1
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
2
|
Wilson LA, Pedroso MM, Peralta RA, Gahan LR, Schenk G. Biomimetics for purple acid phosphatases: A historical perspective. J Inorg Biochem 2023; 238:112061. [PMID: 36371912 DOI: 10.1016/j.jinorgbio.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Grossenbacher M, Foley W, Musie GT. Tetranuclear iron(III) complexes with a carboxylate-rich ligand as synthetic mimics of phosphoesterases in aqueous media. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Hydrolytic reactivity of novel copper(II) complexes with reduced N-salicylate threonine Schiff bases: distinguishable effects of various micelles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Foley W, Arman H, Musie GT. Homodinuclear copper(II) and zinc(II) complexes of a carboxylate-rich ligand as synthetic mimics of phosphoester hydrolase in aqueous solutions. J Inorg Biochem 2021; 225:111589. [PMID: 34530333 DOI: 10.1016/j.jinorgbio.2021.111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
The synthesis, characterization and catalytic activities of two homodinuclear Cu(II) and Zn(II) complexes of a carboxylate-rich ligand, N,N'-Bis[2-carboxybenzomethyl]-N,N' -Bis[carboxymethyl]-1,3-diaminopropan-2-ol (H5ccdp) ligand towards the hydrolysis of (p-nitrophenyl phosphate) (PNPP) and bis(p-nitrophenyl) phosphate (BNPP) substrates in aqueous systems are described. Kinetic investigations were carried out using UV-Vis spectrophotometric techniques at 25 °C and 37 °C and different pH (7-10) conditions. The kinetic studies revealed that the turnover rate (kcat) values among the PNPP hydrolysis systems, the highest and the lowest kcat values were displayed by [Cu2(ccdp)(μ-OAc)]2- at 2.34 × 10-6 s-1 (pH 8 and 37 °C) and 2.13 × 10-8 s-1 (pH 8 and 25 °C), respectively. However, similar comparisons among the BNPP hydrolysis revealed that highest and the lowest kcat values were displayed by [Zn2(ccdp)(μ-OAc)]2- at 4.64 × 10-8 s-1 (pH 9 and 37 °C) and 2.38 × 10-9 (pH 9 and 25 °C). Significantly enough, the catalyst-substrate adduct species containing a metal bound PNPP and BNPP have been detected by ESI-MS techniques. Additionally, a PNPP-bound copper complex has been isolated and crystalized using single crystal X-ray diffraction technique. Based on the structural and activity information obtained in this study, reaction mechanisms for the hydrolysis of PNPP have been proposed.
Collapse
Affiliation(s)
- William Foley
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Ghezai T Musie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
6
|
Camargo TP, Oliveira JAF, Costa TG, Szpoganicz B, Bortoluzzi AJ, Marzano IM, Silva-Caldeira PP, Bucciarelli-Rodriguez M, Pereira-Maia EC, Castellano EE, Peralta RA, Neves A. New Al IIIZn II and Al IIICu II dinuclear complexes: Phosphatase-like activity and cytotoxicity. J Inorg Biochem 2021; 219:111392. [PMID: 33752123 DOI: 10.1016/j.jinorgbio.2021.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, we report the synthesis and characterization of the first two AlIII(μ-OH)MII (M = Zn (1) and Cu (2)) complexes with the unsymmetrical ligand H2L{2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl)aminomethyl}-4-methylphenol. The complexes were characterized through elemental analysis, X-ray crystallography, IR spectroscopy, mass spectrometry and potentiometric titration. In addition, complex 2 was characterized by electronic spectroscopy. Kinetics studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 1 being slightly more active (8.31%) than 2 (at pH 7.0). The antimicrobial effect of the compounds was studied using four bacterial strains (Staphylococcus aureus, Pseudomonas aeuruginosa, Shigella sonnei and Shigella dysenteriae) and for both complexes the inhibition of bacterial growth was superior to that caused by sulfapyridine, but inferior to that of tetracycline. The dark cytotoxicity and photocytotoxicity (under UV-A light) of the complexes in a chronic myelogenous leukemia cell line were investigated. Complexes 1 and 2 exhibited significant cytotoxic activity against K562 cells, which undergoes a 2-fold increase on applying 5 min of irradiation with UV-A light. Complex 2 was more effective and a good correlation between cytotoxicity and intracellular concentration was observed, the intracellular copper concentration required to inhibit 50% of cell growth being 3.5 × 10-15 mol cell-1.
Collapse
Affiliation(s)
- Tiago P Camargo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - José A F Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ivana M Marzano
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo, São Carlos, SP 13360-979, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
7
|
Chaves CC, Farias G, Formagio MD, Neves A, Peralta RM, Mikcha JM, de Souza B, Peralta RA. Three new dinuclear nickel(II) complexes with amine pendant-armed ligands: Characterization, DFT study, antibacterial and hydrolase-like activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. J Inorg Biochem 2019; 203:110908. [PMID: 31683125 DOI: 10.1016/j.jinorgbio.2019.110908] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023]
Abstract
Two new dimeric Zn(II) ([{ZnL1(DMSO2)}2]·DMSO (1), [{ZnL2Cl}2] (2)) and a novel tetrameric Zn(II) complex ([(Zn2L3)2(μ-OAc)2(μ3-O)2] (3)), where H2L1 = 4-(p-methoxyphenyl) thiosemicarbazone of o-hydroxynapthaldehyde, HL2 = 4-(p-methoxyphenyl)thiosemicarbazone of benzoyl pyridine and H2L3 = 4-(p-chlorophenyl)thiosemicarbazone of o-vanillin are reported. Ligands and their complexes were characterized by spectroscopic and single crystal X-ray diffraction techniques. In addition, the complexes exhibited good binding affinity towards HSA (1012 M-1), which is supported by their ability to quench the tryptophan fluorescence emission spectra of HSA. The complexes were also screened for their DNA binding propensity through UV-vis absorption titration, circular dichroism and fluorescence spectral studies. Results show that they effectively interact with CT-DNA through an intercalative mode of binding, with binding constants ranging from 103 to 104 M-1. Among the three complexes 1 has the highest binding affinity towards CT-DNA. Further, the phosphatase activity was evaluated using bis(2,4-dinitrophenyl)phosphate (BDNPP) as substrate, however, the complexes did not yield any measurable catalytic activity. Nevertheless the complexes showed significant cytotoxic potential against HeLa and HT-29 cancer cell lines that was assessed through MTT assay and DAPI staining. Remarkably, complex 1 showed better activity than cisplatin against HT-29 cell line.
Collapse
|
9
|
Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M. Phosphatase-like Activity of Tetranuclear Iron(III) and Zinc(II) Complexes. Inorg Chem 2018; 57:10802-10820. [PMID: 30130107 DOI: 10.1021/acs.inorgchem.8b01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nityananda Dutta
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Shobhraj Haldar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Gonela Vijaykumar
- Department of Chemical Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur, West Bengal-741246, India
| | - Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | | | - Luca Carrella
- Institut fur Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universitat Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| |
Collapse
|
10
|
Pathak C, Gangwar MK, Ghosh P. Homodinuclear [Fe(III)−Fe(III)] and [Zn(II)−Zn(II)] complexes of a binucleating [N4O3] symmetrical ligand with purple acid phosphatase (PAP) and zinc phosphoesterase like activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Haldar S, Vijaykumar G, Carrella L, Batha S, Musie GT, Bera M. Inorganic Phosphate and Arsenate within New Tetranuclear Copper and Zinc Complexes: Syntheses, Crystal Structures, Magnetic, Electrochemical, and Thermal Studies. ACS OMEGA 2017; 2:1535-1549. [PMID: 31457522 PMCID: PMC6641055 DOI: 10.1021/acsomega.7b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/07/2017] [Indexed: 06/10/2023]
Abstract
Three, PO4 3-/HPO4 2- and AsO4 3--incorporated, new tetranuclear complexes of copper(II) and zinc(II) ions have been synthesized and fully characterized. In methanol-water, reactions of H3cpdp (H3cpdp = N,N'-Bis[2-carboxybenzomethyl]-N,N'-Bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol) with copper(II) chloride in the presence of either NaOH/Na2HPO4·2H2O or KOH/Na2HAsO4·7H2O lead to the isolation of the tetranuclear complexes Na3[Cu4(cpdp)2(μ4-PO4)](OH)2·14H2O (1) and K2[Cu4(cpdp)2(μ4-AsO4)](OH)·162/3H2O (2), respectively. Similarly, the reaction of H3cpdp with zinc(II) chloride in the presence of NaOH/Na2HPO4·2H2O yields a tetranuclear complex, Na(H3O)2[Zn4(cpdp)2(μ4-HPO4)]Cl3·121/2H2O (3). All complexes are characterized by single-crystal X-ray diffraction and other analytical techniques, such as Fourier transform infrared and UV-vis spectroscopy, thermogravimetric and electrochemical studies. The solid-state molecular framework of each complex contains two monocationic [M2(cpdp)]+ (M = Cu, Zn) units, which are exclusively coordinated to either phosphate/hydrogen phosphate or arsenate groups in a unique mode. All three complexes exhibit a μ4:η1:η1:η1:η1 bridging mode of the PO4 3-/HPO4 2-/AsO4 3- groups, with each bridging among four metal ions. The thermal properties of all three complexes have been investigated by thermogravimetric analysis. Low-temperature magnetic studies of complexes 1 and 2 disclose moderate antiferromagnetic interactions mediated among the copper centers through alkoxide and phosphate/arsenate bridges. Electrochemical studies of complexes 1 and 2 in dimethylformamide using cyclic voltammetry reveal the presence of a fairly assessable one-electron metal-based irreversible reduction and one quasireversible oxidation couple.
Collapse
Affiliation(s)
- Shobhraj Haldar
- Department
of Chemistry, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Gonela Vijaykumar
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Luca Carrella
- Institut
fur Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universitat Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Steven Batha
- Department
of Chemistry, The University of Texas at
San Antonio, San Antonio, Texas 78249, United States
| | - Ghezai T. Musie
- Department
of Chemistry, The University of Texas at
San Antonio, San Antonio, Texas 78249, United States
| | - Manindranath Bera
- Department
of Chemistry, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
12
|
Linking PO43− and HAsO42− anions with a dinuclear [ZnII2] complex: Formation and stabilization of novel decanuclear metallomacrocyclic [ZnII10] and tetranuclear [ZnII4] clusters. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Brown JJ, Gahan LR, Schöffler A, Krenske EH, Schenk G. Investigation of the identity of the nucleophile initiating the hydrolysis of phosphate esters catalyzed by dinuclear mimics of metallohydrolases. J Inorg Biochem 2016; 162:356-365. [DOI: 10.1016/j.jinorgbio.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/17/2016] [Accepted: 02/10/2016] [Indexed: 11/17/2022]
|
14
|
Bernhardt PV, Bosch S, Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Schenk G, Wadepohl H. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs). Inorg Chem 2015. [DOI: 10.1021/acs.inorgchem.5b00628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simone Bosch
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer
Feld 270, D-69120 Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer
Feld 270, D-69120 Heidelberg, Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Graeme R. Hanson
- Centre for Advanced
Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valeriu Mereacre
- Institut für Anorganisch Chemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, D-76131 Karlsruhe, Germany
| | - Christopher J. Noble
- Centre for Advanced
Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Annie K. Powell
- Institut für Anorganisch Chemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, D-76131 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer
Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Sanyal R, Zhang X, Kundu P, Chattopadhyay T, Zhao C, Mautner FA, Das D. Mechanistic Implications in the Phosphatase Activity of Mannich-Based Dinuclear Zinc Complexes with Theoretical Modeling. Inorg Chem 2015; 54:2315-24. [DOI: 10.1021/ic502937a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ria Sanyal
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Priyanka Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Tanmay Chattopadhyay
- Department
of Chemistry, Panchakot Mahavidyalaya, Sarbari, Purulia 723121, India
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Franz A. Mautner
- Institut
fuer Physikalische und Theoretische Chemie, Technische Universitaet Graz, A-8010 Graz, Austria
| | - Debasis Das
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
16
|
Das B, Daver H, Pyrkosz-Bulska M, Persch E, Barman SK, Mukherjee R, Gumienna-Kontecka E, Jarenmark M, Himo F, Nordlander E. A dinuclear zinc(II) complex of a new unsymmetric ligand with an N(5)O(2) donor set: a structural and functional model for the active site of zinc phosphoesterases. J Inorg Biochem 2014; 132:6-17. [PMID: 24001510 DOI: 10.1016/j.jinorgbio.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/03/2023]
Abstract
The dinuclear complex [Zn(2)(DPCPMP)(pivalate)](ClO4), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin-2-yl)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn(2)(DPCPMP)](2+) and [Zn(2)(DPCPMP)(OH)](+) predominate the solution above pH4. The relatively high pK(a) of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand=0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters ΔH(‡)=95.6kJmol(-1), ΔS(‡)=-44.8Jmol(-1)K(-1), and ΔG(‡)=108.0 kJmol(-1). The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn(2)(DPCPMP)(μ-OH)](+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFT). Calculations show that the reaction goes through one concerted step (S(N)2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.
Collapse
Affiliation(s)
- Biswanath Das
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Henrik Daver
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Monika Pyrkosz-Bulska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie Street 14, 50-383 Wroclaw, Poland
| | - Elke Persch
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | | | | | - Martin Jarenmark
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
17
|
Daumann LJ, Schenk G, Ollis DL, Gahan LR. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 2013; 43:910-28. [PMID: 24135968 DOI: 10.1039/c3dt52287c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enhanced understanding of the metal ion binding and active site structural features of phosphoesterases such as the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ), and the organophosphate degrading agent from Agrobacterium radiobacter (OpdA) have important consequences for potential applications. Coupled with investigations of the metalloenzymes, programs of study to synthesise and characterise model complexes based on these metalloenzymes can add to our understanding of structure and function of the enzymes themselves. This review summarises some of our work and illustrates the significance and contributions of model studies to knowledge in the area.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
18
|
Daumann LJ, Marty L, Schenk G, Gahan LR. Asymmetric zinc(ii) complexes as functional and structural models for phosphoesterases. Dalton Trans 2013; 42:9574-84. [DOI: 10.1039/c3dt50514f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Daumann LJ, Dalle KE, Schenk G, McGeary RP, Bernhardt PV, Ollis DL, Gahan LR. The role of Zn–OR and Zn–OH nucleophiles and the influence of para-substituents in the reactions of binuclear phosphatase mimetics. Dalton Trans 2012; 41:1695-708. [DOI: 10.1039/c1dt11187f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Ren YW, Lu JX, Cai BW, Shi DB, Jiang HF, Chen J, Zheng D, Liu B. A novel asymmetric di-Ni(ii) system as a highly efficient functional model for phosphodiesterase: synthesis, structures, physicochemical properties and catalytic kinetics. Dalton Trans 2011; 40:1372-81. [DOI: 10.1039/c0dt01194k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Jarenmark M, Csapó E, Singh J, Wöckel S, Farkas E, Meyer F, Haukka M, Nordlander E. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases. Dalton Trans 2010; 39:8183-94. [DOI: 10.1039/b925563j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ren YW, Wu AZ, Liu HY, Jiang HF. Synthesis and characterization of a new asymmetric dinucleating ligand and its dinuclear nickel(II) complex with (μ–η2)2 phosphate ester bridge. TRANSIT METAL CHEM 2009. [DOI: 10.1007/s11243-009-9313-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Gahan LR, Smith SJ, Neves A, Schenk G. Phosphate Ester Hydrolysis: Metal Complexes As Purple Acid Phosphatase and Phosphotriesterase Analogues. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900231] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lawrence R. Gahan
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| | - Sarah J. Smith
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| | - Ademir Neves
- Laboratorio de Bioinorgânica e Cristalografica, Departamento de Química, Universidade Federal de Santa Catarina, 88040‐900, Florianópolis, SC, Brazil
| | - Gerhard Schenk
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|