1
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
2
|
Posadas Y, López-Guerrero VE, Segovia J, Perez-Cruz C, Quintanar L. Dissecting the copper bioinorganic chemistry of the functional and pathological roles of the prion protein: Relevance in Alzheimer's disease and cancer. Curr Opin Chem Biol 2021; 66:102098. [PMID: 34768088 DOI: 10.1016/j.cbpa.2021.102098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a metal-binding biomolecule that can interact with different protein partners involved in pivotal physiological processes, such as neurogenesis and neuronal plasticity. Recent studies profile copper and PrPC as important players in the pathological mechanisms of Alzheimer's disease and cancer. Although the copper-PrPC interaction has been characterized extensively, the role of the metal ion in the physiological and pathological roles of PrPC has been barely explored. In this article, we discuss how copper binding and proteolytic processing may impact the ability of PrPC to recruit protein partners for its functional roles. The importance to dissect the role of copper-PrPC interactions in health and disease is also underscored.
Collapse
Affiliation(s)
- Yanahi Posadas
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico; Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Victor E López-Guerrero
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico; Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Claudia Perez-Cruz
- Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07350, Mexico.
| |
Collapse
|
3
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Prions Strongly Reduce NMDA Receptor S-Nitrosylation Levels at Pre-symptomatic and Terminal Stages of Prion Diseases. Mol Neurobiol 2019; 56:6035-6045. [PMID: 30710214 DOI: 10.1007/s12035-019-1505-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the cellular prion protein (PrPC) conversion into a misfolded and infectious isoform termed prion or PrPSc. The neuropathological mechanism underlying prion toxicity is still unclear, and the debate on prion protein gain- or loss-of-function is still open. PrPC participates to a plethora of physiological mechanisms. For instance, PrPC and copper cooperatively modulate N-methyl-D-aspartate receptor (NMDAR) activity by mediating S-nitrosylation, an inhibitory post-translational modification, hence protecting neurons from excitotoxicity. Here, NMDAR S-nitrosylation levels were biochemically investigated at pre- and post-symptomatic stages of mice intracerebrally inoculated with RML, 139A, and ME7 prion strains. Neuropathological aspects of prion disease were studied by histological analysis and proteinase K digestion. We report that hippocampal NMDAR S-nitrosylation is greatly reduced in all three prion strain infections in both pre-symptomatic and terminal stages of mouse disease. Indeed, we show that NMDAR S-nitrosylation dysregulation affecting prion-inoculated animals precedes the appearance of clinical signs of disease and visible neuropathological changes, such as PrPSc accumulation and deposition. The pre-symptomatic reduction of NMDAR S-nitrosylation in prion-infected mice may be a possible cause of neuronal death in prion pathology, and it might contribute to the pathology progression opening new therapeutic strategies against prion disorders.
Collapse
|
5
|
Benarroch EE. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease. Neurology 2018; 91:125-132. [DOI: 10.1212/wnl.0000000000005807] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G. Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 2015; 22:772-84. [PMID: 25490055 PMCID: PMC4361008 DOI: 10.1089/ars.2014.6032] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Several neurodegenerative disorders show alterations in glutamatergic synapses and increased susceptibility to excitotoxicity. Mounting evidence suggests a central role for the cellular prion protein (PrP(C)) in neuroprotection. Therefore, the loss of PrP(C) function occurring in prion disorders may contribute to the disease progression and neurodegeneration. Indeed, PrP(C) modulates N-methyl-d-aspartate receptors (NMDAR), thus preventing cell death. In this study, we show that PrP(C) and copper cooperatively inhibit NMDAR through S-nitrosylation, a post-translational modification resulting from the chemical reaction of nitric oxide (NO) with cysteines. RESULTS Comparing wild-type Prnp (Prnp(+/+)) and PrP(C) knockout (Prnp(0/0)) mouse hippocampi, we found that GluN1 and GluN2A S-nitrosylation decrease in Prnp(0/0). Using organotypic hippocampal cultures, we found that copper chelation decreases NMDAR S-nitrosylation in Prnp(+/+) but not in Prnp(0/0). This suggests that PrP(C) requires copper to support the chemical reaction between NO and thiols. We explored PrP(C)-Cu neuroprotective role by evaluating neuron susceptibility to excitotoxicity in Prnp(+/+) and Prnp(0/0) cultures. We found that (i) PrP(C)-Cu modulates GluN2A-containing NMDAR, those inhibited by S-nitrosylation; (ii) PrP(C) and copper are interdependent to protect neurons from insults; (iii) neuronal NO synthase inhibition affects susceptibility in wild-type but not in Prnp(0/0), while (iv) the addition of a NO donor enhances Prnp(0/0) neurons survival. INNOVATION AND CONCLUSIONS Our results show that PrP(C) and copper support NMDAR S-nitrosylation and cooperatively exert neuroprotection. In addition to NMDAR, PrP(C) may also favor the S-nitrosylation of other proteins. Therefore, this mechanism may be investigated in the context of the different cellular processes in which PrP(C) is involved.
Collapse
Affiliation(s)
- Lisa Gasperini
- 1 Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste, Italy
| | | | | | | | | |
Collapse
|
7
|
Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV–Vis spectral features. J Inorg Biochem 2013; 128:137-45. [DOI: 10.1016/j.jinorgbio.2013.07.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/22/2022]
|
8
|
Kumar P, Kalita A, Mondal B. Nitric oxide sensors based on copper(II) complexes of N-donor ligands. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Iqbal M, Ahmad I, Ali S, Muhammad N, Ahmed S, Sohail M. Dimeric “paddle-wheel” carboxylates of copper(II): Synthesis, crystal structure and electrochemical studies. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.11.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhou F, Millhauser GL. The Rich Electrochemistry and Redox Reactions of the Copper Sites in the Cellular Prion Protein. Coord Chem Rev 2012; 256:2285-2296. [PMID: 23144499 PMCID: PMC3491995 DOI: 10.1016/j.ccr.2012.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reviews recent electrochemical studies of the copper complexes of prion protein (PrP) and its related peptides, and correlates their redox behavior to chemical and biologically relevant reactions. Particular emphasis is placed on the difference in redox properties between copper in the octarepeat (OR) and the non-OR domains of PrP, as well as differences between the high and low copper occupancy states in the OR domain. Several discrepancies in literature concerning these differences are discussed and reconciled. The PrP copper complexes, in comparison to copper complexes of other amyloidogenic proteins/peptides, display a more diverse and richer redox chemistry. The specific protocols and caveats that need to be considered in studying the electrochemistry and redox reactions of copper complexes of PrP, PrP-derived peptides, and other related amyloidogenic proteins are summarized.
Collapse
Affiliation(s)
- Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
11
|
Arena G, La Mendola D, Pappalardo G, Sóvágó I, Rizzarelli E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Copper(II) complexation to 1-octarepeat peptide from a prion protein: insights from theoretical and experimental UV-visible studies. J Inorg Biochem 2012; 114:1-7. [PMID: 22687559 DOI: 10.1016/j.jinorgbio.2012.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 12/30/2022]
Abstract
The octarepeat domain in cellular prion protein (PrP(C)) has attracted much attention over the last 10 years because of its importance in the complexation of copper with PrP(C). The aim of this research was to study the UV-vis spectra of a peptide similar to the 1-repeat of the octarepeat region in PrP(C) using experimental and theoretical approaches and to gain insight into the complexation of the PrP(C) octarepeat domain with copper(II) ions in solution. We found that the copper atom was responsible for the peptide conformation, which allows for charge transfers between its two terminal residues.
Collapse
|
13
|
Bruschi M, Bertini L, Bonačić-Koutecký V, De Gioia L, Mitrić R, Zampella G, Fantucci P. Speciation of Copper–Peptide Complexes in Water Solution Using DFTB and DFT Approaches: Case of the [Cu(HGGG)(Py)] Complex. J Phys Chem B 2012; 116:6250-60. [DOI: 10.1021/jp210409c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maurizio Bruschi
- Department of Environmental Science, University of Milano-Bicocca, Piazza della Scienza
1, I-20126 Milano, Italy
| | - Luca Bertini
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Vlasta Bonačić-Koutecký
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse
2, D-12489 Berlin, Germany
| | - Luca De Gioia
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Roland Mitrić
- Fachbereich Physik, Freie Universität zu Berlin, Arnimallee 14,
D-14195 Berlin, Germany
| | - Giuseppe Zampella
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Piercarlo Fantucci
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| |
Collapse
|
14
|
Sarma M, Mondal B. Nitric oxide reactivity of copper(II) complexes of bidentate amine ligands: effect of substitution on ligand nitrosation. Dalton Trans 2012; 41:2927-34. [PMID: 22266544 DOI: 10.1039/c2dt11082b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper(ii) complexes with bidentate ligands L(1), L(2) and L(3) [L(1), N,N(/)-dimethylethylenediamine; L(2), N,N(/)-diethylethylenediamine and L(3), N,N(/)-diisobutylethylenediamine], respectively, were synthesized as their perchlorate salts. The single crystal structures for all the complexes were determined. The nitric oxide reactivity of the complexes was studied in acetonitrile solvent. The formation of thermally unstable [Cu(II)-NO] intermediate on reaction of the complexes with nitric oxide in acetonitrile solution was observed prior to the reduction of copper(II) centres to copper(I). The reduction was found to result with a simultaneous mono- and di-nitrosation at the secondary amine sites of the ligand. All the nitrosation products were isolated and characterized. The ratio of the yield of mono- and di-nitrosation product was found to be dependent on the N-substitution present in the ligand framework.
Collapse
Affiliation(s)
- Moushumi Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | |
Collapse
|
15
|
Agarwal C, Prasad E. Detection of Cu(ii) and NO by ‘on–off’ aggregation in poly(aryl ether) dendron derivatives. NEW J CHEM 2012. [DOI: 10.1039/c2nj40272f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Timári S, Cerea R, Várnagy K. Characterization of CuZnSOD model complexes from a redox point of view: Redox properties of copper(II) complexes of imidazole containing ligands. J Inorg Biochem 2011; 105:1009-17. [DOI: 10.1016/j.jinorgbio.2011.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/29/2022]
|
17
|
Vagliasindi LI, Arena G, Bonomo RP, Pappalardo G, Tabbì G. Copper complex species within a fragment of the N-terminal repeat region in opossum PrP protein. Dalton Trans 2011; 40:2441-50. [PMID: 21283898 DOI: 10.1039/c0dt01425g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Laura I Vagliasindi
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | | | |
Collapse
|
18
|
Kumar P, Kalita A, Mondal B. Reduction of copper(ii) complexes of tridentate ligands by nitric oxide and fluorescent detection of NO in methanol and water media. Dalton Trans 2011; 40:8656-63. [DOI: 10.1039/c1dt10773a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Mendola DL, Magrì A, Vagliasindi LI, Hansson Ö, Bonomo RP, Rizzarelli E. Copper(ii) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin. Dalton Trans 2010; 39:10678-84. [DOI: 10.1039/c0dt00732c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Bonomo RP, Di Natale G, Rizzarelli E, Tabbì G, Vagliasindi LI. Copper(ii) complexes of prion protein PEG11-tetraoctarepeat fragment: spectroscopic and voltammetric studies. Dalton Trans 2009:2637-46. [DOI: 10.1039/b821727k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|