1
|
Li X, Zhu H, Gu B, Yao C, Gu Y, Xu W, Zhang J, He J, Liu X, Li D. Advancing Intelligent Organ-on-a-Chip Systems with Comprehensive In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305268. [PMID: 37688520 DOI: 10.1002/adma.202305268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 09/11/2023]
Abstract
In vitro models are essential to a broad range of biomedical research, such as pathological studies, drug development, and personalized medicine. As a potentially transformative paradigm for 3D in vitro models, organ-on-a-chip (OOC) technology has been extensively developed to recapitulate sophisticated architectures and dynamic microenvironments of human organs by applying the principles of life sciences and leveraging micro- and nanoscale engineering capabilities. A pivotal function of OOC devices is to support multifaceted and timely characterization of cultured cells and their microenvironments. However, in-depth analysis of OOC models typically requires biomedical assay procedures that are labor-intensive and interruptive. Herein, the latest advances toward intelligent OOC (iOOC) systems, where sensors integrated with OOC devices continuously report cellular and microenvironmental information for comprehensive in situ bioanalysis, are examined. It is proposed that the multimodal data in iOOC systems can support closed-loop control of the in vitro models and offer holistic biomedical insights for diverse applications. Essential techniques for establishing iOOC systems are surveyed, encompassing in situ sensing, data processing, and dynamic modulation. Eventually, the future development of iOOC systems featuring cross-disciplinary strategies is discussed.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuyang Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangkai Xu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Dębosz M, Kozma J, Porada R, Wieczorek M, Paluch J, Gyurcsányi RE, Migdalski J, Kościelniak P. 3D-printed manifold integrating solid contact ion-selective electrodes for multiplexed ion concentration measurements in urine. Talanta 2021; 232:122491. [PMID: 34074448 DOI: 10.1016/j.talanta.2021.122491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/26/2023]
Abstract
Urinalysis is a simple and non-invasive approach for the diagnosis and monitoring of various health disorders. While urinalysis is predominantly confined to clinical laboratories the non-invasive sample collection makes it applicable in wide range of settings outside of central laboratory confinements. In this respect, 3D printed devices integrating sensors for measuring multiple parameters may be one of the most viable approaches to ensure cost-effectiveness for widespread use. Here we evaluated such a system for the multiplexed determination of sodium, potassium and calcium ions in urine samples with ion-selective electrodes based on state of the art octadecylamine-functionalized multi-walled carbon nanotube (OD-MWCNT) solid contacts. The electrodes were tested in the clinically relevant concentration range, i.e. ca. 10-4 - 10-1 mol L-1 and were proven to have Nernstian responses under flow injection conditions. The applicability of the 3D printed flow manifold was investigated through the analysis of synthetic samples and two certified reference materials. The obtained results confirm the suitability of the proposed system for multiplexed ion analysis in urine.
Collapse
Affiliation(s)
- Marek Dębosz
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland.
| | - József Kozma
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Radosław Porada
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Marcin Wieczorek
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Justyna Paluch
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Róbert E Gyurcsányi
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Jan Migdalski
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Paweł Kościelniak
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| |
Collapse
|
3
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
4
|
Lippi G, Cadamuro J. Novel Opportunities for Improving the Quality of Preanalytical Phase. A Glimpse to the Future? J Med Biochem 2017; 36:293-300. [PMID: 30581325 PMCID: PMC6294089 DOI: 10.1515/jomb-2017-0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
The preanalytical phase is crucial for assuring the quality of in vitro diagnostics. The leading aspects which contribute to enhance the vulnerability of this part of the total testing process include the lack of standardization of different practices for collecting, managing, transporting and processing biological specimens, the insufficient compliance with available guidelines and the still considerable number of preventable human errors. As in heavy industry, road traffic and aeronautics, technological advancement holds great promise for decreasing the risk of medical and diagnostic errors, thus including those occurring in the extra-analytical phases of the total testing process. The aim of this article is to discuss some potentially useful technological advances, which are not yet routine practice, but may be especially suited for improving the quality of the preanalytical phase in the future. These are mainly represented by introduction of needlewielding robotic phlebotomy devices, active blood tubes, drones for biological samples transportation, innovative approaches for detecting spurious hemolysis and preanalytical errors recording software products.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of VeronaVerona, Italy
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
5
|
Taurino I, Massa S, Sanzó G, Aleman J, Flavia B, Shin SR, Zhang YS, Dokmeci MR, De Micheli G, Carrara S, Khademhosseini A. Platinum nanopetal-based potassium sensors for acute cell death monitoring. RSC Adv 2016. [DOI: 10.1039/c6ra01664b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel potassium-selective electrode based on Pt nanopetals has been used for monitoring potassium efflux from cells as due to two death mechanisms: osmotic shock in DI water and necro-apoptosis by drug overdose.
Collapse
|
6
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|