1
|
Jirakittiwut N, Sathianpitayakul P, Santanirand P, Akeda Y, Vilaivan T, Ratthawongjirakul P. Peptide nucleic acid-immobilised paper combined with multiplex recombinase polymerase amplification for the ultrasensitive and rapid detection of rifampicin-resistant tuberculosis. Sci Rep 2025; 15:2603. [PMID: 39837979 PMCID: PMC11751166 DOI: 10.1038/s41598-025-86691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Rifampicin-resistant tuberculosis (RR-TB) is a critical issue with significant implications for patient care, public health, and TB control efforts that necessitate comprehensive strategies for detection. This study presents a novel point-of-care diagnostic tool for RR-TB detection employing a peptide nucleic acid (PNA)-paper-based sensor combined with isothermal recombinase polymerase amplification (RPA). The sensor targets mutations in codons 516, 526, and 531 of the rpoB gene, the top three common mutations associated with rifampicin-resistant strains. PNA probes specifically recognised wild-type sequences, generating a visual signal through a reverse hybridisation assay. The absence of a signal was observed when the mutant strains were detected because of the inability to bind the mutant sequence. Our proof-of-concept assay displayed high accuracy (100% for detecting mutations at codons 516, 526, and 531), a short turnaround time (110 min), no cross-reactivity with other bacterial pathogens, and ultrasensitivity. This PNA-paper-based sensor model can be a valuable diagnostic tool for RR-TB detection, providing an accessible diagnostic platform that can be advantageous in resource-limited settings where sophisticated laboratory infrastructure may be lacking.
Collapse
Affiliation(s)
- Nuttapon Jirakittiwut
- Faculty of Allied Health Sciences, Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panuwat Sathianpitayakul
- Microbiology Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Pitak Santanirand
- Microbiology Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panan Ratthawongjirakul
- Faculty of Allied Health Sciences, Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
3
|
WANG XQ, Ghulam M, ZHU C, QU F. Online Capillary Electrophoresis Reaction for Interaction Study of Amino Acid Modified Peptide Nucleic Acid and Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61129-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Chim W, Sedighi A, Brown CL, Pantophlet R, Li PC. Effect of buffer composition on PNA–RNA hybridization studied in the microfluidic microarray chip. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report that peptide nucleic acid sequences (PNAs) have been used as the probe species for detection of RNA and that a microfluidic microarray (MMA) chip is used as the platform for detection of hybridizations between immobilized PNA probes and RNA targets. The RNA targets used are derived from influenza A sequences. This paper discusses the optimization of two probe technologies used for RNA detection and investigates how the composition of the probe buffer and the content of the hybridization solution can influence the overall results. Our data show that the PNA probe is a better choice than the DNA probe when there is low salt in the probe buffer composition. Furthermore, we show that the absence of salt (NaCl) in the hybridization buffer does not hinder the detection of RNA sequences. The results provide evidence that PNA probes are superior to DNA probes in term of sensitivity and adaptability, as PNA immobilization and PNA–RNA hybridization are less affected by salt content in the reaction buffers unlike DNA probes.
Collapse
Affiliation(s)
- Wilson Chim
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Abootaleb Sedighi
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Christopher L. Brown
- School of Natural Sciences and Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland, Australia
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Paul C.H. Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Sawada S, Takao T, Kato N, Kaihatsu K. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA. Molecules 2017; 22:molecules22111840. [PMID: 29077023 PMCID: PMC6150319 DOI: 10.3390/molecules22111840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022] Open
Abstract
DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA) offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.
Collapse
Affiliation(s)
- Shinjiro Sawada
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Nobuo Kato
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Kunihiro Kaihatsu
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
6
|
Browne EC, Langford SJ, Abbott BM. Synthesis and effects of conjugated tocopherol analogues on peptide nucleic acid hybridisation. Org Biomol Chem 2013; 11:6744-50. [PMID: 23995261 DOI: 10.1039/c3ob41613e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To the N-terminus of a nonamer peptide nucleic acid sequence, H-GCACGACTT-NH2, was attached a number of lipophilic conjugate molecules including three synthetic tocopherol (vitamin E) analogues. Studies were then undertaken with complementary PNA and DNA sequences to explore the effects of the conjugates using the techniques of UV monitored melting curves and isothermal calorimetry. Duplex formation was observed when the benzopyran group of vitamin E was conjugated. However, in the presence of the phytyl chain of vitamin E, binding was found to be temperature dependent.
Collapse
Affiliation(s)
- Elisse C Browne
- Department of Chemistry, La Trobe University, Bundoora, Australia.
| | | | | |
Collapse
|
7
|
Joshi T, Barbante GJ, Francis PS, Hogan CF, Bond AM, Gasser G, Spiccia L. Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability. Inorg Chem 2012; 51:3302-15. [PMID: 22339152 DOI: 10.1021/ic202761w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)(2)(Cpp-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(Cpp-L-PNA-OH)](2+) (M2), and [Ru(dppz)(2)(Cpp-L-PNA-OH)](2+) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.
Collapse
Affiliation(s)
- Tanmaya Joshi
- ARC Centre of Excellence for Electromaterials Science and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Moccia M, Musumeci D, Roviello GN, Fusco S, Valente M, Bucci EM, Sapio R, Pedone C, Netti PA. Preliminary studies on noncovalent hyperbranched polymers based on PNA and DNA building blocks. J Pept Sci 2009; 15:647-53. [PMID: 19691061 DOI: 10.1002/psc.1162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, we report thermodynamic, kinetic, and microrheological studies relative to the formation of PNA- and PNA/DNA-based noncovalent polymeric systems, useful tools for biotechnological and bioengineering applications. We realized two kinds of systems: a PNA-based system formed by a self-assembling PNA tridendron, and a PNA/DNA hybrid system formed by a PNA tridendron and a DNA linker. The formation of a three-dimensional polymeric network, by means of specific Watson-Crick base pairing, was investigated by a detailed UV and CD spectroscopic study. Preliminary microrheology experiments were performed on both systems to evaluate their viscoelastic properties which resulted in agreement with the formation of soluble hyperbranched polymers that could be useful for drug/gene delivery, as well as for encapsulating organic pollutants of different shapes and sizes in environmental applications.
Collapse
Affiliation(s)
- Maria Moccia
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roviello G, Musumeci D, Castiglione M, Bucci EM, Pedone C, Benedetti E. Solid phase synthesis and RNA-binding studies of a serum-resistant nucleo-epsilon-peptide. J Pept Sci 2009; 15:155-60. [PMID: 18985708 DOI: 10.1002/psc.1072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present work we report the synthesis of a new Fmoc-protected L-lysine-based nucleo-amino acid suitable for the solid phase assembly and its oligomerisation to the corresponding nucleo-epsilon-peptide that we called epsilon-lysPNA. The ability to bind complementary RNA and the stability in serum of this synthetic nucleo-epsilon-peptide were studied to explore its possible use in antisense or diagnostic applications. Our interest to the presented oligonucleotide analogue was also supported by the importance of epsilon-peptides and other epsilon-amino acid-containing compounds in natural products with biological activity such as the poly-epsilon-lysines produced by Streptomyces albulus that possess a highly selective antimicrobial activity. Another aspect we intended to evaluate by this work is the possible prebiotic implication of these nucleopeptides, since epsilon-peptides, and not alpha-peptides, were mainly obtained among the other thermal prebiotic polypeptides in pyrocondensation of lysine, a diamino acid also detected in Mighei meteorite. Besides this intriguing question, all the remarkable properties emerged from the present investigation on epsilon-lysPNAs encourage, without doubts, interest in the therapeutic and diagnostic potential of these bioinspired nucleopeptides.
Collapse
Affiliation(s)
- Giovanni Roviello
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|