1
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
2
|
Kodedová M, Liška V, Mosinger J, Sychrová H. Light-induced antifungal activity of nanoparticles with an encapsulated porphyrin photosensitizer. Microbiol Res 2023; 269:127303. [PMID: 36641862 DOI: 10.1016/j.micres.2023.127303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The strong antifungal effect of sulfonated polystyrene nanoparticles (NPs) with an encapsulated tetraphenylporphyrin (TPP) photosensitizer is reported here. TPP is activated by visible light, resulting in the generation of singlet oxygen. Its antifungal action is potentiated in the presence of potassium iodide, yielding I2/I3⁻, another antifungal species. The NPs exhibit no dark toxicity, but a broad spectrum of antifungal photodynamic effects. The efficiency of this rapid killing (on the order of minutes) depends on the concentration of TPP NPs, potassium iodide, yeast species and temperature. A strong antifungal activity of TPP NPs is demonstrated on eleven pathogenic and opportunistic pathogenic yeast species (six Candida species and other yeast species, including melanized Hortaea werneckii). The composition and architecture of yeast cell envelope structures clearly influence the efficacy of photodynamic therapy. Candida krusei is the most sensitive to photodynamic therapy. Despite expectations, melanin does not provide Hortaea cells with marked resistance compared to white yeast species. The kinetics of the interaction of NPs with yeast cells is also described. This study may inspire and promote the fabrication of a new type of antiseptic for various skin injuries in clinical medicine.
Collapse
Affiliation(s)
- Marie Kodedová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14200 Prague 4, Czech Republic.
| | - Vojtěch Liška
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic.
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic.
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14200 Prague 4, Czech Republic.
| |
Collapse
|
3
|
Liška V, Kubát P, Křtěnová P, Mosinger J. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications. ACS OMEGA 2022; 7:47986-47995. [PMID: 36591212 PMCID: PMC9798731 DOI: 10.1021/acsomega.2c05935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| |
Collapse
|
4
|
Schlachter A, Asselin P, Harvey PD. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26651-26672. [PMID: 34086450 DOI: 10.1021/acsami.1c05234] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible-light irradiation of porphyrin and metalloporphyrin dyes in the presence of molecular oxygen can result in the photocatalytic generation of singlet oxygen (1O2). This type II reactive oxygen species (ROS) finds many applications where the dye, also called the photosensitizer, is dissolved (i.e., homogeneous phase) along with the substrate to be oxidized. In contrast, metal-organic frameworks (MOFs) are insoluble (or will disassemble) when placed in a solvent. When stable as a suspension, MOFs adsorb a large amount of O2 and photocatalytically generate 1O2 in a heterogeneous process efficiently. Considering the immense surface area and great capacity for gas adsorption of MOFs, they seem ideal candidates for this application. Very recently, covalent-organic frameworks (COFs), variants where reticulation relies on covalent rather than coordination bonds, have emerged as efficient photosensitizers. This comprehensive mini review describes recent developments in the use of porphyrin-based or porphyrin-containing MOFs and COFs, including nanosized versions, as heterogeneous photosensitizers of singlet oxygen toward antimicrobial applications.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
5
|
Vorotnikova NA, Bardin VA, Vorotnikov YA, Kirakci K, Adamenko LS, Alekseev AY, Meyer HJ, Kubát P, Mironov YV, Lang K, Shestopalov MA. Heterogeneous photoactive antimicrobial coatings based on a fluoroplastic doped with an octahedral molybdenum cluster compound. Dalton Trans 2021; 50:8467-8475. [PMID: 34047321 DOI: 10.1039/d1dt01102b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the wide variety of strategies developed to combat pathogenic microorganisms, the infectious diseases they cause remain a worldwide health issue. Hence, the search for new disinfectants, which prevent infection spread, constitutes an extremely urgent task. One of the most promising methods is the use of photoactive compounds - photosensitizers, capable of generating reactive oxygen species, in particular, singlet oxygen (O2(1Δg)), which causes rapid and effective death of microorganisms of all types. In this work, we propose the utilization of the powdered cluster complex (Bu4N)2[{Mo6I8}(OTs)6] as a photoactive additive to commercially available fluoroplastic lacquer F-32L to create heterogeneous self-sterilizing coatings. We show that soaking of the prepared films in water for 60 days did not lead to a decrease in their photosensitization properties indicating their excellent stability. Moreover, the use of the cluster complex in the solid state allowed significant expansion of the operating wavelength range, which covers the UV region and a large part of the visible region (250-650 nm). The films displayed high photoantimicrobial activity against five common pathogens (bacteria and fungi) under white-light irradiation. Overall, the properties demonstrated make these materials promising for practical use in everyday outdoor and indoor disinfection since they are active under both sunlight and artificial lighting.
Collapse
Affiliation(s)
- Natalya A Vorotnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentieva, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
López-López N, Muñoz Resta I, de Llanos R, Miravet JF, Mikhaylov M, Sokolov MN, Ballesta S, García-Luque I, Galindo F. Photodynamic Inactivation of Staphylococcus aureus Biofilms Using a Hexanuclear Molybdenum Complex Embedded in Transparent polyHEMA Hydrogels. ACS Biomater Sci Eng 2020; 6:6995-7003. [DOI: 10.1021/acsbiomaterials.0c00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Noelia López-López
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Ignacio Muñoz Resta
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F. Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Sofía Ballesta
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel García-Luque
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
7
|
Henke P, Dolanský J, Kubát P, Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18792-18802. [PMID: 32216378 DOI: 10.1021/acsami.9b23104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A three-step postprocessing functionalization of pristine electrospun polystyrene nanofiber membranes was used for the preparation of nanostructured biotinylated materials with an externally bonded porphyrin photosensitizer. Subsequently, the material was able to strongly bind biologically active streptavidin derivatives while keeping its photosensitizing and antibacterial properties due to the generation of singlet oxygen under the exclusive control of visible light. The resulting multifunctional materials functionalized by a streptavidin-horseradish peroxidase conjugate as a model bioactive compound preserved its enzymatic activity even in the presence of a porphyrin photosensitizer with some quenching effect on the activity of the photosensitizer. Prolonged kinetics of both singlet oxygen luminescence and singlet oxygen-sensitized delayed fluorescence (SODF) were found after irradiation by visible light. The above results reflected less effective quenching of the porphyrin photosensitizer triplet state by ground state oxygen and indicated hindered oxygen transport (diffusion) due to surface functionalization. We found that SODF could be used as a valuable tool for optimizing photosensitizing efficiency as well as a tool for confirming surface functionalization. Full photosensitizing and enzyme activity could be achieved by a space separation of photosensitizers and enzyme/biomolecules in the nanofiber composites consisting of two layers. The upper layer contained a photosensitizer that generated antibacterial singlet oxygen upon irradiation by light, and the bottom layer retained enzymatic activity for biochemical reactions.
Collapse
Affiliation(s)
- Petr Henke
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jiří Dolanský
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec-Řež 1001, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec-Řež 1001, Czech Republic
| |
Collapse
|
8
|
Kubát P, Henke P, Raya RK, Štěpánek M, Mosinger J. Polystyrene and Poly(ethylene glycol)- b-Poly(ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:302-310. [PMID: 31829603 DOI: 10.1021/acs.langmuir.9b03468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transport of a photosensitizer to target biological structures followed by the release of singlet oxygen is a critical step in photodynamic therapy. We compared the (photo)physical properties of polystyrene nanoparticles (TPP@PS) of different sizes and self-assembled poly(ethylene glycol)-b-poly(ε-caprolactone) core/shell nanoparticles (TPP@PEG-PCL) with different lengths of copolymer blocks, both suitable for the transport of the tetraphenylporphyrin (TPP) photosensitizer. The singlet oxygen was formed inside both nanoparticles after irradiation with visible light. Its kinetics was controlled by the size of TPP@PS; its lifetime (τΔ) increased with increasing nanoparticle size (from 6.5 to 16 μs) because of hindered diffusion into the external aqueous environment, where it was quickly deactivated. Accordingly, the prolongation of the singlet oxygen-sensitized delayed fluorescence kinetics was found for TPP@PS of high size. The TPP@PEG-PCL self-assemblies allowed for enhanced oxygen diffusion, and the estimated low values of τΔ ≈ 3.7 μs were independent of the size of building blocks. The delayed fluorescence in oxygen-free conditions originating from triplet-triplet annihilation indicated a high mobility of TPP in the PCL core in comparison with fixed molecules in the PS matrix. Photooxidation of uric acid revealed the highest efficacy for TPP@PS of small sizes, whereas the largest TPP@PS exhibited the lowest activity, and the efficacy of TPP@PEG-PCL remained independent of the sizes of the building blocks.
Collapse
Affiliation(s)
- Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , v.v.i., Dolejškova 3 , 182 23 Prague 8 , Czech Republic
| | - Petr Henke
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Rahul Kumar Raya
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Miroslav Štěpánek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science , Charles University , 2030 Hlavova , 128 43 Prague 2 , Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , v.v.i., Husinec-Řež 1001 , 250 68 Řež , Czech Republic
| |
Collapse
|
9
|
Stoll KR, Scholle F, Zhu J, Zhang X, Ghiladi RA. BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochem Photobiol Sci 2019; 18:1923-1932. [PMID: 31147667 DOI: 10.1039/c9pp00103d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug-resistant pathogens, particularly those that result in hospital acquired infections (HAIs), have emerged as a critical priority for the World Health Organization. To address the need for self-disinfecting materials to counter the threat posed by the transmission of these pathogens from surfaces to new hosts, here we investigated if a cationic BODIPY photosensitizer, embedded via electrospinning into nylon and polyacrylonitrile (PAN) nanofibers, was capable of inactivating both bacteria and viruses via antimicrobial photodynamic inactivation (aPDI). Materials characterization, including fiber morphology and the degree of photosensitizer loading, was assessed by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and demonstrated that the materials were comprised of nanofibers (125-215 nm avg. diameter) that were thermostable to >300 °C. The antimicrobial potencies of the resultant Nylon-BODIPY(+) and PAN-BODIPY(+) nanofiber materials were evaluated against four strains of bacteria recognized by the World Health Organization as either critical or high priority pathogens: Gram-positive strains methicillin-resistant S. aureus (MRSA; ATCC BAA-44) and vancomycin-resistant E. faecium (VRE; ATCC BAA-2320), and Gram-negative strains multidrug-resistant A. baumannii (MDRAB; ATCC BAA-1605) and NDM-1 positive K. pneumoniae (KP; ATCC BAA-2146). Our results demonstrated the detection limit (99.9999%; 6 log units reduction in CFU mL-1) photodynamic inactivation of three strains upon illumination (30-60 min; 40-65 ± 5 mW cm-2; 400-700 nm): MRSA, VRE, and MDRAB, but only minimal inactivation (47-75%) of KP. Antiviral studies employing PAN-BODIPY(+) against vesicular stomatitis virus (VSV), a model enveloped virus, revealed complete inactivation. Taken together, the results demonstrate the potential for electrospun BODIPY(+)-embedded nanofiber materials as the basis for pathogen-specific anti-infective materials, even at low photosensitizer loadings.
Collapse
Affiliation(s)
- Kevin R Stoll
- Department of Chemistry, United States Air Force Academy, CO 80840, USA
| | | | | | | | | |
Collapse
|
10
|
Kubát P, Henke P, Mosinger J. The effect of iodide and temperature on enhancing antibacterial properties of nanoparticles with an encapsulated photosensitizer. Colloids Surf B Biointerfaces 2019; 176:334-340. [PMID: 30654240 DOI: 10.1016/j.colsurfb.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 01/06/2019] [Indexed: 01/25/2023]
Abstract
Aqueous dispersions of sulfonated polystyrene nanoparticles (average diameter: 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin (TPP) are promising candidates for antibacterial treatments due to the photogeneration of cytotoxic singlet oxygen species O2(1Δg) under physiological conditions using visible light. The antibacterial effect on gram-negative Escherichia coli was significantly enhanced after the addition of nontoxic potassium iodide (0.001-0.01 M) because photogenerated O2(1Δg) oxidized iodide to I2/I3-, which is another antibacterial species. The improved antibacterial properties were predicted using luminescence measurements of O2(1Δg), transient absorption of TPP triplets and singlet oxygen-sensitized delayed fluorescence (SODF). In contrast to a solution of free photosensitizers, the aqueous dispersion of photoactive nanoparticles did not exhibit any quenching of the excited states after the addition of iodide or any tendency toward aggregation and/or I3--induced photo-aggregation. We also observed a decrease in the lifetime of O2(1Δg) and a significant increase in SODF intensity at higher temperatures, due to the increased oxygen diffusion coefficient in nanoparticles and aqueous surroundings. This effect corresponds with the significantly stronger antibacterial effect of nanoparticles at physiological temperature (37 °C) in comparison with that at room temperature (25 °C).
Collapse
Affiliation(s)
- Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petr Henke
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic; Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic.
| |
Collapse
|
11
|
García-Fresnadillo D. Singlet Oxygen Photosensitizing Materials for Point-of-Use Water Disinfection with Solar Reactors. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David García-Fresnadillo
- Department of Organic Chemistry; Faculty of Chemical Sciences; Universidad Complutense de Madrid; Avenida Complutense s/n, E- 28040 Madrid Spain
| |
Collapse
|
12
|
George L, Hiltunen A, Santala V, Efimov A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp. J Inorg Biochem 2018; 183:94-100. [DOI: 10.1016/j.jinorgbio.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
13
|
Dolanský J, Henke P, Malá Z, Žárská L, Kubát P, Mosinger J. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. NANOSCALE 2018; 10:2639-2648. [PMID: 29355861 DOI: 10.1039/c7nr08822a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel therapies to prevent bacterial infections are of utmost importance in biomedical research due to the emergence of multidrug-resistant strains of bacteria. Herein, we report the preparation, characterization and antibacterial evaluation of sulfonated polystyrene nanoparticles simultaneously releasing two antibacterial species, nitric oxide (NO) and singlet oxygen (O2(1Δg)), upon irradiation with visible light. The nanoparticles were prepared by simple and scalable processes from nanofiber membranes with an encapsulated NO photodonor and/or ionically entangled tetracationic porphyrin/phthalocyanine photosensitizers. The release of NO and O2(1Δg) from the polystyrene nanoparticles is controlled by light wavelength and dose, as well as by temperature, which influences the diffusion coefficient and solubility of both species in the polystyrene matrix. The concentrations of NO and O2(1Δg) were measured by amperometric and time-resolved spectroscopic techniques and by chemical analysis. Due to the efficient photogeneration of both species at physiological temperature and resultant strong antibacterial action observed on Escherichia coli, the nanoparticles are a promising material for antibacterial applications triggered/modulated by light and temperature.
Collapse
Affiliation(s)
- Jiří Dolanský
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
14
|
Kubát P, Henke P, Berzediová V, Štěpánek M, Lang K, Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36229-36238. [PMID: 28956901 DOI: 10.1021/acsami.7b12009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the synthesis and characterization of sulfonated polystyrene nanoparticles (average diameter 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin or ionically entangled tetracationic 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, their photooxidation properties, and the application of singlet oxygen-sensitized delayed fluorescence (SODF) in oxygen sensing. Both types of nanoparticles effectively photogenerated singlet oxygen, O2(1Δg). The O2(1Δg) phosphorescence, transient absorption of the porphyrin triplet states, and SODF signals were monitored using time-resolved spectroscopic techniques. The SODF intensity depended on the concentration of the porphyrin photosensitizer and dissolved oxygen and on the temperature. After an initial period (a few microseconds), the kinetics of the SODF process can be approximated as a monoexponential function, and the apparent SODF lifetimes can be correlated with the oxygen concentration. The oxygen sensing based on SODF allowed measurement of the dissolved oxygen in aqueous media in the broad range of oxygen concentrations (0.2-38 mg L-1). The ability of both types of nanoparticles to photooxidize external substrates was predicted by the SODF measurements and proven by chemical tests. The relative photooxidation efficacy was highest at a low porphyrin concentration, as indicated by the highest fluorescence quantum yield (ΦF), and it corresponds with negligible inner filter and self-quenching effects. The photooxidation abilities were sensitive to the influence of temperature on the diffusion and solubility of oxygen in both polystyrene and water media and to the rate constant of the O2(1Δg) reaction with a substrate. Due to their efficient photogeneration of cytotoxic O2(1Δg) at physiological temperatures and their oxygen sensing via SODF, both types of nanoparticles are promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petr Henke
- Faculty of Science, Charles University , 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Veronika Berzediová
- Faculty of Science, Charles University , 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Faculty of Science, Charles University , 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University , 2030 Hlavova, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
| |
Collapse
|
15
|
|
16
|
Castriciano MA, Zagami R, Casaletto MP, Martel B, Trapani M, Romeo A, Villari V, Sciortino MT, Grasso L, Guglielmino S, Scolaro LM, Mazzaglia A. Poly(carboxylic acid)-Cyclodextrin/Anionic Porphyrin Finished Fabrics as Photosensitizer Releasers for Antimicrobial Photodynamic Therapy. Biomacromolecules 2017; 18:1134-1144. [PMID: 28257182 DOI: 10.1021/acs.biomac.6b01752] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the development of new antibacterial therapeutic approaches to fight multidrug-resistant bacteria, antimicrobial photodynamic therapy (aPDT) represents a well-known alternative to treat local infections caused by different microorganisms. Here we present a polypropylene (PP) fabric finished with citrate-hydroxypropyl-βCD polymer (PP-CD) entrapping the tetra-anionic 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (TPPS) as photosensitizer-eluting scaffold (PP-CD/TPPS) for aPDT. The concept is based on host-guest complexation of porphyrin in the cavities of CDs immobilized on the PP fibers, followed by its sustained and controlled delivery in release medium and simultaneous photoinactivation of microorganisms. Morphology of fabric was characterized by optical (OM) and scanning electron microscopies (SEM). Optical properties were investigated by UV-vis absorption, steady- and time-resolved fluorescence emission spectroscopy. X-ray photoelectron spectroscopy (XPS) and FT-IR revealed the surface chemical composition and the distribution map of the molecular components on the fabric, respectively. Direct 1O2 determination allowed to assess the potential photodynamic activity of the fabric. Release kinetics of TPPS in physiological conditions pointed out the role of the CD cavity to control the TPPS elution. Photoantimicrobial activity of the porphyrin-loaded textile was investigated against both Gram-positive Staphylococcus aureus ATCC 29213 (S. aureus) and Gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Optical microscopy coupled with UV-vis extinction and fluorescence spectra aim to ascertain the uptake of TPPS to S. aureus bacterial cells. Finally, PP-CD/TPPS fabric-treated S. aureus cells were photokilled of 99.98%. Moreover, low adhesion of S. aureus cells on textile was established. Conversely, no photodamage of fabric-treated P. aeruginosa cells was observed, together with their satisfying adhesion.
Collapse
Affiliation(s)
- Maria Angela Castriciano
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Roberto Zagami
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Maria Pia Casaletto
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati , Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Bernard Martel
- Unité Matériaux et Transformations, UMET CNRS 8207, University of Science and Technology of Lille , 59655, Villeneuve d'Ascq, France
| | - Mariachiara Trapani
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Andrea Romeo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy.,Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , Viale F. Stagno d'Alcontres, 31, 98166, Messina, Italy.,C.I.R.C.M.S.B, Unity of Messina , Messina, Italy
| | - Valentina Villari
- Consiglio Nazionale delle Ricerche, Istituto per i processi Chimico-Fisici , Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
| | - Maria Teresa Sciortino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , Viale F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Laura Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , Viale F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Salvatore Guglielmino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , Viale F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Luigi Monsù Scolaro
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy.,Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , Viale F. Stagno d'Alcontres, 31, 98166, Messina, Italy.,C.I.R.C.M.S.B, Unity of Messina , Messina, Italy
| | - Antonino Mazzaglia
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina , V.le F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| |
Collapse
|
17
|
Severyukhina A, Petrova N, Yashchenok A, Bratashov D, Smuda K, Mamonova I, Yurasov N, Puchinyan D, Georgieva R, Bäumler H, Lapanje A, Gorin D. Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:311-316. [DOI: 10.1016/j.msec.2016.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/23/2016] [Accepted: 09/03/2016] [Indexed: 02/01/2023]
|
18
|
Henke P, Kirakci K, Kubát P, Fraiberk M, Forstová J, Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25127-36. [PMID: 27589368 DOI: 10.1021/acsami.6b08234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A simple nanoprecipitation method was used for preparation of stable photoactive polystyrene nanoparticles (NPs, diameter 30 ± 10 nm) from sulfonated electrospun polystyrene nanofiber membranes with encapsulated 5,10,15,20-tetraphenylporphyrin (TPP) or platinum octaethylporphyrin (Pt-OEP). The NPs prepared with TPP have strong antibacterial and antiviral properties and can be applied to the photooxidation of external substrates based on photogenerated singlet oxygen. In contrast to nanofiber membranes, which have limited photooxidation ability near the surface, NPs are able to travel toward target species/structures. NPs with Pt-OEP were used for oxygen sensing in aqueous media, and they presented strong linear responses to a broad range of oxygen concentrations. The nanofiber membranes can be applied not only as a source of NPs but also as an effective filter for their removal from solution.
Collapse
Affiliation(s)
- Petr Henke
- Faculty of Science, Charles University in Prague , Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry, v.v.i., Academy of Sciences of the Czech Republic , 250 68 Řež, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences , Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Martin Fraiberk
- Faculty of Science, Charles University in Prague , Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jitka Forstová
- Faculty of Science, Charles University in Prague , Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University in Prague , Hlavova 2030, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry, v.v.i., Academy of Sciences of the Czech Republic , 250 68 Řež, Czech Republic
| |
Collapse
|
19
|
Severyukhina A, Petrova N, Smuda K, Terentyuk G, Klebtsov B, Georgieva R, Bäumler H, Gorin D. Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering. Colloids Surf B Biointerfaces 2016; 144:57-64. [DOI: 10.1016/j.colsurfb.2016.03.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 11/15/2022]
|
20
|
Light-activated polymethylmethacrylate nanofibers with antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:229-235. [DOI: 10.1016/j.msec.2016.03.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 01/28/2023]
|
21
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
22
|
Stanley SL, Scholle F, Zhu J, Lu Y, Zhang X, Situ X, Ghiladi RA. Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E77. [PMID: 28335205 PMCID: PMC5302559 DOI: 10.3390/nano6040077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm²; 400-700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por(+) also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.
Collapse
Affiliation(s)
- Sarah L Stanley
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | - Jiadeng Zhu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Yao Lu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xingci Situ
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
23
|
Lacombe S, Pigot T. Materials for selective photo-oxygenation vs. photocatalysis: preparation, properties and applications in environmental and health fields. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01929j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photosensitizing materials made of organic dyes embedded in various supports are compared to usual supported TiO2-based photocatalysts.
Collapse
Affiliation(s)
- S. Lacombe
- IPREM UMR CNRS 5254
- Université de Pau et des Pays de l'Adour
- 64053 Pau Cedex
- France
| | - T. Pigot
- IPREM UMR CNRS 5254
- Université de Pau et des Pays de l'Adour
- 64053 Pau Cedex
- France
| |
Collapse
|
24
|
Beltrán A, Mikhailov M, Sokolov MN, Pérez-Laguna V, Rezusta A, Revillo MJ, Galindo F. A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. J Mater Chem B 2016; 4:5975-5979. [DOI: 10.1039/c6tb01966h] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinactivation of Staphylococcus aureus has been achieved using a hexanuclear molybdenum cluster, [Mo6I8(CH3COO)6]2−, supported on a polystyrene matrix.
Collapse
Affiliation(s)
- Alicia Beltrán
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| | - Maxim Mikhailov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 3 Acad. Lavrentiev Prosp
- 630090 Novosibirsk
- Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 3 Acad. Lavrentiev Prosp
- 630090 Novosibirsk
- Russia
| | - Vanesa Pérez-Laguna
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Antonio Rezusta
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - María José Revillo
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| |
Collapse
|
25
|
Mosinger J, Lang K, Kubát P. Photoactivatable Nanostructured Surfaces for Biomedical Applications. Top Curr Chem (Cham) 2016; 370:135-68. [DOI: 10.1007/978-3-319-22942-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Wang KK, Jung SJ, Hwang JW, Kim BJ, Kim DH, Bae IK, Jeong SH, Kim YR. Bactericidal effect through non-uptake pathway with photofunctional silicon polymer that generates reactive oxygen species. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Dolanský J, Henke P, Kubát P, Fraix A, Sortino S, Mosinger J. Polystyrene Nanofiber Materials for Visible-Light-Driven Dual Antibacterial Action via Simultaneous Photogeneration of NO and O2((1)Δg). ACS APPLIED MATERIALS & INTERFACES 2015; 7:22980-22989. [PMID: 26430799 DOI: 10.1021/acsami.5b06233] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This contribution reports on the preparation, characterization, and biological evaluation of electrospun polystyrene nanofiber materials engineered with a covalently grafted NO photodonor and ionically entangled tetracationic porphyrin and phthalocyanine photosensitizers. These photofunctional materials exhibit an effective and simultaneous photogeneration of two antibacterial species such as nitric oxide (NO) and singlet oxygen, O2((1)Δg) under illumination with visible light, as demonstrated by their direct detection using amperometric and time-resolved spectroscopic techniques. Dual-mode photoantibacterial action is demonstrated by antibacterial tests carried out on Escherichia coli.
Collapse
Affiliation(s)
- Jiří Dolanský
- Faculty of Science, Charles University in Prague , 2030 Hlavova, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry, v.v.i., Czech Academy of Sciences , 250 68 Řež, Czech Republic
| | - Petr Henke
- Faculty of Science, Charles University in Prague , 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences , Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania , Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania , Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Jiří Mosinger
- Faculty of Science, Charles University in Prague , 2030 Hlavova, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry, v.v.i., Czech Academy of Sciences , 250 68 Řež, Czech Republic
| |
Collapse
|
28
|
Plíštil L, Henke P, Kubát P, Mosinger J. Anion exchange nanofiber materials activated by daylight with a dual antibacterial effect. Photochem Photobiol Sci 2015; 13:1321-9. [PMID: 25014673 DOI: 10.1039/c4pp00157e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion exchange polystyrene nanofiber materials (AE) were prepared by electrospinning followed by two-step functionalization of the nanofiber surface by chlorosulfonic acid and ethylendiamine. The photoactive character of these materials was introduced through adsorption of the tetra-anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin photosensitizer (TPPS-AE) on the nanofiber surface or by encapsulation of the nonpolar 5,10,15,20-tetraphenylporphyrin photosensitizer (AE(TPP)) into the nanofibers. Anion exchange nanofiber materials with porphyrins are characterized by a high ion-exchange capacity, photogeneration of singlet oxygen O2((1)Δg), and singlet oxygen-sensitized delayed fluorescence. Due to the photogeneration of cytotoxic O2((1)Δg), the nanofibers exhibited oxidation of the external substrates in aqueous solution and an efficient antibacterial effect when activated by simulated daylight. Adsorption of both TPPS and I(-) on the surface of AE led to the formation of more efficient I-TPPS-AE materials. Rapid photooxidation of I(-) by O2((1)Δg), and the formation of another cytotoxic species, I3(-), on the surface of the nanofibers were responsible for the increased antibacterial properties of I-TPPS-AE and the prolonged antibacterial effect in the dark.
Collapse
Affiliation(s)
- L Plíštil
- Faculty of Sciences, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Immobilized photosensitizers for antimicrobial applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:11-30. [DOI: 10.1016/j.jphotobiol.2015.04.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/21/2023]
|
30
|
Alves E, Faustino MA, Neves MG, Cunha Â, Nadais H, Almeida A. Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Application of photoactive electrospun nanofiber materials with immobilized meso-tetraphenylporphyrin for parabens photodegradation. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Ti Y, Chen D. Preparation and characterization of Fe-Tetranitro phthalocyanine/polyurethane blends. J Appl Polym Sci 2015. [DOI: 10.1002/app.41284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Ti
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering, Donghua University; Shanghai 201620 China
| | - Dajun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering, Donghua University; Shanghai 201620 China
| |
Collapse
|
33
|
Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J. Superhydrophilic polystyrene nanofiber materials generating O2((1)Δ(g)): postprocessing surface modifications toward efficient antibacterial effect. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13007-14. [PMID: 25014212 DOI: 10.1021/am502917w] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The surfaces of electrospun polystyrene (PS) nanofiber materials with encapsulated 1% w/w 5,10,15,20-tetraphenylporphyrin (TPP) photosensitizer were modified through sulfonation, radio frequency (RF) oxygen plasma treatment, and polydopamine coating. The nanofiber materials exhibited efficient photogeneration of singlet oxygen. The postprocessing modifications strongly increased the wettability of the pristine hydrophobic PS nanofibers without causing damage to the nanofibers, leakage of the photosensitizer, or any substantial change in the oxygen permeability of the inner bulk of the polymer nanofiber. The increase in the surface wettability yielded a significant increase in the photo-oxidation of external polar substrates and in the antibacterial activity of the nanofibers in aqueous surroundings. The results reveal the crucial role played by surface hydrophilicity/wettability in achieving the efficient photo-oxidation of a chemical substrate/biological target at the surface of a material generating O2((1)Δg) with a short diffusion length.
Collapse
Affiliation(s)
- Petr Henke
- Faculty of Sciences, Charles University in Prague , Hlavova 2030, 128 43 Prague 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Suchánek J, Henke P, Mosinger J, Zelinger Z, Kubát P. Effect of Temperature on Photophysical Properties of Polymeric Nanofiber Materials with Porphyrin Photosensitizers. J Phys Chem B 2014; 118:6167-74. [DOI: 10.1021/jp5029917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Suchánek
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Praha 8, Czech Republic
- Faculty
of Safety Engineering, Technical University of Ostrava, Lumírova
13, Ostrava-Vyškovice, 700 30 Ostrava, Czech Republic
| | | | - Jiří Mosinger
- Faculty
of Science, Charles University in Prague, Hlavova 2030, 128 43 Praha 2, Czech Republic
- Institute
of Inorganic Chemistry, v.v.i., Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic
| | - Zdeněk Zelinger
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Praha 8, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Praha 8, Czech Republic
| |
Collapse
|
36
|
Ti Y, Lv Y, Chen D. The preparation and characterization of Fe-octacarboxyl acid phthalocyanine—polyethylene glycol/polyurethane blends. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Rahal R, Le Bechec M, Guyoneaud R, Pigot T, Paolacci H, Lacombe S. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Henke P, Lang K, Kubát P, Sýkora J, Slouf M, Mosinger J. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3776-3783. [PMID: 23566280 DOI: 10.1021/am4004057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polystyrene ion-exchange nanofiber materials with large surface areas and adsorption capacities were prepared by electrospinning followed by the sulfonation and adsorption of a cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) photosensitizer on the nanofiber surfaces. The morphology, structure, and photophysical properties of these nanofiber materials were characterized by microscopic methods and steady-state and time-resolved fluorescence and absorption spectroscopies. The externally bound TMPyP can be excited by visible light to form triplet states and singlet oxygen O2((1)Δg) and singlet oxygen-sensitized delayed fluorescence (SODF). The photophysical properties of the nanofibers were strongly dependent on the amount of bound TMPyP molecules and their organization on the nanofiber surfaces. The nanofibers demonstrated photooxidative activity toward inorganic and organic molecules and antibacterial activity against E. coli due to the sensitized formation of O2((1)Δg) that is an effective oxidation/cytotoxic agent. The nanofiber materials also adsorbed heavy metal cations (Pb(2+)) and removed them from the water environment.
Collapse
Affiliation(s)
- Petr Henke
- Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
39
|
Lhotáková Y, Plíštil L, Morávková A, Kubát P, Lang K, Forstová J, Mosinger J. Virucidal nanofiber textiles based on photosensitized production of singlet oxygen. PLoS One 2012; 7:e49226. [PMID: 23139839 PMCID: PMC3490908 DOI: 10.1371/journal.pone.0049226] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022] Open
Abstract
Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O2(1Δg), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyomaviruses and enveloped baculoviruses were observed on the surface of these textiles. The photo-virucidal effect was confirmed by a decrease in virus infectivity. In contrast, no virucidal effect was detected in the absence of light and/or the encapsulated photosensitizer.
Collapse
Affiliation(s)
- Yveta Lhotáková
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lukáš Plíštil
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
- Elmarco s.r.o., Liberec, Czech Republic
| | - Alena Morávková
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Pavel Kubát
- J.Heyrovský Institute of Physical Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Řež, Czech Republic
| | - Jitka Forstová
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
- * E-mail: (JF); (JM)
| | - Jiří Mosinger
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
- Institute of Inorganic Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Řež, Czech Republic
- * E-mail: (JF); (JM)
| |
Collapse
|
40
|
Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol 2012; 21:619-24. [PMID: 22775997 DOI: 10.1111/j.1600-0625.2012.01536.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The maintenance of an aseptic environment for chronic wounds is one of the most challenging tasks in the wound-healing process. Furthermore, the emergence of antibiotic-resistant bacterial strains is on the rise, rendering conventional treatments less effective. A new antibacterial material consisting of a polyurethane Tecophilic(™) nanofibre textile (NT) that was prepared by electrospinning and doped by a tetraphenylporphyrin (TPP) photosensitizer activated by visible light was tested for use in wound beds and bandages. In vitro experiments were performed to assess the antibacterial activity of the textile against three bacterial strains. Furthermore, the new textile was tested in 162 patients with chronic leg ulcers. A complete inhibition of in vitro growth of the three tested bacterial strains was observed on the surface of NTs that had been illuminated with visible light and was clinically demonstrated in 89 patients with leg ulcers. The application of the textiles resulted in a 35% decrease in wound size, as assessed via computer-aided wound tracing. Wound-related pain, which was estimated using a visual analogue scale, was reduced by 71%. The results of this trial reveal that the photoinactivation of bacteria through the photosensitized generation of short-lived, highly reactive singlet oxygen O(2) ((1) Δ(g) ) results in relatively superficial antibacterial effects in comparison with standard antiseptic treatment options. Thus, such treatment does not interfere with the normal healing process. This method therefore represents a suitable alternative to the use of topical antibiotics and antiseptics and demonstrates potentially broad applications in medicine.
Collapse
Affiliation(s)
- Monika Arenbergerova
- Department of Dermatology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
41
|
Demel J, Lang K. Layered Hydroxide-Porphyrin Hybrid Materials: Synthesis, Structure, and Properties. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Tombe S, Chidawanyika W, Antunes E, Priniotakis G, Westbroek P, Nyokong T. Physicochemical behavior of zinc tetrakis (benzylmercapto) phthalocyanine when used to functionalize gold nanoparticles and in electronspun fibers. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Kirakci K, Kubát P, Dušek M, Fejfarová K, Šícha V, Mosinger J, Lang K. A Highly Luminescent Hexanuclear Molybdenum Cluster - A Promising Candidate toward Photoactive Materials. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200402] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Zugle R, Antunes E, Khene S, Nyokong T. Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Gmurek M, Mosinger J, Miller JS. 2-Chlorophenol photooxidation using immobilized meso-tetraphenylporphyrin in polyurethane nanofabrics. Photochem Photobiol Sci 2012; 11:1422-7. [DOI: 10.1039/c2pp25010a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
|
47
|
Wu HM, Chen N, Wu ZM, Chen ZL, Yan YJ. Preparation of photosensitizer-loaded PLLA nanofibers and its anti-tumor effect for photodynamic therapy in vitro. J Biomater Appl 2011; 27:773-9. [PMID: 22090428 DOI: 10.1177/0885328211425706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer that has been recently accepted clinically. PDT is based on the administration of tumor-localizing photosensitizers (PSs), followed by exposing the neoplastic area to the light absorbed by the PS. In this article, a novel anticancer nanofiber membrane containing purpurin-18 (0.1%) was successfully prepared. The thickness of membrane was 0.028 mm, and the average fiber diameter was around 357 nm by scanning electron microscope (SEM). It was indicated that purpurin-18 possessed excellent compatibility with PLLA from FTIR spectrum. The physical properties of fiber membrane were also characterized by Differential Scanning Calorimetry (DSC) and X-ray diffraction (XRD). Cell morphology and the interaction between cells and nanofibers were studied by SEM. The results showed that both SMMC 7721 and ECA109 cells can adhere and spread on the surface of the polymer nanofiber, and both cells can interact and integrate well with the surrounding fibers. The efficacy of PDT was determined by MTT assays. The results showed that the cells were killed immediately after PDT and purpurin-18 had no different efficacy to different cancer cell lines. In summary, the PS-loaded PLLA nanofibers were prepared successfully, and the SMMC 7721 and ECA109 cells could be inhibited and killed through photodynamic therapy.
Collapse
Affiliation(s)
- Hai-ming Wu
- Yiwu Central Hospital, Wenzhou Medical College, Zhejiang, China
| | | | | | | | | |
Collapse
|
48
|
Jesenská S, Plíštil L, Kubát P, Lang K, Brožová L, Popelka Š, Szatmáry L, Mosinger J. Antibacterial nanofiber materials activated by light. J Biomed Mater Res A 2011; 99:676-83. [DOI: 10.1002/jbm.a.33218] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/13/2022]
|
49
|
Abstract
Recently ultrafine fibers of nanometer size and their fabrics are growingly interested not only in textile industry but also in non-textile industry, as they have excellent properties of lightness, high strength, comfort, function and etc as compared to those of conventional fibers. Evaluation of the mechanical properties is, then, important in connection with the reliability and durability of the products. Since commercialized machines are not always conventionally designed for mechanical property evaluation of nanofiber in any environments; air or fluids. We have, therefore, conducted to develop versatile testers including tension tester for strength measurement and friction tester for handle measurement. In this note, we present typical results for evaluation of mechanical properties of nanofiber/ web fabricated by means of an electrospining method.
Collapse
|
50
|
Zugle R, Litwinski C, Torto N, Nyokong T. Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine. NEW J CHEM 2011. [DOI: 10.1039/c1nj20126c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|