. J Am Chem Soc 2013; 135:9407-11. [DOI: 10.1021/ja400700x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefanie Kohse
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Antje Neubauer
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Alexandra Pazidis
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Udo Kragl
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| |
Collapse
|
18
|
Techawanitchai P, Idota N, Uto K, Ebara M, Aoyagi T. A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064202. [PMID: 27877529 PMCID: PMC5099762 DOI: 10.1088/1468-6996/13/6/064202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/31/2012] [Indexed: 05/23/2023]
Abstract
We demonstrate a timed explosive drug release from smart pH-responsive hydrogels by utilizing a phototriggered spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) was integrated into poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. o-NBA-hydrogels demonstrated the rapid release of protons upon UV irradiation, allowing the pH inside the gel to decrease to below the pKa value of P(NIPAAm-co-CIPAAm). The generated protons diffused gradually toward the non-illuminated area, and the diffusion kinetics could be controlled by adjusting the UV irradiation time and intensity. After irradiation, we observed the enhanced release of entrapped L-3,4-dihydroxyphenylalanine (DOPA) from the gels, which was driven by the dissociation of DOPA from CIPAAm. Local UV irradiation also triggered the release of DOPA from the non-illuminated area in the gel via the diffusion of protons. Conventional systems can activate only the illuminated region, and their response is discontinuous when the light is turned off. The ability of the proposed pH-jump system to permit gradual activation via proton diffusion may be beneficial for the design of predictive and programmable devices for drug delivery.
Collapse
Affiliation(s)
- Prapatsorn Techawanitchai
- Department of Materials Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naokazu Idota
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koichiro Uto
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mitsuhiro Ebara
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takao Aoyagi
- Department of Materials Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
19
|
Light-induced spatial control of pH-jump reaction at smart gel interface. Colloids Surf B Biointerfaces 2012; 99:53-9. [DOI: 10.1016/j.colsurfb.2011.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022]
|
20
|
Cheng S, Song P, Yang S, Yin H, Han K. Fluorescence and solvent-dependent phosphorescence studies of o-nitrobenzaldehyde: A combined experimental and theoretical investigation. Phys Chem Chem Phys 2010; 12:9067-74. [DOI: 10.1039/c002270e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Tseng YT, Yang CS, Tseng FG. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing. LAB ON A CHIP 2009; 9:2673-2682. [PMID: 19704983 DOI: 10.1039/b823449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper proposes a novel perfusion-based micro opto-fluidic system (PMOFS) as a reusable immunosensor for in-situ and continuous protein detection. The PMOFS includes a fiber optic interferometry (FOI) sensor housed in a micro-opto-fluidic chip covered with a microdialysis membrane. It features a surface regeneration mechanism for continuous detection. Gold nanoparticles (GNPs) labeled anti-rabbit IgG were used to enhance the immune conjugation signal by the elongated optical path from GNPs conjugation. Surface regeneration of the sensor was achieved through local pH level manipulation by means of a photoactive molecule, o-Nitrobenzaldehyde (o-NBA), which triggered the elution of immune complexes. Experimental results showed that the pH level of the o-NBA solution can be reduced from 7 to 3.5 within 20 seconds under UV irradiation, sufficient for an effective elution process. The o-NBA molecules, contained within poly(ethylene glycol) diacrylate (PEG) complexes, were trapped within the sensing compartment by the microdialysis membrane and would not leak into the outside environment. The pH variation was also limited in the neighborhood of the sensor surface, resulting in a self-contained sensing system. In-situ immune detection and surface regeneration of the sensing probe has been successfully carried out for two identical cycles by the same sensing probe, and the cycle time can be less than 8 minutes, which is so far the fastest method for continuous monitoring on protein/peptide molecules. In addition, the interference fringe shift of the sensor is linearly related to the concentration of anti-cytochrome C antibody solution and the detection limit approaches 10 ng/ml.
Collapse
Affiliation(s)
- Yuan-Tai Tseng
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan, 300
| | | | | |
Collapse
|
22
|
Dhulipala G, Rubio M, Michael K, Miksovská J. Thermodynamic profile for urea photo-release from a N-(2-nitrobenzyl) caged urea compound. Photochem Photobiol Sci 2009; 8:1157-63. [PMID: 19639118 DOI: 10.1039/b900593e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gangadhar Dhulipala
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
23
|
Balzani V, Credi A, Venturi M. Processing Energy and Signals by Molecular and Supramolecular Systems. Chemistry 2007; 14:26-39. [DOI: 10.1002/chem.200701397] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abbruzzetti S, Sottini S, Viappiani C, Corrie JET. Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem Photobiol Sci 2006; 5:621-8. [PMID: 16761091 DOI: 10.1039/b516533d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Using 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) as a photoactivatable caged proton, we could induce complete acid unfolding of myoglobin with a single nanosecond laser pulse. This was possible because of the high ( approximately mM) concentration of protons released by the photolabile compound. The ability of the compound to produce a large pH jump arises because the other photoproducts (2-nitrosoacetophenone and sulfate ion) do not buffer the released protons. The complete time course of the unfolding kinetics, spanning a range from milliseconds to several seconds, could be accurately reproduced by monitoring absorbance changes in the visible spectrum at 633 nm.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, Parco Area delle Scienze 7/A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
25
|
Abbruzzetti S, Sottini S, Viappiani C, Corrie JET. Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution. J Am Chem Soc 2005; 127:9865-74. [PMID: 15998092 DOI: 10.1021/ja051702x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of proton release after laser photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) have been characterized by time-resolved absorbance and photoacoustic methods. The absorbance at approximately 400 nm is observed to rise with a biphasic behavior in which a prompt component (formation of the nitronic acid) is followed by a slower (tau approximately 63 +/- 6 ns) phase (deprotonation of the nitronic acid). The decay of this intermediate occurs with a lifetime which is affected by the pH of the solution and the laser pulse energy. In buffered aqueous solution at pH 7, 20 degrees C the aci-nitro decay rate is 18 +/- 4 s(-1). Protons are released to the solution with rate (1.58 +/- 0.09) x 10(7) s(-1) at neutral pH from the nitronic acid intermediate. From the numerical analysis of the protonation kinetics of suitable pH indicators, we could estimate the pK(a) of the nitronic acid as 3.69 +/- 0.05. At acidic pH, a substantial fraction of the aci-nitro intermediate is in the protonated form and this leads to a biphasic release of protons, with the slower phase being characterized by an apparent rate constant strongly dependent on the pH. The strongly acidic character of the final photoproduct (sulfate ion) means that there is negligible buffering of photoreleased protons.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, Parco Area delle Scienze, 7A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
26
|
Clarke KM, La Clair JJ, Burkart MD. A three-component photoreversible tag for thiols. J Org Chem 2005; 70:3709-11. [PMID: 15845011 DOI: 10.1021/jo0481396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] A one-pot coupling of a 1,3-diketone, an aldehyde, and an alkanethiol has been developed to produce a protected sulfide. Through use of an o-nitrophenylbenzaldehyde, this method provides a one-step route to a photochemically reversible thiol-protecting group. The kinetics of photolysis were established using (1)H NMR analysis, which allows for the rate to be based on the entire reaction scheme.
Collapse
Affiliation(s)
- Kristine M Clarke
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | |
Collapse
|
27
|
Görner H. Effects of 4,5-dimethoxy groups on the time-resolved photoconversion of 2-nitrobenzyl alcohols and 2-nitrobenzaldehyde into nitroso derivatives. Photochem Photobiol Sci 2005; 4:822-8. [PMID: 16189558 DOI: 10.1039/b506393k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced conversion of the aci-nitro in the nitroso form was studied with four compounds containing the o-nitrobenzyl moiety in solution at ambient temperature using time-resolved UV-vis spectroscopy. For 4,5-dimethoxy-2-nitrobenzyl alcohol (2) and 4,5-methylenedioxy-2-nitrobenzyl alcohol (3) the absorption spectra are red-shifted and, in contrast to the parent 2-nitrobenzyl alcohol (1), a triplet state with CT character was detected after the 308 nm laser pulse. The other photochemical properties of 1-3 are similar. The aci-nitro form of 1-3 in acetonitrile or ethanol is quenched by water, the rate constant is (0.3-1.7) x 10(5) M(-1) s(-1). A CT triplet state and the nitroso product but no aci-nitro form were observed for 4,5-methylenedioxy-2-nitrobenzaldehyde (4). The conversion of the aci-nitro into the nitroso monomer and eventual dimer formation were studied by FTIR spectroscopy. The common features and specific differences in the photoreaction mechanisms of 1-4 are discussed.
Collapse
Affiliation(s)
- Helmut Görner
- Max-Planck-Institut für Bioanorganische Chemie, D-45413, Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Abbruzzetti S, Grandi E, Viappiani C, Bologna S, Campanini B, Raboni S, Bettati S, Mozzarelli A. Kinetics of Acid-Induced Spectral Changes in the GFPmut2 Chromophore. J Am Chem Soc 2004; 127:626-35. [PMID: 15643887 DOI: 10.1021/ja045400r] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used a nanosecond pH-jump technique, coupled with simultaneous transient absorption and fluorescence emission detection, to characterize the dynamics of the acid-induced spectral changes in the GFPmut2 chromophore. Disappearance of the absorbance at 488 nm and the green fluorescence emission occurs with a thermally activated, double exponential relaxation. To understand the source of the two transients we have introduced mutations in amino acid residues that interact with the chromophore (H148G, T203V, and E222Q). Results indicate that the faster transient is associated with proton binding from the solution, while the second process, smaller in amplitude, is attributed to structural rearrangement of the amino acids surrounding the chromophore. The protonation rate shows a 3-fold increase for the H148G mutant, demonstrating that His148 plays a key role in protecting the chromophore from the solvent. The deprotonation rate for T203V is an order of magnitude smaller, showing that the hydrogen bond with the hydroxyl of Thr203 is important in stabilizing the deprotonated form of the chromophore. A kinetic model suggests that, in addition to protecting the chromophore from the solvent, His148 may act as the primary acceptor for the protons on the way to the chromophore.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università di Parma, Parco Area delle Scienze 7/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|