1
|
Saintmont F, Hoyas S, Rosu F, Gabélica V, Brocorens P, Gerbaux P. Structural Characterization of Dendriplexes In Vacuo: A Joint Ion Mobility/Molecular Dynamics Investigation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1555-1568. [PMID: 35875874 DOI: 10.1021/jasms.2c00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination between ion mobility mass spectrometry and molecular dynamics simulations is demonstrated for the first time to afford valuable information on structural changes undergone by dendriplexes containing ds-DNA and low-generation dendrimers when transferred from the solution to the gas phase. Dendriplex ions presenting 1:1 and 2:1 stoichiometries are identified using mass spectrometry experiments, and the collision cross sections (CCS) of the 1:1 ions are measured using drift time ion mobility experiments. Structural predictions using Molecular Dynamics (MD) simulations showed that gas-phase relevant structures, i.e., with a good match between the experimental and theoretical CCS, are generated when the global electrospray process is simulated, including the solvent molecule evaporation, rather than abruptly transferring the ions from the solution to the gas phase. The progressive migration of ammonium groups (either NH4+ from the buffer or protonated amines of the dendrimer) into the minor and major grooves of DNA all along the evaporation processes is shown to compact the DNA structure by electrostatic and hydrogen-bond interactions. The subsequent proton transfer from the ammonium (NH4+ or protonated amino groups) to the DNA phosphate groups allows creation of protonated phosphate/phosphate hydrogen bonds within the compact structures. MD simulations showed major structural differences between the dendriplexes in solution and in the gas phase, not only due to the loss of the solvent but also due to the proton transfers and the huge difference between the solution and gas-phase charge states.
Collapse
Affiliation(s)
- Fabrice Saintmont
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Sébastien Hoyas
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (IECB, UAR3033, US001), 2 rue Robert Escarpait, 33607 Pessac, France
| | - Valérie Gabélica
- Univ. Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (IECB, UAR3033, US001), 2 rue Robert Escarpait, 33607 Pessac, France
- Univ. Bordeaux, INSERM, CNRS, Acides Nucléiques Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Patrick Brocorens
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
2
|
Doll L, Lackner J, Rönicke F, Nienhaus GU, Wagenknecht H. Fluorescence Lifetime Imaging Microscopy (FLIM) of Intracellular Transport by Means of Doubly Labelled siRNA Architectures. Chembiochem 2021; 22:2561-2567. [PMID: 34125482 PMCID: PMC8453559 DOI: 10.1002/cbic.202100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Indexed: 12/01/2022]
Abstract
For monitoring the intracellular pathway of small interfering RNA (siRNA), both strands were labelled at internal positions by two ATTO dyes as an interstrand Förster resonance energy transfer pair. siRNA double strands show red emission and a short donor lifetime as readout, whereas siRNA antisense single strands show green emission and a long donor lifetime. This readout signals if GFP silencing can be expected (green) or not (red). We attached both dyes to three structurally different alkyne anchors by postsynthetic modifications. There is only a slight preference for the ribofuranoside anchors with the dyes at their 2'-positions. For the first time, the delivery and fate of siRNA in live HeLa cells was tracked by fluorescence lifetime imaging microscopy (FLIM), which revealed a clear relationship between intracellular transport using different transfection methods and knockdown of GFP expression, which demonstrates the potential of our siRNA architectures as a tool for future development of effective siRNA.
Collapse
Affiliation(s)
- Larissa Doll
- Karlsruhe Institute of Technology (KIT)Institute of Organic ChemistryFritz-Haber-Weg 676131KarlsruheGermany
| | - Jens Lackner
- Karlsruhe Institute of Technology (KIT)Institute of Applied PhysicsWolfgang-Gaede-Str. 176131KarlsruheGermany
| | - Franziska Rönicke
- Karlsruhe Institute of Technology (KIT)Institute of Organic ChemistryFritz-Haber-Weg 676131KarlsruheGermany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT)Institute of Applied PhysicsWolfgang-Gaede-Str. 176131KarlsruheGermany
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana-Champaign1110 West Green StreetUrbanaIL 61801USA
| | - Hans‐Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT)Institute of Organic ChemistryFritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
3
|
Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. J Nanobiotechnology 2021; 19:172. [PMID: 34107976 PMCID: PMC8190868 DOI: 10.1186/s12951-021-00921-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. RESULTS Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. CONCLUSION The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells.
Collapse
|
4
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
5
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
6
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Tabujew I, Heidari M, Freidel C, Helm M, Tebbe L, Wolfrum U, Nagel-Wolfrum K, Koynov K, Biehl P, Schacher FH, Potestio R, Peneva K. Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules 2019; 20:4389-4406. [DOI: 10.1021/acs.biomac.9b01061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Freidel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lars Tebbe
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Raffaello Potestio
- Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
8
|
Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics 2019; 11:pharmaceutics11070351. [PMID: 31323863 PMCID: PMC6680565 DOI: 10.3390/pharmaceutics11070351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Small interfering RNAs (siRNAs) represent a new approach towards the inhibition of gene expression; as such, they have rapidly emerged as promising therapeutics for a plethora of important human pathologies including cancer, cardiovascular diseases, and other disorders of a genetic etiology. However, the clinical translation of RNA interference (RNAi) requires safe and efficient vectors for siRNA delivery into cells. Dendrimers are attractive nanovectors to serve this purpose, as they present a unique, well-defined architecture and exhibit cooperative and multivalent effects at the nanoscale. This short review presents a brief introduction to RNAi-based therapeutics, the advantages offered by dendrimers as siRNA nanocarriers, and the remarkable results we achieved with bio-inspired, structurally flexible covalent dendrimers. In the companion paper, we next report our recent efforts in designing, characterizing and testing a series of self-assembled amphiphilic dendrimers and their related structural alterations to achieve unprecedented efficient siRNA delivery both in vitro and in vivo.
Collapse
|
9
|
Glackin CA. Nanoparticle Delivery of TWIST Small Interfering RNA and Anticancer Drugs: A Therapeutic Approach for Combating Cancer. Enzymes 2018; 44:83-101. [PMID: 30360816 DOI: 10.1016/bs.enz.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast and ovarian cancer are the leading cause of cancer-related deaths in women in the United States with over 232,000 new Breast Cancer (BC) diagnoses expected in 2018 and almost 40,000 deaths and an estimated 239,000 new ovarian cancer (OC) cases and 152,000 deaths worldwide annually. OC is the most lethal gynecologic malignancy. This high mortality rate is due to tumor recurrence and metastasis, primarily caused by chemoresistant cancer stem-like cells (CSCs). Triple Negative Breast Cancer (TNBC) patients also become resistant to chemotherapy due to recurrence of CSCs. Currently, no ovarian or breast cancer therapies target CSC specifically. TWIST is overexpressed in the majority of chemoresistant cancers resulting in a low survival rate. Our long-term goal is to develop novel treatments for women with ovarian and breast cancer, specifically treatments that sensitize chemoresistant tumors. Despite successful initial surgery and chemotherapy, over 70% of advanced EOC will recur, and only 15-30% of recurrent disease will respond to chemotherapy (Cortez et al., 2017; Berezhnaya, 2010; Jackson et al., 2015). Moreover, drug resistance causes treatment failure in over 90% of patients with metastatic disease (Solmaz et al., 2015). Thus, recurrent metastatic disease is a major clinical challenge without effective therapy. One of the major challenges in the treatment of breast cancer is the presence of a subpopulation of cancer cells that are chemoresistant (CRC) and metastatic. Given that metastasis is the driving force behind mortality for breast and ovarian cancer patients, it is essential to identify the characteristics of these aberrant cancer cells that allow them to spread to distant sites in the body and develop into metastatic tumors. Understanding the metastatic mechanisms driving cancer cell dispersal will open the door to developing novel therapies that prevent metastasis and improve long-term outcomes for patients. In this chapter we assess the feasibility of targeting the Twist and EMT signaling pathways in breast and ovarian cancer. Additional discussions of the pathways that mediate epithelial-mesenchymal transition (EMT), a process that can give rise to chemoresistance. We review potential treatment strategies for targeting EMT and drug resistance as well as the problems that may arise with these targeted delivery therapeutic approaches. Finally, we examine recent advances in the field, including cancer stem cell targeted nanoparticle delivery and small interference RNA (siRNA) technology, and discuss the impact that these approaches may have on translating much needed therapeutic approaches into the clinic, for the benefit of patients battling this devastating disease.
Collapse
Affiliation(s)
- Carlotta A Glackin
- Developmental and Stem Cell Biology, City of Hope Medical Center, Duarte, CA, United States.
| |
Collapse
|
10
|
Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, Rossignol J. Use of Polyamidoamine Dendrimers in Brain Diseases. Molecules 2018; 23:molecules23092238. [PMID: 30177605 PMCID: PMC6225146 DOI: 10.3390/molecules23092238] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamidoamine (PAMAM) dendrimers are one of the smallest and most precise nanomolecules available today, which have promising applications for the treatment of brain diseases. Each aspect of the dendrimer (core, size or generation, size of cavities, and surface functional groups) can be precisely modulated to yield a variety of nanocarriers for delivery of drugs and genes to brain cells in vitro or in vivo. Two of the most important criteria to consider when using PAMAM dendrimers for neuroscience applications is their safety profile and their potential to be prepared in a reproducible manner. Based on these criteria, features of PAMAM dendrimers are described to help the neuroscience researcher to judiciously choose the right type of dendrimer and the appropriate method for loading the drug to form a safe and effective delivery system to the brain.
Collapse
Affiliation(s)
- Maria Florendo
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Alexander Figacz
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Douglas Swanson
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| |
Collapse
|
11
|
Targeted siRNA delivery to tumor cells by folate-PEG-appended dendrimer/glucuronylglucosyl-β-cyclodextrin conjugate. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Urbiola K, Blanco-Fernández L, Ogris M, Rödl W, Wagner E, Tros de Ilarduya C. Novel PAMAM-PEG-Peptide Conjugates for siRNA Delivery Targeted to the Transferrin and Epidermal Growth Factor Receptors. J Pers Med 2018; 8:jpm8010004. [PMID: 29315261 PMCID: PMC5872078 DOI: 10.3390/jpm8010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
The transferrin (TfR) and epidermal growth factor receptors (EGFR) are known to be overexpressed on the surface of a wide variety of tumor cells. Therefore, the peptides B6 (TfR specific) and GE11 (targeted to the EGFR) were linked to the PAMAM (polyamidoamine) structure via a polyethylenglycol (PEG) 2 kDa chain with the aim of improving the silencing capacity of the PAMAM-based dendriplexes. The complexes showed an excellent binding capacity to the siRNA with a maximal condensation at nitrogen/phosphate (N/P) 2. The nanoparticles formed exhibited hydrodynamic diameters below 200 nm. The zeta potential was always positive, despite the complexes containing the PEG chain in the structure showing a drop of the values due to the shielding effect. The gene silencing capacity was assayed in HeLa and LS174T cells stably transfected with the eGFPLuc cassette. The dendriplexes containing a specific anti luciferase siRNA, assayed at different N/P ratios, were able to mediate a mean decrease of the luciferase expression values of 14% for HeLa and 20% in LS174T cells, compared to an unspecific siRNA-control. (p < 0.05). In all the conditions assayed, dendriplexes resulted to be non-toxic and viability was always above 75%.
Collapse
Affiliation(s)
- Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, 1010 Vienna, Austria;
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
- Correspondence: ; Tel.: +34-948-425600 (ext. 80-6375)
| |
Collapse
|
13
|
Su Y, Quan X, Li L, Zhou J. Computer Simulation of DNA Condensation by PAMAM Dendrimer. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201700070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yunxiang Su
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510460 China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510460 China
| | - Libo Li
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510460 China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510460 China
| |
Collapse
|
14
|
Chang PKC, Prestidge CA, Bremmell KE. Interfacial analysis of siRNA complexes with poly-ethylenimine (PEI) or PAMAM dendrimers in gene delivery. Colloids Surf B Biointerfaces 2017; 158:370-378. [PMID: 28719858 DOI: 10.1016/j.colsurfb.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/29/2022]
Abstract
Solution and interfacial analysis has been employed to gain insight into the complexation of siRNA using either G4 PAMAM dendrimers or 25kDa branched poly-ethylenimine (bPEI). The size, charge and shape/structure of the complexing agents were probed using atomic force microscopy (AFM), circular dichroism spectrometry (CD), dynamic light scattering (DLS), and gel electrophoresis (GE). The binding capability of these cationic polymers to the siRNA molecule, subsequently controls the surface/adsorption behaviour of the complexes to a negatively charged surface. G4 PAMAM dendrimers bind to the major groove of the siRNA structure, while bPEI binds to both major and minor groove. PAMAM-siRNA complexes form a thin uniform surface film with adsorption of monomeric particles, whilst bPEI-siRNA complexes adsorb as particles in random orientations at low bPEI concentration and form network structures across the surface at high charge ratio. This is due to their ability to bind to both regions within siRNA. This new understanding of the interfacial behaviour of siRNA complexes correlates with observations of cellular transfection and can be used in the design of optimal transfection agents.
Collapse
Affiliation(s)
- Patrick K C Chang
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Kristen E Bremmell
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
15
|
Liu J, Li J, Liu N, Guo N, Gao C, Hao Y, Chen L, Zhang X. In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells. Int J Pharm 2017; 530:291-299. [PMID: 28619457 DOI: 10.1016/j.ijpharm.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 02/05/2023]
Abstract
The application of RNAi therapeutics is promising in combating several major human diseases including malignant tumors. However, this approach is limited due to its delivery barriers. In this study, we designed a new carrier system loaded with a functional siRNA targeting MDR1 gene to reverse multi-drug resistance (MDR) in human breast cancer MCF-7/ADR cells. Phospholipid-modified PAMAM-siMDR1 complexes were designed on the external decoration of polyamidoamine (PAMAM) with phospholipid (PL) and the electrostatical interaction between PAMAM and siMDR1 to form hybrid nanocomplexes (PL-dendriplexes). Compared with siMDR1 and dendriplexes (PAMAM-siMDR1), this delivery system represented higher gene silencing efficiency, enhanced cellular uptake of siMDR1, decreased p-gp expression, raised cellular accumulation of doxorubicin (DOX) and inhibited the tumor cell migration. Moreover, the siMDR1 loaded PL-dendriplexes worked synergistically with paclitaxel (PTX) for treating MDR, leading to increased cell apoptosis and cell phase regulation. Overall, this study shows that the PL-dendriplexes hold great promise in reversing the drug-resistance in MCF-7/ADR cells.
Collapse
Affiliation(s)
- Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Nan Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Nana Guo
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Chen Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
|
17
|
Perico A. Electrostatic theory of the assembly of PAMAM dendrimers and DNA. Biopolymers 2016; 105:276-86. [PMID: 26756793 DOI: 10.1002/bip.22805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022]
Abstract
The electrostatic interactions mediated by counterions between a cationic PAMAM dendrimer, modelized as a sphere of radius and cationic surface charge highly increasing with generation, and a DNA, modelized as an anionic elastic line, are analytically calculated in the framework of condensation theory. Under these interactions the DNA is wrapped around the sphere. For excess phosphates relative to dendrimer primary amines, the free energy of the DNA-dendrimer complex displays an absolute minimum when the complex is weakly negatively overcharged. This overcharging opposes gene delivery. For a highly positive dendrimer and a DNA fixed by experimental conditions to a number of phosphates less than the number of dendrimer primary amines, excess amine charges, the dendrimer may at the same time bind stably DNA and interact with negative cell membranes to activate cell transfection in fair agreement with molecular simulations and experiments.
Collapse
Affiliation(s)
- Angelo Perico
- National Research Council (CNR), Institute for Macromolecular Studies (ISMAC), Genova, via De Marini 6, Genova, 16149, Italy
| |
Collapse
|
18
|
Huang Q, Li L, Li L, Chen H, Dang Y, Zhang J, Shao N, Chang H, Zhou Z, Liu C, He B, Wei H, Xiao J. MDM2 knockdown mediated by a triazine-modified dendrimer in the treatment of non-small cell lung cancer. Oncotarget 2016; 7:44013-44022. [PMID: 27259273 PMCID: PMC5190075 DOI: 10.18632/oncotarget.9768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the five-year survival rate is lower in advanced NSCLC patients. Chemotherapy is a widely used strategy in NSCLC treatment, but is usually limited by poor therapeutic efficacy and adverse effects. Therefore, a new therapeutic regimen is needed for NSCLC treatment. Gene therapy is a new strategy in the treatment of NSCLC. However, the lack of efficient and low toxic vectors remains the major obstacle. Here, we developed a biocompatible dendrimer as a non-viral vector for the delivery of mouse double minute2 (MDM2) siRNA in vitro and in vivo to treat NSCLC. The triazine-modified dendrimer efficiently stimulates the down-regulation of MDM2 gene in NSCLC PC9 cells, which induces significant cell apoptosis through the activation of apoptosis markers such as caspase-8 and poly(ADP-ribose) polymerase (PARP) cleavage. Furthermore, the dendrimer/MDM2 siRNA polyplexes showed excellent activity in the inhibition of tumor growth in a PC9 xenograft tumor model. These results suggested that inhibition the expression of MDM2 might be a potential target in NSCLC treatment.
Collapse
Affiliation(s)
- Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Lei Li
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Lin Li
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jishen Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
| | - Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zhengjie Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Bingwei He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China
| |
Collapse
|
19
|
Lee SH, Lee JB, Bae MS, Balikov DA, Hwang A, Boire TC, Kwon IK, Sung HJ, Yang JW. Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases. Adv Healthc Mater 2015; 4:2037-45. [PMID: 26121684 PMCID: PMC4874338 DOI: 10.1002/adhm.201500177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Significant progress has been made in nanomedicine, primarily in the form of nanoparticles, for theranostic applications to various diseases. A variety of materials, both organic and inorganic, have been used to develop nanoparticles with promise to achieve improved efficacy in medical applications as well as reduced systemic side effects compared to current standard of care medical practices. In particular, this article highlights the recent development and application of nanoparticles for diagnosing and treating nephropathologies.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jung Bok Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Min Soo Bae
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA 98195, USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Amy Hwang
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Timothy C. Boire
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Il Keun Kwon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jae Won Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Internal Medicine, Yonsei University of Wonju College of Medicine, Wonju, Gangwon 220–701, Republic of Korea
| |
Collapse
|
20
|
Somani S, Dufès C. Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine (Lond) 2015; 9:2403-14. [PMID: 25413857 DOI: 10.2217/nnm.14.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendrimers are emerging as potential nonviral vectors for the efficient delivery of drugs and nucleic acids to the brain and cancer cells. These polymers are highly branched, 3D macromolecules with modifiable surface functionalities and available internal cavities that make them attractive as delivery systems for drug and gene delivery applications. This article highlights the recent therapeutic advances resulting from the use of dendrimers for brain targeting and cancer treatment.
Collapse
Affiliation(s)
- Sukrut Somani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | |
Collapse
|
21
|
Alajangi HK, Santhiya D. Fluorescence and Förster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes. Phys Chem Chem Phys 2015; 17:8680-91. [PMID: 25738189 DOI: 10.1039/c4cp05295a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Considering the importance of short oligonucleotide packing in dendriplex-mediated gene delivery, a direct insight into the 14-mer oligonucleotide and dendrimer interactions using fluorescence and FRET techniques is the focus of this study. Fluorometric titrations of various fluorophore-tagged oligonucleotides with the first three PAMAM dendrimer generations showed a decrease in the fluorescence intensity with two break points, namely Z and Z, for each titration. The first break point for each dendrimer was identical to the neutralization point observed by basic biophysical studies for the corresponding dendrimer generations. Additionally, FRET studies on dual tagged oligonucleotide (DFT) molecules revealed a third break point at the charge ratio (Z) where there was the highest fluorescence energy transfer from the donor to the acceptor fluorophores. Altogether, dendriplex formation was considered to take place via three steps with an increase in the dendrimer concentration, where initially there was monomeric complexation at the neutralization point (Z) followed by loosely held molecular aggregation of the dendrimer (Z). In the final step, dendrimer molecular aggregates were held tightly together for the closest possible packing of the oligonucleotide molecules onto their surface. The effective molecular packing is identified by the highest FRET intensity for the dendrimer of generation 2 at a charge ratio of 0.34 (Z±).
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Bawana Road, Delhi-110 042, India.
| | | |
Collapse
|
22
|
Chang H, Zhang Y, Li L, Cheng Y. Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. J Mater Chem B 2015; 3:8197-8202. [DOI: 10.1039/c5tb01257k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dodecylated dendrimers show significantly improved gene silencing efficacy after dodecylation. Among the dendrimers, G4-23C12 shows the highest gene knockdown efficacy.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yueming Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
23
|
Xu W, Wang Y, Li S, Ke Z, Yan Y, Li S, Xing Z, Wang C, Zeng F, Liu R, Deng F. Efficient gene and siRNA delivery with cationic polyphosphoramide with amino moieties in the main chain. RSC Adv 2015. [DOI: 10.1039/c5ra02721g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A novel cation polyphosphoramide with amino moieties in the main chain was synthesized, which can be used as efficient carriers for plasmid and siRNA.
Collapse
|
24
|
Ottaviani MF, Cangiotti M, Fattori A, Coppola C, Posocco P, Laurini E, Liu X, Liu C, Fermeglia M, Peng L, Pricl S. Copper(II) binding to flexible triethanolamine-core PAMAM dendrimers: a combined experimental/in silico approach. Phys Chem Chem Phys 2014; 16:685-94. [PMID: 24256926 DOI: 10.1039/c3cp54005g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The structure of copper(II) complexes formed with triethanolamine (TEA) core poly(amidoamine) (PAMAM) dendrimers from generation 0 (G0) to 4 (G4) were investigated by the electron paramagnetic resonance (EPR) technique and molecular simulations. Different square planar coordination modes were detected as a function of copper(II) concentration, whose dynamic evolution relates to the high structural flexibility peculiar to this dendrimer family. Modulated by generation and solvation effects, copper(II) complexation begins at the dendrimer core and progresses to the dendrimer periphery. Differently from the ethylenediamine (EDA) core PAMAM dendrimers, the copper complexes involving the TEA core showed high mobility and saturation of the internal sites above the 1 : 1 molar ratio between the dendrimers and the ions. Therefore, by combining EPR and molecular simulations for the first time, ultimately we obtained unique information on structure, dynamics and copper interacting ability of these dendrimers which could be successfully exploited in biomedical applications.
Collapse
Affiliation(s)
- Maria Francesca Ottaviani
- Department of Earth, Life and Environment Sciences, University of Urbino, Località Crocicchia, 61029 Urbino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu X, Liu C, Catapano CV, Peng L, Zhou J, Rocchi P. Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnol Adv 2014; 32:844-52. [DOI: 10.1016/j.biotechadv.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/01/2013] [Indexed: 12/31/2022]
|
26
|
Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1627-36. [PMID: 24965758 DOI: 10.1016/j.nano.2014.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Small interfering RNAs (siRNA) are emerging as novel therapeutic agents, providing competent delivery systems that are available. Dendrimers, a special family of synthetic macromolecules, represent an exciting delivery platform by virtue of their well-defined dendritic structure and unique multivalency and cooperativity confined within a nanoscale volume. Here, we report a Dicer-substrate siRNA (dsiRNA) which, when delivered using a structurally flexible triethanolamine-core poly(amidoamine) dendrimer of generation 5 as the nanocarrier, gives rise to a much greater RNAi response than that produced with conventional siRNA. Further decoration of the dsiRNA/dendrimer complexes with a dual targeting peptide simultaneously promoted cancer cell targeting through interacting with integrins and cell penetration via the interaction with neuropilin-1 receptors, which led to improved gene silencing and anticancer activity. Altogether, our results disclosed here open a new avenue for therapeutic implementation of RNAi using dendrimer nanovector based targeted delivery. FROM THE CLINICAL EDITOR This study demonstrates superior therapeutic properties of siRNA when combined with a dendrimer-based targeted nano-delivery system. Similar approaches may eventually gain clinical utility following additional studies determining safety and efficacy.
Collapse
|
27
|
Liu C, Liu X, Rocchi P, Qu F, Iovanna JL, Peng L. Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjug Chem 2014; 25:521-32. [PMID: 24494983 DOI: 10.1021/bc4005156] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Successful therapeutic implementation of RNA interference critically depends on systems able to safely and efficiently deliver small interfering RNA (siRNA). Dendrimers are emerging as appealing nanovectors for siRNA delivery by virtue of their unique well-defined dendritic nanostructure within which is confined an intriguing cooperativity and multivalency. We have previously demonstrated that structurally flexible triethanolamine (TEA) core poly(amidoamine) (PAMAM) dendrimers of high generations are effective nanovectors for siRNA delivery in vitro and in vivo. In the present study, we have developed arginine-terminated dendrimers with the aim of combining and harnessing the unique siRNA delivery properties of the TEA-core PAMAM dendrimer and the cell-penetrating advantages of the arginine-rich motif. A generation 4 dendrimer of this family (G4Arg) formed stable dendriplexes with siRNA, leading to improved cell uptake of siRNA by comparison with its nonarginine bearing dendrimer counterpart. Moreover, G4Arg was demonstrated to be an excellent nanocarrier for siRNA delivery, yielding potent gene silencing and anticancer effects in prostate cancer models both in vitro and in vivo with no discernible toxicity. Consequently, importing an arginine residue on the surface of a dendrimer is an appealing option to improve delivery efficiency, and at the same time, the dendrimer G4Arg constitutes a highly promising nanovector for efficacious siRNA delivery and holds great potential for further therapeutic applications.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted.
Collapse
|
29
|
Dendrimers as carriers for siRNA delivery and gene silencing: a review. ScientificWorldJournal 2013; 2013:630654. [PMID: 24288498 PMCID: PMC3830781 DOI: 10.1155/2013/630654] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term "gene silencing." One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.
Collapse
|
30
|
Cho SK, Pedram A, Levin ER, Kwon YJ. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD). Biomaterials 2013; 34:10228-37. [PMID: 24055523 DOI: 10.1016/j.biomaterials.2013.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/02/2013] [Indexed: 02/05/2023]
Abstract
Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic and generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs' size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy.
Collapse
Affiliation(s)
- Soo Kyung Cho
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States
| | | | | | | |
Collapse
|
31
|
Posocco P, Liu X, Laurini E, Marson D, Chen C, Liu C, Fermeglia M, Rocchi P, Pricl S, Peng L. Impact of siRNA Overhangs for Dendrimer-Mediated siRNA Delivery and Gene Silencing. Mol Pharm 2013; 10:3262-73. [DOI: 10.1021/mp400329g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paola Posocco
- Molecular Simulation Engineering
(MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 10, 34127 Trieste,
Italy
| | - Xiaoxuan Liu
- Aix-Marseille Université & CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, 13288 Marseille, France
- Centre de Recherche en Cancérologie
de Marseille, Inserm, UMR1068, 13009 Marseille,
France
- Institut Paoli-Calmettes, 13009 Marseille, France
- Aix-Marseille Université, 13284 Marseille, France
- CNRS, UMR7258,
13009 Marseille, France
| | - Erik Laurini
- Molecular Simulation Engineering
(MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 10, 34127 Trieste,
Italy
| | - Domenico Marson
- Molecular Simulation Engineering
(MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 10, 34127 Trieste,
Italy
| | - Chao Chen
- Aix-Marseille Université & CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, 13288 Marseille, France
- Aix-Marseille Université & CNRS, Institut de Chimie Radicalaire, UMR 7273, 13390 Marseille, France
| | - Cheng Liu
- Aix-Marseille Université & CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, 13288 Marseille, France
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Maurizio Fermeglia
- Molecular Simulation Engineering
(MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 10, 34127 Trieste,
Italy
| | - Palma Rocchi
- Centre de Recherche en Cancérologie
de Marseille, Inserm, UMR1068, 13009 Marseille,
France
- Institut Paoli-Calmettes, 13009 Marseille, France
- Aix-Marseille Université, 13284 Marseille, France
- CNRS, UMR7258,
13009 Marseille, France
| | - Sabrina Pricl
- Molecular Simulation Engineering
(MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, Via Valerio 10, 34127 Trieste,
Italy
- National Interuniversity Consortium
for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, 34127 Trieste, Italy
| | - Ling Peng
- Aix-Marseille Université & CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, 13288 Marseille, France
| |
Collapse
|
32
|
Zeng H, Little HC, Tiambeng TN, Williams GA, Guan Z. Multifunctional Dendronized Peptide Polymer Platform for Safe and Effective siRNA Delivery. J Am Chem Soc 2013; 135:4962-5. [DOI: 10.1021/ja400986u] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanxiang Zeng
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Hannah C. Little
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Timothy N. Tiambeng
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Gregory A. Williams
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Zhibin Guan
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| |
Collapse
|
33
|
Dendrimers for siRNA Delivery. Pharmaceuticals (Basel) 2013; 6:161-83. [PMID: 24275946 PMCID: PMC3816686 DOI: 10.3390/ph6020161] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 01/18/2023] Open
Abstract
Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.
Collapse
|
34
|
Yu T, Liu X, Bolcato‐Bellemin A, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr J, Peng L. An Amphiphilic Dendrimer for Effective Delivery of Small Interfering RNA and Gene Silencing In Vitro and In Vivo. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203920] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tianzhu Yu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| | - Xiaoxuan Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Institut Paoli‐Calmettes, Aix‐Marseille Université, 13009 Marseille (France)
| | | | - Yang Wang
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| | | | - Patrick Erbacher
- Polyplus‐transfection SA, Bioparc, Boulevard S. Brandt, BP90018, 67401 Illkirch (France)
| | - Fanqi Qu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Institut Paoli‐Calmettes, Aix‐Marseille Université, 13009 Marseille (France)
| | - Jean‐Paul Behr
- Laboratoire de Chimie Génétique, Faculté de Pharmacie, Université de Strasbourg, CNRS UMR7199, 74 Route du Rhin, 67401 Illkirch (France)
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| |
Collapse
|
35
|
Yu T, Liu X, Bolcato‐Bellemin A, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr J, Peng L. An Amphiphilic Dendrimer for Effective Delivery of Small Interfering RNA and Gene Silencing In Vitro and In Vivo. Angew Chem Int Ed Engl 2012; 51:8478-84. [DOI: 10.1002/anie.201203920] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/25/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Tianzhu Yu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| | - Xiaoxuan Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Institut Paoli‐Calmettes, Aix‐Marseille Université, 13009 Marseille (France)
| | | | - Yang Wang
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| | | | - Patrick Erbacher
- Polyplus‐transfection SA, Bioparc, Boulevard S. Brandt, BP90018, 67401 Illkirch (France)
| | - Fanqi Qu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan (China)
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Institut Paoli‐Calmettes, Aix‐Marseille Université, 13009 Marseille (France)
| | - Jean‐Paul Behr
- Laboratoire de Chimie Génétique, Faculté de Pharmacie, Université de Strasbourg, CNRS UMR7199, 74 Route du Rhin, 67401 Illkirch (France)
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM CNRS UMR 7325, Aix‐Marseille Université, 163 avenue de Luminy, 13288 Marseille (France)
| |
Collapse
|
36
|
Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng 2012; 40:21-41. [PMID: 22428797 DOI: 10.1615/critrevbiomedeng.v40.i1.20] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poor penetration of anticancer drags into solid tumors significantly limits their efficacy. This phenomenon has long been observed for small-molecule chemotherapeutics, and it can be even more pronounced for nanoscale therapies. Nanoparticles have enormous potential for the treatment of cancer due to their wide applicability as drug delivery and imaging vehicles and their size-dependent accumulation into solid tumors by the enhanced permeability and retention (EPR) effect. Further, synthetic nanoparticles can be engineered to overcome barriers to drag delivery. Despite their promise for the treatment of cancer, relatively little work has been done to study and improve their ability to diffuse into solid tumors following passive accumulation in the tumor vasculature. In this review, we present the complex issues governing efficient penetration of nanoscale therapies into solid tumors. The current methods available to researchers to study nanoparticle penetration into malignant tumors are described, and the most recent works studying the penetration of nanoscale materials into solid tumors are summarized. We conclude with an overview of the important nanoparticle design parameters governing their tumor penetration, as well as by highlighting critical directions in this field.
Collapse
Affiliation(s)
- Carolyn L Waite
- Department of Chemical and Biochemical Engineering, Rutgers University, New Brunswick, New Jersey, USA
| | | |
Collapse
|
37
|
López-Andarias J, Guerra J, Castañeda G, Merino S, Ceña V, Sánchez-Verdú P. Development of Microwave-Assisted Reactions for PAMAM Dendrimer Synthesis. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Aliabadi HM, Landry B, Sun C, Tang T, Uludağ H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials 2012; 33:2546-69. [DOI: 10.1016/j.biomaterials.2011.11.079] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/26/2011] [Indexed: 12/14/2022]
|
39
|
Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, Rocchi P, Peng L. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm 2012; 9:470-81. [PMID: 22208617 DOI: 10.1021/mp2006104] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Successful achievement of RNA interference in therapeutic applications requires safe and efficient vectors for siRNA delivery. In the present study, we demonstrate that a triethanolamine (TEA)-core PAMAM dendrimer of generation 5 (G(5)) is able to deliver sticky siRNAs bearing complementary A(n)/T(n) 3'-overhangs effectively to a prostate cancer model in vitro and in vivo and produce potent gene silencing of the heat shock protein 27, leading to a notable anticancer effect. The complementary A(n)/T(n) (n = 5 or 7) overhangs characteristic of these sticky siRNA molecules help the siRNA molecules self-assemble into "gene-like" longer double-stranded RNAs thus endowing a low generation dendrimer such as G(5) with greater delivery capacity. In addition, the A(n)/T(n) (n = 5 or 7) overhangs act as protruding molecular arms that allow the siRNA molecule to enwrap the dendrimer and promote a better interaction and stronger binding, ultimately contributing toward the improved delivery activity of G(5). Consequently, the low generation dendrimer G(5) in combination with sticky siRNA therapeutics may constitute a promising gene silencing-based approach for combating castration-resistant prostate tumors or other cancers and diseases, for which no effective treatment currently exists.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Département de Chimie, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, Aix-Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Poly(amidoamine)-based Dendrimer/siRNA Complexation Studied by Computer Simulations: Effects of pH and Generation on Dendrimer Structure and siRNA Binding. Macromol Biosci 2011; 12:225-40. [DOI: 10.1002/mabi.201100276] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 12/13/2022]
|
42
|
Liu X, Wu J, Yammine M, Zhou J, Posocco P, Viel S, Liu C, Ziarelli F, Fermeglia M, Pricl S, Victorero G, Nguyen C, Erbacher P, Behr JP, Peng L. Structurally Flexible Triethanolamine Core PAMAM Dendrimers Are Effective Nanovectors for DNA Transfection in Vitro and in Vivo to the Mouse Thymus. Bioconjug Chem 2011; 22:2461-73. [DOI: 10.1021/bc200275g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoxuan Liu
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiangyu Wu
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Miriam Yammine
- INSERM U928, 163 avenue de Luminy, 13288
Marseille cedex 09, France
| | - Jiehua Zhou
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Paola Posocco
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | - Stephane Viel
- Aix-Marseille Université, LCP UMR 6264, Campus de Saint Jérôme,
av. Escadrille Normandie Niémen, case 512, 13013 Marseille,
France
| | - Cheng Liu
- State Key Laboratory of Virology,
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fabio Ziarelli
- Aix-Marseille Université, Fédération des Sciences Chimiques, Spectropole,
av. Escadrille Normandie Niémen, case 511, 13013 Marseille,
France
| | - Maurizio Fermeglia
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | - Sabrina Pricl
- Molecular Simulation
Engineering
(MOSE) Laboratory, Department of Chemical Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste,
Italy
| | | | - Catherine Nguyen
- INSERM U928, 163 avenue de Luminy, 13288
Marseille cedex 09, France
| | - Patrick Erbacher
- Polyplus-transfection SA, Bioparc, Boulevard S. Brandt, BP90018, 67401 Illkirch,
France
| | - Jean-Paul Behr
- Laboratoire de Chimie Génétique,
Faculté de Pharmacie, CNRS UMR7514, 67401 Illkirch, France
| | - Ling Peng
- Aix-Marseille
Université,
Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UPR 3118, Département de Chimie, 163 avenue
de Luminy, 13288 Marseille cedex 09, France
| |
Collapse
|
43
|
Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, Liang Z, Peng L, Akkina R, Rossi JJ. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 2011; 19:2228-38. [PMID: 21952167 DOI: 10.1038/mt.2011.207] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated the in vivo efficacy of structurally flexible, cationic PAMAM dendrimers as a small interfering RNA (siRNA) delivery system in a Rag2(-)/-γc-/- (RAG-hu) humanized mouse model for HIV-1 infection. HIV-infected humanized Rag2-/-γc-/- mice (RAG-hu) were injected intravenously (i.v.) with dendrimer-siRNA nanoparticles consisting of a cocktail of dicer substrate siRNAs (dsiRNAs) targeting both viral and cellular transcripts. We report in this study that the dendrimer-dsiRNA treatment suppressed HIV-1 infection by several orders of magnitude and protected against viral induced CD4(+) T-cell depletion. We also demonstrated that follow-up injections of the dendrimer-cocktailed dsiRNAs following viral rebound resulted in complete inhibition of HIV-1 titers. Biodistribution studies demonstrate that the dendrimer-dsiRNAs preferentially accumulate in peripheral blood mononuclear cells (PBMCs) and liver and do not exhibit any discernable toxicity. These data demonstrate for the first time efficacious combinatorial delivery of anti-host and -viral siRNAs for HIV-1 treatment in vivo. The dendrimer delivery approach therefore represents a promising method for systemic delivery of combinations of siRNAs for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jensen LB, Pavan GM, Kasimova MR, Rutherford S, Danani A, Nielsen HM, Foged C. Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm 2011; 416:410-8. [PMID: 21419201 DOI: 10.1016/j.ijpharm.2011.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/10/2023]
Abstract
Dendrimers are attractive vehicles for nucleic acid delivery due to monodispersity and ease of chemical design. The purpose of this study was to elucidate the self-assembly process between small interfering RNA (siRNA) and different generation poly(amidoamine) dendrimers and to characterize the resulting structures. The generation 4 (G4) and G7 displayed equal efficiencies for dendriplex aggregate formation, whereas G1 lacked this ability. Nanoparticle tracking analysis and dynamic light scattering showed reduced average size and increased polydispersity at higher dendrimer concentration. The nanoparticle tracking analysis indicated that electrostatic complexation results in an equilibrium between differently sized complex aggregates, where the centre of mass depends on the siRNA:dendrimer ratio. Isothermal titration calorimetric data suggested a simple binding for G1, whereas a biphasic binding was evident for G4 and G7 with an initial exothermic binding and a secondary endothermic formation of larger dendriplex aggregates, followed by agglomeration. The initial binding became increasingly exothermic as the generation increased, and the values were closely predicted by molecular dynamics simulations, which also demonstrated a generation dependent differences in the entropy of binding. The flexible G1 displayed the highest entropic penalty followed by the rigid G7, making the intermediate G4 the most suitable for dendriplex formation, showing favorable charge density for siRNA binding.
Collapse
Affiliation(s)
- Linda B Jensen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Rodrigo AC, Rivilla I, Pérez-Martínez FC, Monteagudo S, Ocaña V, Guerra J, García-Martínez JC, Merino S, Sánchez-Verdú P, Ceña V, Rodríguez-López J. Efficient, Non-Toxic Hybrid PPV-PAMAM Dendrimer as a Gene Carrier for Neuronal Cells. Biomacromolecules 2011; 12:1205-13. [DOI: 10.1021/bm1014987] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ana C. Rodrigo
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Iván Rivilla
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | | | | | - Vanessa Ocaña
- Unidad Asociada Neurodeath, Facultad de Medicina, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006-Albacete, Spain
| | - Javier Guerra
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
- NanoDrugs, S. L., P° de la Innovación 1, 02071-Albacete, Spain
| | - Joaquín C. García-Martínez
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Sonia Merino
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Prado Sánchez-Verdú
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006-Albacete, Spain
- CIBERNED, Instituto de salud Carlos III, C/Sinesio Delgado 6, 28071-Madrid, Spain
| | - Julián Rodríguez-López
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| |
Collapse
|
46
|
Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Höffken H, Danani A, Simanek EE, Kissel T. Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 2011; 153:23-33. [PMID: 21342661 DOI: 10.1016/j.jconrel.2011.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/28/2022]
Abstract
This study aimed to identify suitable siRNA delivery systems based on flexible generation 2-4 triazine dendrimers by correlating physico-chemical and biological in vitro and in vivo properties of the complexes with thermodynamic parameters calculated using molecular modeling. The siRNA binding properties of the dendrimers and PEI 25 kDa were simulated, binding and stability were measured in SYBR Gold assays, and hydrodynamic diameters, zeta potentials, and cytotoxicity were quantified. These parameters were compared with cellular uptake of the complexes and their ability to mediate RNAi. Radiolabeled complexes were administered intravenously, and pharmacokinetic profiles and biodistribution of these polyplexes were assessed both invasively and non-invasively. All flexible triazine dendrimers formed thermodynamically more stable complexes than PEI. While PEI and the generation 4 dendrimer interacted more superficially with siRNA, generation 2 and 3 virtually coalesced with siRNA, forming a tightly intertwined structure. These dendriplexes were therefore more efficiently charge-neutralized than PEI complexes, reducing agglomeration. This behavior was confirmed by results of hydrodynamic diameters (72.0 nm-153.5 nm) and zeta potentials (4.9 mV-21.8 mV in 10 mM HEPES) of the dendriplexes in comparison to PEI complexes (312.8 nm-480.0 nm and 13.7 mV-17.4 mV in 10 mM HEPES). All dendrimers, even generation 3 and 4, were less toxic than PEI. All dendriplexes were efficiently endocytosed and showed significant and specific luciferase knockdown in HeLa/Luc cells. Scintillation counting confirmed that the generation 2 triazine complexes showed more than twofold prolonged circulation times as a result of their good thermodynamic stability. Conversely, generation 3 complexes dissociated in vivo, and generation 4 complexes were captured by the reticulo-endothelial system due to their increased surface charge. Molecular modeling proves very valuable for rationalizing experimental parameters based on the dendrimers' structural properties. Non-invasive molecular imaging predicted the in vivo fate of the complexes. Therefore, both techniques effectively promote the rapid development of safe and efficient siRNA formulations that are stable in vivo.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zou T, Oukacine F, Le Saux T, Cottet H. Neutral coatings for the study of polycation/multicharged anion interactions by capillary electrophoresis: application to dendrigraft poly-L-lysines with negatively multicharged molecules. Anal Chem 2011; 82:7362-8. [PMID: 20684532 DOI: 10.1021/ac101473g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of interactions between oppositely multicharged (macro)molecules remains a challenging issue. In frontal analysis capillary electrophoresis (FACE), it is difficult to avoid the adsorption of one of the interacting partners onto the capillary wall. In this work, we demonstrate the possibility to use FACE and affinity capillary electrophoresis (ACE) on a neutrally coated capillary for the study of interactions between a polycationic dendrigraft (or linear) poly-l-lysines, on one hand, and a multicharged anionic biomolecule (adenosine monophosphate, AMP, or adenosine triphosphate, ATP), on the other hand. A systematic comparison of four different neutral coatings (hydroxypropyl cellulose, polydimethylacrylamide, polyacrylamide, polyethylene glycol) has been performed based on the repeatability of the electrophoretic migration of the dendrigraft poly-l-lysines at pH close to neutrality. Both FACE and ACE methodogies were then used to study the interactions and to get the association constants and the stoichiometry of the complex. Multisite interactions, with two classes of independent sites, were determined. The specificity of the dendritic polylysine structure compared with linear polylysine in the interaction with ATP or AMP is also emphasized.
Collapse
Affiliation(s)
- Tao Zou
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université de Montpellier 1-Université de Montpellier 2), Place Eugène Bataillon CC 1706, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
48
|
Deng J, Li N, Mai K, Yang C, Yan L, Zhang LM. Star-shaped polymers consisting of a β-cyclodextrin core and poly(amidoamine) dendron arms: binding and release studies with methotrexate and siRNA. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03030a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Affiliation(s)
- Bidisha Nandy
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
50
|
Ouyang D, Zhang H, Herten DP, Parekh HS, Smith SC. Structure, dynamics, and energetics of siRNA-cationic vector complexation: a molecular dynamics study. J Phys Chem B 2010; 114:9220-30. [PMID: 20583810 DOI: 10.1021/jp911906e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and synthesis of safe and efficient nonviral vectors for gene delivery has attracted significant attention in recent years. Previous experiments have revealed that the charge density of a polycation (the carrier) plays a crucial role in complexation and the release of the gene from the complex in the cytosol. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with six cationic carrier systems of varying charge and surface topology. The simulations reveal detailed molecular-level pictures of the structures and dynamics of the RNA-polycation complexes. Estimates for the binding free energy indicate that electrostatic contributions are dominant followed by van der Waals interactions. The binding free energy between the 8(+)polymers and the RNA is found to be larger than that of the 4(+)polymers, in general agreement with previously published data. Because reliable binding free energies provide an effective index of the ability of the polycationic carrier to bind the nucleic acid and also carry implications for the process of gene release within the cytosol, these novel simulations have the potential to provide us with a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance the rational design of nonviral gene delivery systems.
Collapse
Affiliation(s)
- Defang Ouyang
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|