1
|
Chaturvedi M, Patel M, Tiwari A, Dwivedi N, Mondal DP, Srivastava AK, Dhand C. An insight to the recent advancements in detection of Mycobacterium tuberculosis using biosensors: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:14-27. [PMID: 38052326 DOI: 10.1016/j.pbiomolbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/31/2023] [Accepted: 10/01/2023] [Indexed: 12/07/2023]
Abstract
Since ancient times, Tuberculosis (TB) has been a severe invasive illness that has been prevalent for thousands of years and is also known as "consumption" or phthisis. TB is the most common chronic lung bacterial illness in the world, killing over 2 million people each year, caused by Mycobacterium tuberculosis (MTB). As per the reports of WHO, in spite of technology advancements, the average rate of decline in global TB infections from 2000-2018 was only 1.6% per year, and the worldwide reduction in TB deaths was only 11%. In addition, COVID-19 pandemic has reversed years of global progress in tackling TB with fewer diagnosed cases. The majority of undiagnosed patients of TB are found in low- and middle-income countries where the GeneXpert MTB/RIF assay and sputum smear microscopy have been approved by the WHO as reference procedures for quickly detecting TB. Biosensors, like other cutting-edge technologies, have piqued researchers' interest since they offer a quick and accurate way to identify MTB. Modern integrated technologies allow for the rapid, low-cost, and highly precise detection of analytes in extremely little amounts of sample by biosensors. Here in this review, we outlined the severity of tuberculosis (TB) and the most recent developments in the biosensors sector, as well as their various kinds and benefits for TB detection. The review also emphasizes how widespread TB is and how it needs accurate diagnosis and effective treatment.
Collapse
Affiliation(s)
- Mansi Chaturvedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Tiwari
- School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Wulandari C, Septiani NLW, Gumilar G, Nuruddin A, Nugraha, Iqbal M, Wasisto HS, Yuliarto B. Surface plasmon resonance biosensor chips integrated with MoS 2-MoO 3 hybrid microflowers for rapid CFP-10 tuberculosis detection. J Mater Chem B 2023; 11:11588-11599. [PMID: 38018444 DOI: 10.1039/d3tb01327h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study reports on the modification of surface plasmon resonance (SPR) chips with molybdenum disulfide-molybdenum trioxide (MoS2-MoO3) microflowers to detect the tuberculosis (TB) markers of CFP-10. The MoS2-MoO3 microflowers were prepared by hydrothermal methods with variations in the pH and amount of trisodium citrate (Na3Ct), which were projected to influence the shape and size of microflower particles. The analysis shows that optimum MoS2-MoO3 hybrid microflowers were obtained at neutral pH using 0.5 g Na3Ct. The modified SPR biosensor exhibits a ten times higher response than the bare Au. Moreover, increasing MoS2-MoO3 thickness results in a higher detection response, sensitivity, and a smaller limit of detection (LOD). Using the optimized material composition, the Au/MoS2-MoO3-integrated SPR sensor can demonstrate sensitivity and LOD of 1.005 and 3.45 ng mL-1, respectively. This biosensor also has good selectivity, stability, and reproducibility based on cross-sensitivity characterization with other analytes and repeated measurements on several chips with different storing times and fabrication batch. Therefore, this proposed SPR biosensor possesses high potential to be further developed and applied as a detection technology for CFP-10 in monitoring and diagnosing TB.
Collapse
Affiliation(s)
- Chandra Wulandari
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- Research Center for Advanced Materials, National Research, and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Gilang Gumilar
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- Research Center of Electronics, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia
| | - Ahmad Nuruddin
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
| | - Nugraha
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | - Muhammad Iqbal
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
| | | | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
3
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
4
|
Wang Y, Yan T, Mei K, Rao D, Wu W, Chen Y, Peng Y, Wang J, Wu S, Zhang Q. Nanomechanical assay for ultrasensitive and rapid detection of SARS-CoV-2 based on peptide nucleic acid. NANO RESEARCH 2023; 16:1183-1195. [PMID: 35610981 PMCID: PMC9118818 DOI: 10.1007/s12274-022-4333-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED The massive global spread of the COVID-19 pandemic makes the development of more effective and easily popularized assays critical. Here, we developed an ultrasensitive nanomechanical method based on microcantilever array and peptide nucleic acid (PNA) for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) RNA. The method has an extremely low detection limit of 0.1 fM (105 copies/mL) for N-gene specific sequence (20 bp). Interestingly, it was further found that the detection limit of N gene (pharyngeal swab sample) was even lower, reaching 50 copies/mL. The large size of the N gene dramatically enhances the sensitivity of the nanomechanical sensor by up to three orders of magnitude. The detection limit of this amplification-free assay method is an order of magnitude lower than RT-PCR (500 copies/mL) that requires amplification. The non-specific signal in the assay is eliminated by the in-situ comparison of the array, reducing the false-positive misdiagnosis rate. The method is amplification-free and label-free, allowing for accurate diagnosis within 1 h. The strong specificity and ultra-sensitivity allow single base mutations in viruses to be distinguished even at very low concentrations. Also, the method remains sensitive to fM magnitude lung cancer marker (miRNA-155). Therefore, this ultrasensitive, amplification-free and inexpensive assay is expected to be used for the early diagnosis of COVID-19 patients and to be extended as a broad detection tool. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section, N gene sequences and all nucleic acid sequences used in the study, Figs. S1-S6, and Tables S1-S3) is available in the online version of this article at 10.1007/s12274-022-4333-3.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
5
|
Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanoun O. Gold Nanoparticles-MWCNT Based Aptasensor for Early Diagnosis of Prostate Cancer. BIOSENSORS 2022; 12:1130. [PMID: 36551097 PMCID: PMC9776393 DOI: 10.3390/bios12121130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor. In this regard, the PSA aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed MWCNT/AuNPs electrode. The immobilization process was enhanced due to the presence of Au nanoparticles on the surface of the electrode. Surface characterization of the electrode at different stages of modification was performed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) and contact angle for surface tension properties. The results showed an increase in surface roughness due to the absorbance of the aptamer on the electrode surfaces. The developed sensor has an extended linear range of 1-100 ng/mL, and a very low limit of detection down to 1 pg/mL. In addition, the reaction has a binding time of only five minutes on the developed electrodes. Investigations of the biosensor selectivity against several substances revealed an efficient selectivity for PSA detection. With this approach, low-cost biosensors with high sensitivity can be realized which have a wide linearity range and a low limit of detection, which are necessary for the early detection of prostate cancer.
Collapse
Affiliation(s)
- Aseel Alnaimi
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|
6
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
7
|
Abdul Rashid JI, Yusof NA, Abdullah J, Shomiad Shueb RH. Strategies for the preparation of non-amplified and amplified genomic dengue gene samples for electrochemical DNA biosensing applications. RSC Adv 2021; 12:1-10. [PMID: 35424522 PMCID: PMC8978653 DOI: 10.1039/d1ra06753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
The application of electrochemical DNA biosensors in real genomic sample detection is challenging due to the existence of complex structures and low genomic concentrations, resulting in inconsistent and low current signals. This work highlights strategies for the treatment of non-amplified and amplified genomic dengue virus gene samples based on real samples before they can be used directly in our DNA electrochemical sensing system, using methylene blue (MB) as a redox indicator. The main steps in this study for preparing non-amplified cDNA were cDNA conversion, heat denaturation, and sonication. To prepare amplified cDNA dengue virus genomic samples using an RT-PCR approach, we optimized a few parameters, such as the annealing temperature, sonication time, and reverse to forward (R/F) primer concentration ratio. We discovered that the generated methylene blue (MB) signals during the electrochemical sensing of non-amplified and amplified samples differ due to the different MB binding affinities based on the sequence length and base composition. The findings show that our developed electrochemical DNA biosensor successfully discriminates MB current signals in the presence and absence of the target genomic dengue virus, indicating that both samples were successfully treated. This work also provides interesting information about the critical factors in the preparation of genomic gene samples for developing miniaturized PCR-based electrochemical sensing applications in the future. We also discuss the limitations and provide suggestions related to using redox-indicator-based electrochemical biosensors to detect real genomic nucleic acid genes.
Collapse
Affiliation(s)
- Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia Sungai Besi Camp 57000 Kuala Lumpur Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Rafidah Hanim Shomiad Shueb
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| |
Collapse
|
8
|
Moccia M, Antonacci A, Saviano M, Caratelli V, Arduini F, Scognamiglio V. Emerging technologies in the design of peptide nucleic acids (PNAs) based biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Gupta AK, Singh A, Singh S. Diagnosis of Tuberculosis: Nanodiagnostics Approaches. Nanobiomedicine (Rij) 2020. [PMCID: PMC7122355 DOI: 10.1007/978-981-32-9898-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) remains one of the most devastating infectious diseases worldwide. The burden of TB is alarmingly high in developing countries, where diagnosis latent TB infection (LTBI), Extra-pulmonary tuberculosis (EPTB), drug-resistant tuberculosis (DR-TB), HIV-associated TB, and paediatric TB is still a challenge. This is mainly due to delayed or misdiagnosis of TB, which continues to fuel its worldwide epidemic. The ideal diagnostic test is still unavailable, and conventional methods remain a necessity for TB diagnosis, though with poor diagnostic ability. The nanoparticles have shown potential for the improvement of drug delivery, reducing treatment frequency and diagnosis of various diseases. The engineering of antigens/antibody nanocarriers represents an exciting front in the field of diagnostics, potentially flagging the way toward development of better diagnostics for TB. This chapter discusses the presently available tests for TB diagnostics and also highlights the recent advancement in the nanotechnology-based detection tests for M. tuberculosis.
Collapse
|
10
|
Saadati A, Hassanpour S, Guardia MDL, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Zhang X, Feng Y, Duan S, Su L, Zhang J, He F. Mycobacterium tuberculosis strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. ACS Sens 2019; 4:849-855. [PMID: 30900450 DOI: 10.1021/acssensors.8b01230] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The accurate and rapid detection of Mycobacterium tuberculosis ( M. tuberculosis) is essential for the effective treatment of tuberculosis. In this article, we propose an electrochemical sensor to detect M. tuberculosis reference strain H37Rv. The sensor contains an H37Rv aptamer and oligonucleotides modified with gold nanoparticles (AuNPs-DNA). An H37Rv aptamer screened by our laboratory was used as the recognition probe. The change in frequency shift mediated by AuNPs-DNA in the presence of H37Rv was detected using a multichannel series piezoelectric quartz crystal (MSPQC) system. Three oligonucleotides modified with gold nanoparticles were designed. These oligonucleotides contained 12, 12, and 13 bases that hybridized with the 37-nt H37Rv aptamer. H37Rv aptamer was immobilized on the gold electrode surface by Au-S bonds. A conductive-layer was then formed by sequential hybridization of the aptamer with the three designed AuNPs-DNAs. When H37Rv was present, it specifically bound to the aptamer, resulting in the detachment of AuNPs-DNA from the electrode. The conductive layer was thereby replaced by a nonconductive complex of aptamer and bacteria. These changes were monitored by the MSPQC system. The proposed sensor is rapid, specific and sensitive, the detection time was 2 h. The detection limit was 100 cfu/mL. This sensor would be of great benefit for the early clinical diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China, 410208
| | - Ye Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
| | - Shaoyun Duan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
| | - Lingling Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
| | - Jialin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China, 410082
| |
Collapse
|
12
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
13
|
Wu C, He J, Li B, Xu Y, Gu D, Liu H, Zhao D, Shao C. Real-time monitoring of T-cell-secreted interferon-γ for the diagnosis of tuberculosis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1432416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Changlin Wu
- Clinical Transfusion Laboratory, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Jianan He
- Central Laboratory, Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
| | - Boan Li
- Clinical Laboratory, 302 Military Hospital of China, Beijing, PR China
| | - YunQing Xu
- Central Laboratory, Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
| | - Dayong Gu
- Central Laboratory, Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, PR China
| | - Houming Liu
- Clinical Laboratory, Third People's Hospital of Shenzhen, Shenzhen, PR China
| | - Dan Zhao
- Clinical Laboratory, Third People's Hospital of Shenzhen, Shenzhen, PR China
| | - Chaopeng Shao
- Clinical Transfusion Laboratory, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| |
Collapse
|
14
|
Ahn H, Song H, Choi JR, Kim K. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches. SENSORS (BASEL, SWITZERLAND) 2017; 18:E98. [PMID: 29301238 PMCID: PMC5795798 DOI: 10.3390/s18010098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
Abstract
From active developments and applications of various devices to acquire outside and inside information and to operate based on feedback from that information, the sensor market is growing rapidly. In accordance to this trend, the surface plasmon resonance (SPR) sensor, an optical sensor, has been actively developed for high-sensitivity real-time detection. In this study, the fundamentals of SPR sensors and recent approaches for enhancing sensing performance are reported. In the section on the fundamentals of SPR sensors, a brief description of surface plasmon phenomena, SPR, SPR-based sensing applications, and several configuration types of SPR sensors are introduced. In addition, advanced nanotechnology- and nanofabrication-based techniques for improving the sensing performance of SPR sensors are proposed: (1) localized SPR (LSPR) using nanostructures or nanoparticles; (2) long-range SPR (LRSPR); and (3) double-metal-layer SPR sensors for additional performance improvements. Consequently, a high-sensitivity, high-biocompatibility SPR sensor method is suggested. Moreover, we briefly describe issues (miniaturization and communication technology integration) for future SPR sensors.
Collapse
Affiliation(s)
- Heesang Ahn
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Hyerin Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea.
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
15
|
Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 2017; 180:1-11. [PMID: 29332786 DOI: 10.1016/j.talanta.2017.12.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
Abstract
Chemiluminescence (CL) techniques are extensively utilized for detection of analytes due to their high sensitivity, rapidity and selectivity. With the advent of nanotechnology and incorporation of the nanoparticles in the CL system has revolutionized the assays due to their unique optical and mechanical properties. Several CL-based reactions have been developed where these nanoparticle based CL sensors have evolved as excellent prospects for sensing in various analytical applications. This review article addresses the nanoparticles based CL detection system that are recently developed, the mechanisms has been summarized and the role of luminophors have been discussed. This article critically analyzes the optimal conditions for the CL detection along with quantitative assessment of the analytes. We have included the use of semiconductor nanoparticles, metal nanoparticles, graphene based nanostructures, mesoporous nanospheres, layered double hydroxides, clays for CL detection. The scope and application of these nanoscale material based CL system in various branches of science and technology including chemistry, biomedical applications, pharmaceutics, food, environmental and toxicological applications has been critically summarized.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Chemistry, Naveen Government College, Pamgarh 495554, India.
| | - S J Dhoble
- Department of Physics, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
16
|
Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, Abdul Rahman N. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis. SENSORS 2017; 17:s17122789. [PMID: 29207463 PMCID: PMC5751647 DOI: 10.3390/s17122789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022]
Abstract
This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10−6–10−9 M with the detection limit of 7.853 × 10−7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.
Collapse
Affiliation(s)
- Fatimah Syahidah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Mohd Hazani Mat Zaid
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | - Norizah Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| |
Collapse
|
17
|
Sepulveda D, Aroca MA, Varela A, Del Portillo P, Osma JF. Bioelectrochemical Detection of Mycobacterium tuberculosis ESAT-6 in an Antibody-Based Biomicrosystem. SENSORS 2017; 17:s17102178. [PMID: 28937645 PMCID: PMC5676732 DOI: 10.3390/s17102178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/02/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
Bioelectrochemical sensing of Mycobacterium tuberculosis through electro-immunosensors is a promising technique to detect relevant analytes. In general, immunosensors require the formation of organic assemblies by the adsorption of molecular constituents. Moreover, they depend on the correct immobilization of the bio-recognition element in the biosensor. These procedures cannot be easily monitored without the use of invasive methods. In this work, an impedance analysis technique was used, as a non-invasive method, to measure and differentiate the manufacturing stages of the sensors. Biomicrosystems were fabricated through physical vapor deposition (PVD) of 80 nm Au nanolayers on 35 µm copper surfaces. Later, the surface was modified through thiolation methods generating a self-assembled-monolayer (SAM) with 20 mM 4-aminothiophenol (4-ATP) on which a polyclonal antibody (pAb) was covalently attached. Using impedance analysis, every step of the electro-immunosensor fabrication protocol was characterized using 40 independent replicas. Results showed that, compared to the negative controls, distilled water, and 0.5 µg/mL HSA, a maximum variation of 171% between each replica was achieved when compared to samples containing 0.5 µg/mL of ESAT-6 M. tuberculosis immunodominant protein. Therefore, this development validates a non-invasive method to electrically monitor the assembly process of electro-immunosensors and a tool for its further measure for detection of relevant antigens.
Collapse
Affiliation(s)
- Danna Sepulveda
- CMUA, Department of Electrical and Electronics Engineering, Universidad de los Andes, 111711 Bogota, Colombia.
| | - Miguel A Aroca
- CMUA, Department of Electrical and Electronics Engineering, Universidad de los Andes, 111711 Bogota, Colombia.
| | - Andres Varela
- CorpoGen, Carrera 5 No. 66A-34, 110231 Bogota, Colombia.
| | | | - Johann F Osma
- CMUA, Department of Electrical and Electronics Engineering, Universidad de los Andes, 111711 Bogota, Colombia.
| |
Collapse
|
18
|
Thakur H, Kaur N, Sabherwal P, Sareen D, Prabhakar N. Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
YESIL MERVE, DONMEZ SONER, ARSLAN FATMA. Development of an electrochemical DNA biosensor for detection of specific Mycobacterium tuberculosis sequence based on poly(L-glutamic acid) modified electrode. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1159-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection. Biosens Bioelectron 2016; 80:477-482. [DOI: 10.1016/j.bios.2016.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 01/05/2023]
|
21
|
Torati SR, Reddy V, Yoon SS, Kim C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens Bioelectron 2016; 78:483-488. [DOI: 10.1016/j.bios.2015.11.098] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
22
|
Abstract
Tuberculosis (TB), caused byMycobacterium tuberculosis(M.tb.), is one of the most prevalent and serious infectious diseases worldwide with an estimated annual global mortality of 1.4 million in 2010.
Collapse
Affiliation(s)
- Saurabh K. Srivastava
- Plant Research International
- Wageningen UR
- 6708 PB Wageningen
- The Netherlands
- Laboratory of Organic Chemistry
| | - Cees J. M. van Rijn
- Laboratory of Organic Chemistry
- Wageningen UR
- 6703 HB Wageningen
- The Netherlands
| | - Maarten A. Jongsma
- Plant Research International
- Wageningen UR
- 6708 PB Wageningen
- The Netherlands
| |
Collapse
|
23
|
Xiang Y, Zhu X, Huang Q, Zheng J, Fu W. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens Bioelectron 2015; 66:512-9. [DOI: 10.1016/j.bios.2014.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
24
|
Domínguez CM, Kosaka PM, Sotillo A, Mingorance J, Tamayo J, Calleja M. Label-Free DNA-Based Detection of Mycobacterium tuberculosis and Rifampicin Resistance through Hydration Induced Stress in Microcantilevers. Anal Chem 2015; 87:1494-8. [DOI: 10.1021/ac504523f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen M. Domínguez
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Alma Sotillo
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Javier Tamayo
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Montserrat Calleja
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| |
Collapse
|
25
|
Surface plasmon resonator using high sensitive resonance telecommunication wavelengths for DNA sensors of Mycobacterium tuberculosis with thiol-modified probes. SENSORS 2014; 15:331-40. [PMID: 25609049 PMCID: PMC4327021 DOI: 10.3390/s150100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
Abstract
Various analytes can be verified by surface plasmon resonance, thus continuous improvement of this sensing technology is crucial for better sensing selection and higher sensitivity. The SPR sensitivity on the wavelength modulation is enhanced with increasing wavelengths. The telecommunication wavelength range was then utilized to detect Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) under two situations, without immobilization and with 5′-thiol end labeled IS6100 DNA probes, for SPR sensitivity comparison. The experimental data demonstrated that the SPR sensitivity increased more than 13 times with the wavelength modulation after immobilization. Since the operating wavelength accuracy of a tunable laser source can be controlled within 0.001 nm, the sensitivity and resolution on immobilized MTB DNA were determined as 1.04 nm/(μg/mL) and 0.9 ng/mL, respectively.
Collapse
|
26
|
Surface Plasmon Resonance Based Label-Free Detection of Salmonella using DNA Self Assembly. Appl Biochem Biotechnol 2014; 175:1330-43. [DOI: 10.1007/s12010-014-1319-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
27
|
Metal Oxide Nanoparticle-Embedded Chitosan Matrix Based Electrochemical Detection of DNA Hybridization. BIONANOSCIENCE 2014. [DOI: 10.1007/s12668-014-0154-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Costa MP, Andrade CA, Montenegro RA, Melo FL, Oliveira MD. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci 2014; 433:141-148. [DOI: 10.1016/j.jcis.2014.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 11/28/2022]
|
29
|
Pandey CM, Tiwari I, Sumana G. Hierarchical cystine flower based electrochemical genosensor for detection of Escherichia coli O157:H7. RSC Adv 2014. [DOI: 10.1039/c4ra04511d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and self-assembly of cystine flowers on gold electrode for biosensing application.
Collapse
Affiliation(s)
- Chandra Mouli Pandey
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi-110012, India
- Department of Chemistry
- Faculty of Science
| | - Ida Tiwari
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005, India
| | - Gajjala Sumana
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi-110012, India
| |
Collapse
|
30
|
Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength. SENSORS 2013; 14:458-67. [PMID: 24379050 PMCID: PMC3926568 DOI: 10.3390/s140100458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022]
Abstract
A surface plasmon resonance sensor for Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) is developed using repeatable telecommunication wavelength modulation based on optical fiber communications laser wavelength and stability. MTB DNA concentrations of 1 μg/mL and 10 μg/mL were successfully demonstrated to have the same spectral half-width in the dip for optimum coupling. The sensitivity was shown to be −0.087 dB/(μg/mL) at all applied telecommunication wavelengths and the highest sensitivity achieved was 115 ng/mL without thiolated DNA immobilization onto a gold plate, which is better than the sensor limit of 400 ng/mL possible with commercial biosensor equipment.
Collapse
|
31
|
Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv 2013; 31:438-49. [PMID: 23357365 DOI: 10.1016/j.biotechadv.2013.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/14/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
Tuberculosis (TB) remains one of the most devastating infectious diseases and its eradication is still unattainable given the limitations of current technologies for diagnosis, treatment and prevention. The World Health Organization's goal to eliminate TB globally by 2050 remains an ongoing challenge as delayed diagnosis and misdiagnosis of TB continue to fuel the worldwide epidemic. Despite considerable improvements in diagnostics for the last few decades, a simple and effective point-of-care TB diagnostic test is yet not available. Here, we review the current assays used for TB diagnosis, and highlight the recent advances in nanotechnology and microfluidics that potentially enable new approaches for TB diagnosis in resource-constrained settings.
Collapse
Affiliation(s)
- ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
32
|
Kochuveedu ST, Jang YH, Kim DH. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 2013; 42:8467-93. [DOI: 10.1039/c3cs60043b] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Dettin M, Silvestri D, Danesin R, Cretaio E, Picariello G, Casarin E, Sonato A, Romanato F, Morpurgo M. Synthesis and chromatography-free purification of PNA-PEO conjugates for the functionalisation of gold sensors. Molecules 2012; 17:11026-45. [PMID: 22976467 PMCID: PMC6268724 DOI: 10.3390/molecules170911026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 01/06/2023] Open
Abstract
Peptide Nucleic Acids (PNAs) linked to high molecular weight (MW) poly(ethylene oxide) (PEO) derivatives could be useful conjugates for the direct functionalisation of gold surfaces dedicated to Surface Plasmon Resonance (SPR)-based DNA sensing. However their use is hampered by the difficulty to obtain them through a convenient and economical route. In this work we compared three synthetic strategies to obtain PNA-high MW PEO conjugates composed of (a) a 15-mer PNA sequence as the probe complementary to genomic DNA of Mycobacterium tuberculosis, (b) a PEO moiety (2 or 5 KDa MW) and (c) a terminal trityl-protected thiol necessary (after acidic deprotection) for grafting to gold surfaces. The 15-mer PNA was obtained by solid-phase synthesis. Its amino terminal group was later condensed to bi-functional PEO derivatives (2 and 5 KDa MW) carrying a Trt-cysteine at one end and a carboxyl group at the other end. The reaction was carried out either in solution, using HATU or PyOxim as coupling agents, or through the solid-phase approach, with 49.6%, 100% and 5.2% yield, respectively. A differential solvent extraction strategy for product purification without the need for chromatography is described. The ability of the 5 KDa PEO conjugate to function as a probe for complementary DNA detection was demonstrated using a Grating-Coupling Surface Plasmon Resonance (GC-SPR) system. The optimized PEO conjugation and purification protocols are economical and simple enough to be reproduced also within laboratories that are not highly equipped for chemical synthesis.
Collapse
Affiliation(s)
- Monica Dettin
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (M.D.); (R.D.)
| | - Davide Silvestri
- Department of Pharmaceutical Chemistry and Pharmacology, University of Padova, via Marzolo, 5, 35131 Padova, Italy; (D.S.); (E.C.)
| | - Roberta Danesin
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (M.D.); (R.D.)
| | - Erica Cretaio
- Inter-University Consortium of Veneto for Nanotechnology (CIVEN), via delle Industrie, 5, 30174 Venezia, Italy;
| | | | - Elisabetta Casarin
- Department of Pharmaceutical Chemistry and Pharmacology, University of Padova, via Marzolo, 5, 35131 Padova, Italy; (D.S.); (E.C.)
| | - Agnese Sonato
- Physics Department, University of Padova, via Marzolo, 8, 35131 Padova, Italy; (A.S.); (F.R.)
| | - Filippo Romanato
- Physics Department, University of Padova, via Marzolo, 8, 35131 Padova, Italy; (A.S.); (F.R.)
| | - Margherita Morpurgo
- Department of Pharmaceutical Chemistry and Pharmacology, University of Padova, via Marzolo, 5, 35131 Padova, Italy; (D.S.); (E.C.)
- Author to whom correspondence should be addressed; ; Tel.: +39-049-827-5330; Fax: +39-049-827-5366
| |
Collapse
|
34
|
Modulating electron transfer properties of gold nanoparticles for efficient biosensing. Biosens Bioelectron 2012; 37:30-7. [DOI: 10.1016/j.bios.2012.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 12/25/2022]
|
35
|
Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 2012; 402:3071-89. [PMID: 22297860 DOI: 10.1007/s00216-012-5742-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/12/2012] [Indexed: 01/06/2023]
Abstract
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.
Collapse
|
36
|
Patel MK, Solanki PR, Khandelwal S, Agrawal VV, Ansari SG, Malhotra BD. Self-assembled monolayer based electrochemical nucleic acid sensor forVibrio choleratedetection. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/358/1/012009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Matharu Z, Bandodkar AJ, Gupta V, Malhotra BD. Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chem Soc Rev 2012; 41:1363-402. [DOI: 10.1039/c1cs15145b] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Rodrigues Ribeiro Teles FS, Pires de Távora Tavira LA, Pina da Fonseca LJ. Biosensors as rapid diagnostic tests for tropical diseases. Crit Rev Clin Lab Sci 2011; 47:139-69. [PMID: 21155631 DOI: 10.3109/10408363.2010.518405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effective diagnosis of infectious pathogens is essential for disease identification and subsequent adequate treatment, to prevent drug resistance and to adopt suitable public health interventions for the prevention and control of epidemic outbreaks. Particular situations under which medical diagnostics operate in tropical environments make the use of new easy-to-use diagnostic tools the preferred (or even unique) option. These diagnostic tests and devices, usually based on biosensing methods, are being increasingly exploited as promising alternatives to classical, "heavy" lab instrumentation for clinical diagnosis, allowing simple, inexpensive and point-of-care testing. However, in many developing countries the lack of accessibility and affordability for many commercial diagnostic tests remains a major cause of high disease burden in such regions. We present a comprehensive overview about the problems of conventional medical diagnosis of infectious pathologies in tropical regions, while pointing out new methods and analytical tools for in-the-field and decentralized diagnosis of current major infectious tropical diseases. The review includes not only biosensor-based rapid diagnostic tests approved by regulatory entities and already commercialized, but also those at the early stages of research.
Collapse
|
39
|
Das M, Dhand C, Sumana G, Srivastava AK, Nagarajan R, Nain L, Iwamoto M, Manaka T, Malhotra BD. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules 2011; 12:540-7. [PMID: 21218766 DOI: 10.1021/bm1013074] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).
Collapse
Affiliation(s)
- Maumita Das
- Department of Science & Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics & Engineering Division, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
He Y, Liu D, He X, Cui H. One-pot synthesis of luminol functionalized silver nanoparticles with chemiluminescence activity for ultrasensitive DNA sensing. Chem Commun (Camb) 2011; 47:10692-4. [DOI: 10.1039/c1cc14389a] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 2010; 136:486-92. [PMID: 21079850 DOI: 10.1039/c0an00697a] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bioassay platform using T4 bacteriophage (T4) as the specific receptor and surface plasmon resonance (SPR) as the transduction technique has been developed for the detection of Escherichia coli K12 bacteria. The T4 phages have been covalently immobilized onto gold surfaces using a self-assembled monolayer of dithiobis(succinimidyl propionate) (DTSP). Substrates of BSA/EA-T4/DTSP/Au prepared using different T4 phage concentrations have been characterized using scanning electron microscopy (SEM). The studies reveal that the use of DTSP results in a uniform binding of T4 phages onto the surface. The SPR analysis demonstrates that these BSA/EA-T4/DTSP/Au interfaces can detect the E. coli K12 with high specificity against non-host E. coli NP10 and NP30. Results of SEM and SPR studies indicate that the maximum host bacterial capture is obtained when 1.5 × 10(11) pfu ml(-1) concentration of T4 phages was used for immobilization. The surface of these chemically anchored phage substrates can be regenerated for repeated detection of E. coli K12 and can be used for detection in 7 × 10(2) to 7 × 10(8) cfu ml(-1) range. The results of these studies have implications for the development of online bioassays for the detection of various food and water borne pathogens using the inherent selectivity of bacteriophage recognition.
Collapse
Affiliation(s)
- Sunil K Arya
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Prabhakar N, Solanki PR, Kaushik A, Pandey MK, Malhotra BD. Peptide Nucleic Acid Immobilized Biocompatible Silane Nanocomposite Platform for Mycobacterium tuberculosis Detection. ELECTROANAL 2010. [DOI: 10.1002/elan.201000251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens Bioelectron 2010; 25:2586-91. [DOI: 10.1016/j.bios.2010.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 11/22/2022]
|
44
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
45
|
Singh R, Dhand C, Sumana G, Verma R, Sood S, Gupta RK, Malhotra BD. Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. J Mol Recognit 2010; 23:472-9. [DOI: 10.1002/jmr.1014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Nayak M, Kotian A, Marathe S, Chakravortty D. Detection of microorganisms using biosensors-a smarter way towards detection techniques. Biosens Bioelectron 2009; 25:661-667. [PMID: 19782558 DOI: 10.1016/j.bios.2009.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/22/2009] [Accepted: 08/25/2009] [Indexed: 12/17/2022]
Abstract
Along with useful microorganisms, there are some that cause potential damage to the animals and plants. Detection and identification of these harmful organisms in a cost and time effective way is a challenge for the researchers. The future of detection methods for microorganisms shall be guided by biosensor, which has already contributed enormously in sensing and detection technology. Here, we aim to review the use of various biosensors, developed by integrating the biological and physicochemical/mechanical properties (of tranducers), which can have enormous implication in healthcare, food, agriculture and biodefence. We have also highlighted the ways to improve the functioning of the biosensor.
Collapse
Affiliation(s)
- Madhura Nayak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
47
|
Matharu Z, Bandodkar AJ, Sumana G, Solanki PR, Ekanayake EMIM, Kaneto K, Gupta V, Malhotra BD. Low Density Lipoprotein Detection Based on Antibody Immobilized Self-Assembled Monolayer: Investigations of Kinetic and Thermodynamic Properties. J Phys Chem B 2009; 113:14405-12. [DOI: 10.1021/jp903661r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zimple Matharu
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - Amay Jairaj Bandodkar
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - G. Sumana
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - Pratima R. Solanki
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - E. M. I. Mala Ekanayake
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - Keiichi Kaneto
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - Vinay Gupta
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| | - B. D. Malhotra
- Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology Kitakyushu, 808-0196, Japan, Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India, and Centre for NanoBioEngineering and
| |
Collapse
|
48
|
|
49
|
Arya SK, Solanki PR, Datta M, Malhotra BD. Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosens Bioelectron 2009; 24:2810-7. [DOI: 10.1016/j.bios.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
|