1
|
Yue D, Ng EWH, Hirao H. Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8. J Am Chem Soc 2024; 146:30117-30125. [PMID: 39441858 PMCID: PMC11544615 DOI: 10.1021/jacs.4c07937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme's specific substrate positioning.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Elvis Wang Hei Ng
- Department
of Pharmacology and Pharmacy, The University
of Hong Kong, Pokfulam 999077, Hong Kong SAR, P. R. China
| | - Hajime Hirao
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
2
|
Čivić J, McFarlane NR, Masschelein J, Harvey JN. Exploring the selectivity of cytochrome P450 for enhanced novel anticancer agent synthesis. Faraday Discuss 2024; 252:69-88. [PMID: 38855920 DOI: 10.1039/d4fd00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cytochrome P450 monooxygenases are an extensive and unique class of enzymes, which can regio- and stereo-selectively functionalise hydrocarbons by way of oxidation reactions. These enzymes are naturally occurring but have also been extensively applied in a synthesis context, where they are used as efficient biocatalysts. Recently, a biosynthetic pathway where a cytochrome P450 monooxygenase catalyses a critical step of the pathway was uncovered, leading to the production of a number of products that display high antitumour potency. In this work, we use computational techniques to gain insight into the factors that determine the relative yields of the different products. We use conformational search algorithms to understand the substrate stereochemistry. On a machine-learned 3D protein structure, we use molecular docking to obtain a library of favourable poses for substrate-protein interaction. With molecular dynamics, we investigate the most favourable poses for reactivity on a molecular level, allowing us to investigate which protein-substrate interactions favour a given product and thus gain insight into the product selectivity.
Collapse
Affiliation(s)
- Janko Čivić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Neil R McFarlane
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Joleen Masschelein
- Department of Biology, Vlaams Instituut voor Biotechnologie VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
3
|
Lv W, Shi W, Zhang Z, Ru L, Feng W, Tang H, Wang X. Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study. Anal Biochem 2024; 690:115527. [PMID: 38565333 DOI: 10.1016/j.ab.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.
Collapse
Affiliation(s)
- Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiangqi Wang
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Tian G, Hao G, Chen X, Liu Y. Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET: Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC. Inorg Chem 2021; 60:13539-13549. [PMID: 34382397 DOI: 10.1021/acs.inorgchem.1c01864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxide-dependent coproheme decarboxylase ChdC from Geobacillus stearothermophilus catalyzes two key steps in the synthesis of heme b, i.e., two sequential oxidative decarboxylations of coproporphyrinogen III (coproheme III) at propionate groups P2 and P4. In the binding site of coproheme III, P2 and P4 are anchored by different residues (Tyr144, Arg217, and Ser222 for P2 and Tyr113, Lys148, and Trp156 for P4); however, strong experimental evidence supports that the generated Tyr144 radical acts as an unique intermediary for hydrogen atom transfer (HAT) from both reactive propionates. So far, the reaction details are still unclear. Herein, we carried out quantum mechanics/molecular mechanics calculations to explore the decarboxylation mechanism of coproheme III. In our calculations, the coproheme Cpd I, Fe(IV) = O coupled to a porphyrin radical cation (por•+) with four propionate groups, was used as a reactant model. Our calculations reveal that Tyr144 is directly involved in the decarboxylation of propionate group P2. First, the proton-coupled electron transfer (PCET) occurs from Tyr144 to P2, generating a Tyr144 radical, which then abstracts a hydrogen atom from the Cβ of P2. The β-H extraction was calculated to be the rate-limiting step of decarboxylation. It is the porphyrin radical cation (por•+) that makes the PCET from Tyr144 to P2 to be quite easy to initiate the decarboxylation. Finally, the electron transfers from the Cβ• through the porphyrin to the iron center, leading to the decarboxylation of P2. Importantly, the decarboxylation of P4 mediated by Lys148 was calculated to be very difficult, which suggests that after the P2 decarboxylation, the generated harderoheme III intermediate should rebind or rotate in the active site so that the propionate P4 occupies the binding site of P2, and Tyr144 again mediates the decarboxylation of P4. Thus, our calculations support the fact that Tyr144 is responsible for the decarboxylation of both P2 and P4.
Collapse
Affiliation(s)
- Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Mittra K, Green MT. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C-H Bond Activation. J Am Chem Soc 2019; 141:5504-5510. [PMID: 30892878 DOI: 10.1021/jacs.9b00242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a mixed experimental/theoretical determination of the bond strengths and redox potentials that define the ground-state thermodynamics for C-H bond activation in cytochrome P450 catalysis. Using redox titrations with [Ir(IV)Cl6]2-, we have determined the compound II/ferric (or Fe(IV)OH/Fe(III)OH2) couple and its associated D(O-H)Ferric bond strength in CYP158. Knowledge of this potential as well as the compound II/ferric (or Fe(IV)O/Fe(III)OH) reduction potential in horseradish peroxidase and the two-electron compound I/ferric (or Fe(IV)O(Por•)/Fe(III)OH2(Por)) reduction potential in aromatic peroxidase has allowed us to gauge the accuracy of theoretically determined bond strengths. Using the restricted open shell (ROS) method as proposed by Wright and co-workers, we have obtained O-H bond strengths and associated redox potentials for charge-neutral H-atom reductions of these iron(IV)-hydroxo and -oxo porphyrin species that are within 1 kcal/mol of experimentally determined values, suggesting that the ROS method may provide accurate values for the P450-II O-H bond strength and P450-I reduction potential. The efforts detailed here indicate that the ground-state thermodynamics of C-H bond activation in P450 are best described as follows: E0'Comp-I = 1.22 V (at pH 7, vs NHE) with D(O-H)Comp-II = 95 kcal/mol and E0'Comp-II = 0.99 V (at pH 7, vs NHE) with D(O-H)Ferric = 90 kcal/mol.
Collapse
Affiliation(s)
- Kaustuv Mittra
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
6
|
Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, Fatima MA. Biochemical Characterization of the Cytochrome P450 CYP107CB2 from Bacillus lehensis G1. Protein J 2018; 37:180-193. [PMID: 29508210 DOI: 10.1007/s10930-018-9764-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
Collapse
Affiliation(s)
- Swi See Ang
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
| | - Leow Thean Chor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Bimo Ario Tejo
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Mariam-Aisha Fatima
- Faculty of Health and Life Sciences, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
7
|
Lai R, Li H. Hydrogen Abstraction of Camphor Catalyzed by Cytochrome P450 cam: A QM/MM Study. J Phys Chem B 2016; 120:12312-12320. [PMID: 27934231 DOI: 10.1021/acs.jpcb.6b09923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combined quantum mechanics and molecular mechanics (QM/MM, QM = UB3LYP-D3, MM = AMBER) method is used to study the hydrogen abstraction reaction in P450cam catalyzed hydroxylation of camphor in the quartet state. Compared to QM/MM calculations in the literature, this study uses larger basis sets for the most important atoms at the active site and QM/MM Hessian harmonic frequency calculations to determine the standard Gibbs free energy of activation and kinetic isotope effect. The QM/MM covalent boundary is treated with a capping hydrogen atom method, which is simple and robust. An energy barrier of 21.3 kcal/mol and a standard free energy of activation of 16.8 kcal/mol are obtained for this hydrogen abstraction reaction. These values are similar to those reported in the literature, suggesting that when a general protocol is followed, QM/MM results are reproducible. It is found that using a sufficiently large basis set is important to minimize basis set errors.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | - Hui Li
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
8
|
Ang SS, Salleh AB, Chor ALT, Normi YM, Tejo BA, Rahman MBA. Molecular characterization, modeling and docking of CYP107CB2 from Bacillus lehensis G1, an alkaliphile. Comput Biol Chem 2015; 56:19-29. [PMID: 25766878 DOI: 10.1016/j.compbiolchem.2015.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Cytochrome P450s are a superfamily of heme monooxygenases which catalyze a wide range of biochemical reactions. The reactions involve the introduction of an oxygen atom into an inactivated carbon of a compound which is essential to produce an intermediate of a hydroxylated product. The diversity of chemical reactions catalyzed by cytochrome P450s has led to their increased demand in numerous industrial and biotechnology applications. A recent study showed that a gene sequence encoding a CYP was found in the genome of Bacillus lehensis G1, and this gene shared structural similarity with the bacterial vitamin D hydroxylase (Vdh) from Pseudonocardia autotrophica. The objectives of present study was to mine, for a novel CYP from a new isolate B. lehensis G1 alkaliphile and determine the biological properties and functionalities of CYP in this bacterium. Our study employed the usage of computational methods to search for the novel CYP from CYP structural databases to identify the conserved pattern, functional domain and sequence properties of the uncharacterized CYP from B. lehensis G1. A computational homology model of the protein's structure was generated and a docking analysis was performed to provide useful structural knowledge on the enzyme's possible substrate and their interaction. Sequence analysis indicated that the newly identified CYP, termed CYP107CB2, contained the fingerprint heme binding sequence motif FxxGxxxCxG at position 336-345 as well as other highly conserved motifs characteristic of cytochrome P450 proteins. Using docking studies, we identified Ser-79, Leu-81, Val-231, Val-279, Val-383, Ala-232, Thr-236 and Thr-283 as important active site residues capable of stabilizing interactions with several potential substrates, including vitamin D3, 25-hydroxyvitamin D3 and 1α-hydroxyvitamin D3, in which all substrates docked proximally to the enzyme's heme center. Biochemical analysis indicated that CYP107CB2 is a biologically active protein to produce 1α,25-dihydroxyvitamin D3 from 1α-hydroxyvitamin D3. Based on these results, we conclude that the novel CYP107CB2 identified from B. lehensis G1 is a putative vitamin D hydroxylase which is possibly capable of catalyzing the bioconversion of parental vitamin D3 to calcitriol, or related metabolic products.
Collapse
Affiliation(s)
- Swi See Ang
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Adam Leow Thean Chor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Bimo Ario Tejo
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Lonsdale R, Rouse SL, Sansom MSP, Mulholland AJ. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes. PLoS Comput Biol 2014; 10:e1003714. [PMID: 25033460 PMCID: PMC4102395 DOI: 10.1371/journal.pcbi.1003714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/28/2014] [Indexed: 01/30/2023] Open
Abstract
Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Sarah L. Rouse
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (MSPS); (AJM)
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
- * E-mail: (MSPS); (AJM)
| |
Collapse
|
10
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Rydberg P, Jørgensen FS, Olsen L. Use of density functional theory in drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:215-27. [PMID: 24295134 DOI: 10.1517/17425255.2014.864278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool to rationalize and predict the possible metabolites generated by the CYPs as well as other drug-metabolizing enzymes. AREAS COVERED We review applications of DFT on reactions performed by the CYPs and other drug-metabolizing enzymes able to perform oxidation reactions, with an emphasis on predicting which metabolites are produced. We also cover calculations of binding energies for complexes in which the ligands interact directly with the heme iron atom. EXPERT OPINION DFT is a useful tool for prediction of the site of metabolism. The use of small models of the enzymes work surprisingly well for most CYP isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account, like docking, MD and QM/MM, can be used are discussed.
Collapse
Affiliation(s)
- Patrik Rydberg
- University of Copenhagen, Department of Drug Design and Pharmacology , Denmark
| | | | | |
Collapse
|
12
|
Shi R, Li W, Liu G, Tang Y. Catalytic Mechanism of Cytochrome P450 2D6 for 4-Hydroxylation of Aripiprazole: A QM/MM Study. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Lonsdale R, Houghton KT, Żurek J, Bathelt CM, Foloppe N, de Groot MJ, Harvey JN, Mulholland AJ. Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. J Am Chem Soc 2013; 135:8001-15. [PMID: 23641937 PMCID: PMC3670427 DOI: 10.1021/ja402016p] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Cytochrome P450 enzymes (P450s) are
important in drug metabolism
and have been linked to adverse drug reactions. P450s display broad
substrate reactivity, and prediction of metabolites is complex. QM/MM
studies of P450 reactivity have provided insight into important details
of the reaction mechanisms and have the potential to make predictions
of metabolite formation. Here we present a comprehensive study of
the oxidation of three widely used pharmaceutical compounds (S-ibuprofen, diclofenac, and S-warfarin)
by one of the major drug-metabolizing P450 isoforms, CYP2C9. The reaction
barriers to substrate oxidation by the iron-oxo species (Compound
I) have been calculated at the B3LYP-D/CHARMM27 level for different
possible metabolism sites for each drug, on multiple pathways. In
the cases of ibuprofen and warfarin, the process with the lowest activation
energy is consistent with the experimentally preferred metabolite.
For diclofenac, the pathway leading to the experimentally observed
metabolite is not the one with the lowest activation energy. This
apparent inconsistency with experiment might be explained by the two
very different binding modes involved in oxidation at the two competing
positions. The carboxylate of diclofenac interacts strongly with the
CYP2C9 Arg108 side chain in the transition state for formation of
the observed metabolite—but not in that for the competing pathway.
We compare reaction barriers calculated both in the presence and in
the absence of the protein and observe a marked improvement in selectivity
prediction ability upon inclusion of the protein for all of the substrates
studied. The barriers calculated with the protein are generally higher
than those calculated in the gas phase. This suggests that active-site
residues surrounding the substrate play an important role in controlling
selectivity in CYP2C9. The results show that inclusion of sampling
(particularly) and dispersion effects is important in making accurate
predictions of drug metabolism selectivity of P450s using QM/MM methods.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
van der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013; 52:2708-28. [PMID: 23557014 DOI: 10.1021/bi400215w] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | | |
Collapse
|
15
|
Lonsdale R, Harvey JN, Mulholland AJ. Effects of Dispersion in Density Functional Based Quantum Mechanical/Molecular Mechanical Calculations on Cytochrome P450 Catalyzed Reactions. J Chem Theory Comput 2012; 8:4637-45. [PMID: 26605619 DOI: 10.1021/ct300329h] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory (DFT) based quantum mechanical/molecular mechanical (QM/MM) calculations have provided valuable insight into the reactivity of the cytochrome P450 family of enzymes (P450s). A failure of commonly used DFT methods, such as B3LYP, is the neglect of dispersion interactions. An empirical dispersion correction has been shown to improve the accuracy of gas phase DFT calculations of P450s. The current work examines the effect of the dispersion correction in QM/MM calculations on P450s. The hydrogen abstraction from camphor, and hydrogen abstraction and C-O addition of cyclohexene and propene by P450cam have been modeled, along with the addition of benzene to Compound I in CYP2C9, at the B3LYP-D2/CHARMM27 level of theory. Single point energy calculations were also performed at the B3LYP-D3//B3LYP-D2/CHARMM27 level. The dispersion corrections lower activation energy barriers significantly (by ∼5 kcal/mol), as seen for gas phase calculations, but has a small effect on optimized geometries.These effects are likely to be important in modeling reactions catalyzed by other enzymes also. Given the low computational cost of including such dispersion corrections, we recommend doing so in all B3LYP based QM/MM calculations.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Jeremy N Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
16
|
Lonsdale R, Harvey JN, Mulholland AJ. A practical guide to modelling enzyme-catalysed reactions. Chem Soc Rev 2012; 41:3025-38. [PMID: 22278388 PMCID: PMC3371381 DOI: 10.1039/c2cs15297e] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling and simulation methods are increasingly at the forefront of elucidating mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity and efficiency of catalysis. These methods have the potential to assist in drug discovery and the design of novel protein catalysts. This Tutorial Review highlights some of the most widely used modelling methods and some successful applications. Modelling protocols commonly applied in studying enzyme-catalysed reactions are outlined here, and some practical implications are considered, with cytochrome P450 enzymes used as a specific example.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
17
|
Lonsdale R, Oláh J, Mulholland AJ, Harvey JN. Does compound I vary significantly between isoforms of cytochrome P450? J Am Chem Soc 2011; 133:15464-74. [PMID: 21863858 PMCID: PMC3180200 DOI: 10.1021/ja203157u] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe-O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450(cam) and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe-O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | | | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
18
|
|
19
|
van der Kamp MW, Zurek J, Manby FR, Harvey JN, Mulholland AJ. Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase. J Phys Chem B 2010; 114:11303-14. [PMID: 20690673 DOI: 10.1021/jp104069t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combined quantum mechanics/molecular mechanics (QM/MM) calculations with high levels of correlated ab initio theory can now provide benchmarks for enzyme-catalyzed reactions. Here, we use such methods to test various QM/MM methods and the sensitivity of the results to details of the models for an important enzyme reaction, proton abstraction from acetyl-coenzyme A in citrate synthase. We calculate multiple QM/MM potential energy surfaces up to the local coupled cluster theory (LCCSD(T0)) level, with structures optimized at hybrid density functional theory and Hartree-Fock levels. The influence of QM methods, basis sets, and QM region size is shown to be significant. Correlated ab initio QM/MM calculations give barriers in agreement with experiment for formation of the acetyl-CoA enolate intermediate. In contrast, B3LYP fails to identify the enolate as an intermediate, whereas BH&HLYP does. The results indicate that QM/MM methods and setup should be tested, ideally using high-level calculations, to draw reliable mechanistic conclusions.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Computer simulations of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions. Interdiscip Sci 2010; 2:78-97. [DOI: 10.1007/s12539-010-0093-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/06/2009] [Indexed: 10/19/2022]
|
21
|
Ranaghan KE, Mulholland AJ. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. INT REV PHYS CHEM 2010. [DOI: 10.1080/01442350903495417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
|
23
|
Lonsdale R, Harvey JN, Mulholland AJ. Compound I Reactivity Defines Alkene Oxidation Selectivity in Cytochrome P450cam. J Phys Chem B 2009; 114:1156-62. [DOI: 10.1021/jp910127j] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
24
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 831] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Pipirou Z, Guallar V, Basran J, Metcalfe CL, Murphy EJ, Bottrill AR, Mistry SC, Raven EL. Peroxide-Dependent Formation of a Covalent Link between Trp51 and the Heme in Cytochrome c Peroxidase. Biochemistry 2009; 48:3593-9. [DOI: 10.1021/bi802210g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoi Pipirou
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Victor Guallar
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Jaswir Basran
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Clive L. Metcalfe
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Emma J. Murphy
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Andrew R. Bottrill
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Sharad C. Mistry
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Emma Lloyd Raven
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, ICREA, Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain, Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and Protein and Nucleic Acid Chemistry Laboratory, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| |
Collapse
|
26
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
27
|
|
28
|
Guallar V, Wallrapp F. Mapping protein electron transfer pathways with QM/MM methods. J R Soc Interface 2009; 5 Suppl 3:S233-9. [PMID: 18445553 DOI: 10.1098/rsif.2008.0061.focus] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mixed quantum mechanics/molecular mechanics (QM/MM) methods offer a valuable computational tool for understanding the electron transfer pathway in protein-substrate interactions and protein-protein complexes. These hybrid methods are capable of solving the Schrödinger equation on a small subset of the protein, the quantum region, describing its electronic structure under the polarization effects of the remainder of the protein. By selectively turning on and off different residues in the quantum region, we are able to obtain the electron pathway for short- and large-range interactions. Here, we summarize recent studies involving the protein-substrate interaction in cytochrome P450 camphor, ascorbate peroxidase and cytochrome c peroxidase, and propose a novel approach for the long-range protein-protein electron transfer. The results on ascorbate peroxidase and cytochrome c peroxidase reveal the importance of the propionate groups in the electron transfer pathway. The long-range protein-protein electron transfer has been studied on the cytochrome c peroxidase-cytochrome c complex. The results indicate the importance of Phe82 and Cys81 on cytochrome c, and of Asn196, Ala194, Ala176 and His175 on cytochrome c peroxidase.
Collapse
Affiliation(s)
- Victor Guallar
- Life Science Department, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain.
| | | |
Collapse
|
29
|
Wallrapp F, Masone D, Guallar V. Electron Transfer in the P450cam/PDX Complex. The QM/MM e-Pathway. J Phys Chem A 2008; 112:12989-94. [DOI: 10.1021/jp803538u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frank Wallrapp
- ICREA Research Professor, Life Science Department, Barcelona Supercomputing Center, Jordi Girona, 29, 08034 Barcelona, Spain
| | - Diego Masone
- ICREA Research Professor, Life Science Department, Barcelona Supercomputing Center, Jordi Girona, 29, 08034 Barcelona, Spain
| | - Victor Guallar
- ICREA Research Professor, Life Science Department, Barcelona Supercomputing Center, Jordi Girona, 29, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Guallar V. Heme Electron Transfer in Peroxidases: The Propionate e-Pathway. J Phys Chem B 2008; 112:13460-4. [DOI: 10.1021/jp806435d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor Guallar
- ICREA Research Professor, Life Science Department, Barcelona Supercomputing Center, Jordi Girona, 29, 08034 Barcelona (Spain)
| |
Collapse
|
31
|
Balcells D, Raynaud C, Crabtree RH, Eisenstein O. A rational basis for the axial ligand effect in C-H oxidation by [MnO(porphyrin)(X)]+ (X = H2O, OH-, O2-) from a DFT study. Inorg Chem 2008; 47:10090-9. [PMID: 18788735 DOI: 10.1021/ic8013706] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxyl radical character in the MnO group of the title system is shown from a density functional theory study to be essential for efficient C-H cleavage, which is a key step in C-H oxidation. Since oxyl species have elongated Mn-O bonds relative to the more usual oxo species of type MnO, the normal expectation would be that high trans-influence ligands X should facilitate oxyl character by elongating the Mn-O bond and thus enhance both oxyl character and reactivity. Contrary to this expectation, but in line with the experimental data (Jin, N.; Ibrahim, M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc. 2007, 129, 12416), we find that reactivity increases along the series X = O(2-) < OH(-) < H2O for the following reasons. The ground-state singlet (S) is unreactive for all X, and only the higher-energy triplet (T) and quintet (Q) states have the oxyl character needed for reactivity, but the higher trans-influence X ligands are also shown to increase the S/T and S/Q gaps, thus making attainment of the needed T and Q states harder. The latter effect is dominant, and high trans-influence X ligands thus disfavor reaction. The higher reactivity in the presence of acid noted by Groves and co-workers is thus rationalized by the preference for having X = H2O over OH(-) or O(2-).
Collapse
Affiliation(s)
- David Balcells
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Universite Montpellier 2, cc-1501 Place Eugene Bataillon, 34095, Montpellier, France
| | | | | | | |
Collapse
|
32
|
Bathelt CM, Mulholland AJ, Harvey JN. QM/MM Modeling of Benzene Hydroxylation in Human Cytochrome P450 2C9. J Phys Chem A 2008; 112:13149-56. [DOI: 10.1021/jp8016908] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine M. Bathelt
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| |
Collapse
|
33
|
Li YC, Chiang CW, Yeh HC, Hsu PY, Whitby FG, Wang LH, Chan NL. Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. J Biol Chem 2008; 283:2917-26. [PMID: 18032380 PMCID: PMC2293295 DOI: 10.1074/jbc.m707470200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H(2). PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H(2), leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels.
Collapse
Affiliation(s)
- Yi-Ching Li
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chia-Wang Chiang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Hui-Chun Yeh
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Pei-Yung Hsu
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Frank G. Whitby
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah 84112
| | - Lee-Ho Wang
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Nei-Li Chan
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
34
|
Abstract
Simulations and modelling [e.g. with combined QM/MM (quantum mechanics/molecular mechanics) methods] are increasingly important in investigations of enzyme-catalysed reaction mechanisms. Calculations offer the potential of uniquely detailed, atomic-level insight into the fundamental processes of biological catalysis. Highly accurate methods promise quantitative comparison with experiments, and reliable predictions of mechanisms, revolutionizing enzymology.
Collapse
|
35
|
Balcells D, Raynaud C, Crabtree RH, Eisenstein O. The rebound mechanism in catalytic C–H oxidation by MnO(tpp)Cl from DFT studies: electronic nature of the active species. Chem Commun (Camb) 2008:744-6. [DOI: 10.1039/b715939k] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Lodola A, Woods CJ, Mulholland AJ. Applications and Advances of QM/MM Methods in Computational Enzymology. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
van der Kamp MW, Mulholland AJ. Computational enzymology: insight into biological catalysts from modelling. Nat Prod Rep 2008; 25:1001-14. [DOI: 10.1039/b600517a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Altun A, Shaik S, Thiel W. What is the Active Species of Cytochrome P450 during Camphor Hydroxylation? QM/MM Studies of Different Electronic States of Compound I and of Reduced and Oxidized Iron−Oxo Intermediates. J Am Chem Soc 2007; 129:8978-87. [PMID: 17595079 DOI: 10.1021/ja066847y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated C-H hydroxylation of camphor by Compound I (Cpd I) of cytochrome P450cam in different electronic states and by its one-electron reduced and oxidized forms, using QM/MM calculations in the native protein/solvent environment. Cpd I species with five unpaired electrons (pentaradicaloids) are ca. 12 kcal/mol higher in energy than the ground state Cpd I species with three unpaired electrons (triradicaloids). The H-abstraction transition states of pentaradicaloids lie ca. 21 (9) kcal/mol above the triradicaloid (pentaradicaloid) reactants. Hydroxylation via pentaradicaloids is thus facile provided that they can react before relaxing to the ground-state triradicaloids. Excited states of Cpd I with an Fe(V)-oxo moiety lie more than 20 kcal/mol above the triradicaloid ground state in single-point gas-phase calculations, but these electronic configurations are not stable upon including the point-charge protein environment which causes SCF convergence to the triradicaloid ground state. One-electron reduced species (Cpd II) show sluggish reactivity compared with Cpd I in agreement with experimental model studies. One-electron oxidized species are more reactive than Cpd I but seem too high in energy to be accessible. The barriers to hydrogen abstraction for the various forms of Cpd I are generally not affected much by the chosen protonation states of the Asp297 and His355 residues near the propionate side chains of the heme or by the appearance of radical character at Asp297, His355, or the propionates.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
39
|
Shaik S, Hirao H, Kumar D. Reactivity patterns of cytochrome P450 enzymes: multifunctionality of the active species, and the two states-two oxidants conundrum. Nat Prod Rep 2007; 24:533-52. [PMID: 17534529 DOI: 10.1039/b604192m] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
40
|
van der Kamp MW, Perruccio F, Mulholland AJ. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase. J Mol Graph Model 2007; 26:676-90. [PMID: 17493853 DOI: 10.1016/j.jmgm.2007.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
The first step of the reaction catalysed by the enzyme citrate synthase is studied here with high level combined quantum mechanical/molecular mechanical (QM/MM) methods (up to the MP2/6-31+G(d)//6-31G(d)/CHARMM level). In the first step of the reaction, acetyl-CoA is deprotonated by Asp375, producing an intermediate, which is the nucleophile for attack on the second substrate, oxaloacetate, prior to hydrolysis of the thioester bond of acetyl-CoA and release of the products. A central question has been whether the nucleophilic intermediate is the enolate of acetyl-CoA, the enol, or an 'enolic' intermediate stabilized by a 'low-barrier' hydrogen bond with His274 at the active site. The imidazole sidechain of His274 is neutral, and donates a hydrogen bond to the carbonyl oxygen of acetyl-CoA in substrate complexes. We have investigated the identity of the nucleophilic intermediate by QM/MM calculations on the substrate (keto), enolate, enol and enolic forms of acetyl-CoA at the active site of citrate synthase. The transition states for proton abstraction from acetyl-CoA by Asp375, and for transfer of the hydrogen bonded proton between His274 and acetyl-CoA have been modelled approximately. The effects of electron correlation are included by MP2/6-31G(d) and MP2/6-31+G(d) calculations on active site geometries produced by QM/MM energy minimization. The results do not support the hypothesis that a low-barrier hydrogen bond is involved in catalysis in citrate synthase, in agreement with earlier calculations. The acetyl-CoA enolate is identified as the only intermediate consistent with the experimental barrier for condensation, stabilized by conventional hydrogen bonds from His274 and a water molecule.
Collapse
|
41
|
Zheng J, Altun A, Thiel W. Common system setup for the entire catalytic cycle of cytochrome P450cam in quantum mechanical/molecular mechanical studies. J Comput Chem 2007; 28:2147-58. [PMID: 17450550 DOI: 10.1002/jcc.20701] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a system setup that is applicable to all species in the catalytic cycle of cytochrome P450(cam). The chosen procedure starts from the X-ray coordinates of the ferrous dioxygen complex and follows a protocol that includes the careful assignment of protonation states, comparison between different conceivable hydration schemes, and system preparation through a series of classical minimizations and molecular dynamics (MD) simulations. The resulting setup was validated by quantum mechanical/molecular mechanical (QM/MM) calculations on the resting state, the pentacoordinated ferric and ferrous complexes, Compound I, the transition state and hydroxo intermediate of the C--H hydroxylation reaction, and the product complex. The present QM/MM results are generally consistent with those obtained previously with individual setups. Concerning hydration, we find that saturating the protein interior with water is detrimental and leads to higher structural flexibility and catalytically inefficient active-site geometries. The MD simulations favor a low water density around Asp251 that facilitates side chain rotation of protonated Asp251 during the conversion of Compound 0 to Compound I. The QM/MM results for the two preferred hydration schemes (labeled SE-1 and SE-4) are similar, indicating that slight differences in the solvation close to the active site are not critical as long as camphor and the crystallographic water molecules preserve their positions in the experimental X-ray structures.
Collapse
Affiliation(s)
- Jingjing Zheng
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|