1
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
2
|
Archipowa N, Wittmann L, Köckenberger J, Ertl FJ, Gleixner J, Keller M, Heinrich MR, Kutta RJ. Characterization of Fluorescent Dyes Frequently Used for Bioimaging: Photophysics and Photocatalytical Reactions with Proteins. J Phys Chem B 2023; 127:9532-9542. [PMID: 37903729 DOI: 10.1021/acs.jpcb.3c04484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Derivatives of the rhodamine-based dye 5-TAMRA (5-carboxy-tetramethylrhodamine) and the indocarbocyanine-type Cy3B (cyclized derivative of the cyanine dye Cy3), both representing important fluorophores frequently used for the labeling of biomolecules (proteins, nucleic acids) and bioactive compounds, such as receptor ligands, were photophysically investigated in aqueous solution, i.e., in neat phosphate-buffered saline (PBS) and in PBS supplemented with 1 wt % bovine serum albumin (BSA). The dyes exhibit comparable absorption (λabs,max: 550-569 nm) and emission wavelengths (λem,max: 580-582 nm), and similar S1 lifetimes (2.27-2.75 ns), and their excited state deactivation proceeds mainly via the lowest excited singlet state (triplet quantum yield ca. 1%). However, the probes show marked differences with respect to their fluorescence quantum yield and photostability. While 5-TAMRA shows a lower quantum yield (37-39%) than the Cy3B derivative (ca. 57%), its photostability is considerably higher compared to Cy3B. Generally, the impact of the protein on the photophysics is low. However, on prolonged illumination, both fluorescent dyes undergo a photocatalytic reaction with tryptophan residues of BSA mediated by sensitized singlet oxygen resulting in a tryptophan photoproduct with an absorption maximum around 330 nm. The overall results of this work will assist in choosing the right dye for the labeling of bioactive compounds, and the study demonstrates that experiments performed with 5-TAMRA or Cy3B-labeled compounds in a biological environment may be influenced by photochemical modification of experimentally relevant proteins at aromatic amino acid residues.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Lukas Wittmann
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Graßl F, Konrad MMB, Krüll J, Pezerovic A, Zähnle L, Burkovski A, Heinrich MR. Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites. Chemistry 2023; 29:e202301208. [PMID: 37247408 DOI: 10.1002/chem.202301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant bacteria pose a major threat to global health, even as newly introduced antibiotics continue to lose their therapeutic value. Against this background, deeper insights into bacterial interaction with antibiotic drugs are urgently required, whereas fluorescently labeled drug conjugates can serve as highly valuable tools. Herein, the preparation and biological evaluation of 13 new fluorescent antibiotic-Cy5 dye conjugates is described, in which the tuning of the polarity of the Cy5 dye proved to be a key element to achieve highly favorable properties for various fields of application.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maike M B Konrad
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Azra Pezerovic
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Leon Zähnle
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Berehova N, van Meerbeek MP, Azargoshasb S, van Willigen DM, Slof LJ, Navaei Lavasani S, van Oosterom MN, van Leeuwen FWB, Buckle T. A Truncated 14-Amino-Acid Myelin Protein-Zero-Targeting Peptide for Fluorescence-Guided Nerve-Preserving Surgery. Biomolecules 2023; 13:942. [PMID: 37371522 DOI: 10.3390/biom13060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The occurrence of accidental nerve damage during surgery and the increasing application of image guidance during head-and-neck surgery have highlighted the need for molecular targeted nerve-sparing interventions. The implementation of such interventions relies on the availability of nerve-specific tracers. In this paper, we describe the development of a truncated peptide that has an optimized affinity for protein zero (P0), the most abundant protein in myelin. METHODS AND MATERIALS Further C- and N-terminal truncation was performed on the lead peptide Cy5-P0101-125. The resulting nine Cy5-labelled peptides were characterized based on their photophysical properties, P0 affinity, and in vitro staining. These characterizations were combined with evaluation of the crystal structure of P0, which resulted in the selection of the optimized tracer Cy5-P0112-125. A near-infrared Cy7-functionalized derivative (Cy7-P0112-125) was used to perform an initial evaluation of fluorescence-guided surgery in a porcine model. RESULTS Methodological truncation of the 26-amino-acid lead compound Cy5-P0101-125 resulted in a size reduction of 53.8% for the optimized peptide Cy5-P0112-125. The peptide design and the 1.5-fold affinity gain obtained after truncation could be linked to interactions observed in the crystal structure of the extracellular portion of P0. The near-infrared analogue Cy7-P0112-125 supported nerve illumination during fluorescence-guided surgery in the head-and-neck region in a porcine model. CONCLUSIONS Methodological truncation yielded a second-generation P0-specific peptide. Initial surgical evaluation suggests that the peptide can support molecular targeted nerve imaging.
Collapse
Affiliation(s)
- Nataliia Berehova
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Maarten P van Meerbeek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Samaneh Azargoshasb
- Design and Prototyping, Department of Medical Technology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Leon J Slof
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Design and Prototyping, Department of Medical Technology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Saaedeh Navaei Lavasani
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Head and Neck Surgery, Division of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Head and Neck Surgery, Division of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hao Z, Hu L, Wang X, Liu Y, Mo S. Synthesis of Heptamethine Cyanines from Furfural Derivatives. Org Lett 2023; 25:1078-1082. [PMID: 36786486 DOI: 10.1021/acs.orglett.2c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Despite the widespread theranostic utilization of cyanine dyes (Cy7), their synthetic method is still limited with pyridine or cyclohexanone derivatives as starting materials. Herein, we report the synthesis of Cy7 from furfural derivatives. First, a one-pot reaction strategy is developed to solve the unstable problem of the Stenhouse salts. Second, a stepwise condensation strategy is exploited to regioselectively synthesize asymmetrical Cy7. The methodology possesses advantages, such as easy handling, high yield, wide substrate scopes, and good functional group tolerance.
Collapse
Affiliation(s)
- Zhenming Hao
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaonan Wang
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shanyan Mo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
6
|
Exner R, Cortezon-Tamarit F, Ge H, Pourzand C, Pascu SI. Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds. ACS BIO & MED CHEM AU 2022; 2:642-654. [PMID: 36573095 PMCID: PMC9782398 DOI: 10.1021/acsbiomedchemau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.
Collapse
Affiliation(s)
- Rüdiger
M. Exner
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | | | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | - Charareh Pourzand
- Department
of Pharmacy and Pharmacology, University
of Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,
| |
Collapse
|
7
|
Hensbergen AW, de Kleer MA, Boutkan MS, van Willigen DM, van der Wijk FA, Welling MM, Wester HJ, Buckle T, van Leeuwen FW. Evaluation of asymmetric orthogonal cyanine fluorophores. DYES AND PIGMENTS 2020; 183:108712. [DOI: 10.1016/j.dyepig.2020.108712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
8
|
Buckle T, van der Wal S, van Willigen DM, Aalderink G, KleinJan GH, van Leeuwen FW. Fluorescence background quenching as a means to increase Signal to Background ratio - a proof of concept during Nerve Imaging. Theranostics 2020; 10:9890-9898. [PMID: 32863966 PMCID: PMC7449926 DOI: 10.7150/thno.46806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction: Adequate signal to background ratios are critical for the implementation of fluorescence-guided surgery technologies. While local tracer administrations help to reduce the chance of systemic side effects, reduced spatial migration and non-specific tracer diffusion can impair the discrimination between the tissue of interest and the background. To combat background signals associated with local tracer administration, we explored a pretargeting concept aimed at quenching non-specific fluorescence signals. The efficacy of this concept was evaluated in an in vivo neuronal tracing set-up. Methods: Neuronal tracing was achieved using a wheat germ agglutinin (WGA) lectin. functionalized with an azide-containing Cy5 dye (N3-Cy5-WGA). A Cy7 quencher dye (Cy7-DBCO) was subsequently used to yield Cy7-Cy5-WGA, a compound wherein the Cy5 emission is quenched by Förster resonance energy transfer to Cy7. The photophysical properties of N3-Cy5-WGA and Cy7-Cy5-WGA were evaluated together with deactivation kinetics in situ, in vitro (Schwannoma cell culture), ex vivo (muscle tissue from mice; used for dose optimization), and in vivo (nervus ischiadicus in THY-1 YFP mice). Results:In situ, conjugation of Cy7-DBCO to N3-Cy5-WGA resulted in >90% reduction of the Cy5 fluorescence signal intensity at 30 minutes after addition of the quencher. In cells, pretargeting with the N3-Cy5-WGA lectin yielded membranous staining, which could efficiently be deactivated by Cy7-DBCO over the course of 30 minutes (91% Cy5 signal decrease). In ex vivo muscle tissue, administration of Cy7-DBCO at the site where N3-Cy5-WGA was injected induced 80-90% quenching of the Cy5-related signal after 10-20 minutes, while the Cy7-related signal remained stable over time. In vivo,Cy7-DBCO effectively quenched the non-specific background signal up to 73% within 5 minutes, resulting in a 50% increase in the signal-to-background ratio between the nerve and injection site. Conclusion: The presented pretargeted fluorescence-quenching technology allowed fast and effective reduction of the background signal at the injection site, while preserving in vivo nerve visualization. While this proof-of-principle study was focused on imaging of nerves using a fluorescent WGA-lectin, the same concept could in the future also apply to applications such as sentinel node imaging.
Collapse
|
9
|
Wolf N, Kersting L, Herok C, Mihm C, Seibel J. High-Yielding Water-Soluble Asymmetric Cyanine Dyes for Labeling Applications. J Org Chem 2020; 85:9751-9760. [PMID: 32686416 DOI: 10.1021/acs.joc.0c01084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and efficient microwave-assisted synthesis of asymmetric pentamethine cyanine dyes with various functional groups was developed, which allows high-yielding results. The synthesized dyes are modifiable and suitable for single-molecule imaging in biological and medical sciences by application of click chemistry or classic esterification and amidation.
Collapse
Affiliation(s)
- Natalia Wolf
- Institute of Organic Chemistry, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Christoph Herok
- Institute of Organic Chemistry, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Cornelius Mihm
- Institute of Organic Chemistry, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Juergen Seibel
- Institute of Organic Chemistry, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
10
|
Hensbergen AW, Buckle T, van Willigen DM, Schottelius M, Welling MM, van der Wijk FA, Maurer T, van der Poel HG, van der Pluijm G, van Weerden WM, Wester HJ, van Leeuwen FWB. Hybrid Tracers Based on Cyanine Backbones Targeting Prostate-Specific Membrane Antigen: Tuning Pharmacokinetic Properties and Exploring Dye-Protein Interaction. J Nucl Med 2020; 61:234-241. [PMID: 31481575 PMCID: PMC8801960 DOI: 10.2967/jnumed.119.233064] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer surgery is currently being revolutionized by the use of prostate-specific membrane antigen (PSMA)-targeted radiotracers, for example, 99mTc-labeled PSMA tracer analogs for radioguided surgery. The purpose of this study was to develop a second-generation 99mTc-labeled PSMA-targeted tracer incorporating a fluorescent dye. Methods: Several PSMA-targeted hybrid tracers were synthesized: glutamic acid-urea-lysine (EuK)-Cy5-mas3, EuK-(SO3)Cy5-mas3, EuK-Cy5(SO3)-mas3, EuK-(Ar)Cy5-mas3, and EuK-Cy5(Ar)-mas3; the Cy5 dye acts as a functional backbone between the EuK targeting vector and the 2-mercaptoacetyl-seryl-seryl-seryl (mas3) chelate to study the dye's interaction with PSMA's amphipathic entrance funnel. The compounds were evaluated for their photophysical and chemical properties and PSMA affinity. After radiolabeling with 99mTc, we performed in vivo SPECT imaging, biodistribution, and fluorescence imaging on BALB/c nude mice with orthotopically transplanted PC346C tumors. Results: The dye composition influenced the photophysical properties (brightness range 0.3-1.5 × 104 M-1 × cm-1), plasma protein interactions (range 85.0% ± 2.3%-90.7% ± 1.3% bound to serum, range 76% ± 0%-89% ± 6% stability in serum), PSMA affinity (half-maximal inhibitory concentration [IC50] range 19.2 ± 5.8-175.3 ± 61.1 nM) and in vivo characteristics (tumor-to-prostate and tumor-to-muscle ratios range 0.02 ± 0.00-154.73 ± 28.48 and 0.46 ± 0.28-5,157.50 ± 949.17, respectively; renal, splenic, and salivary retention). Even though all tracer analogs allowed tumor identification with SPECT and fluorescence imaging, 99mTc-EuK-(SO3)Cy5-mas3 had the most promising properties (e.g., half-maximal inhibitory concentration, 19.2 ± 5.8, tumor-to-muscle ratio, 5,157.50 ± 949.17). Conclusion: Our findings demonstrate the intrinsic integration of a fluorophore in the pharmacophore in PSMA-targeted small-molecule tracers. In this design, having 1 sulfonate on the indole moiety adjacent to EuK (99mTc-EuK-(SO3)Cy5-mas3) yielded the most promising tracer candidate for imaging of PSMA.
Collapse
Affiliation(s)
- Albertus W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margret Schottelius
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felicia A van der Wijk
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Maurer
- Martini-Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands; and
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hans-Jürgen Wester
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Hensbergen A, van Willigen DM, Welling MM, van der Wijk FA, de Korne CM, van Oosterom MN, Schottelius M, Wester HJ, Buckle T, van Leeuwen FWB. Click Chemistry in the Design and Production of Hybrid Tracers. ACS OMEGA 2019; 4:12438-12448. [PMID: 31460363 PMCID: PMC6682143 DOI: 10.1021/acsomega.9b01484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Hybrid tracers containing both fluorescent and radioactive imaging labels have demonstrated clinical potential during sentinel lymph node procedures. To combine these two labels on a single targeting vector that allows tumor-targeted imaging, end-labeling strategies are often applied. For αvβ3-integrin-targeting hybrid tracers, providing an excellent model for evaluating tracer development strategies, end-labeling-based synthesis provides a rather cumbersome synthesis strategy. Hence, the aim of this study was to investigate the use of heterobifunctional cyanine dyes in a click-chemistry-based synthesis strategy for RGD-based hybrid tracers. The triazole-based hybrid tracers DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] and DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK] were obtained in fewer steps than DTPA-Lys(Cy5(SO 3 )methyl)-Cys-c[RGDyK] and had partition coefficients of log P (o/w) = -2.55 ± 0.10, -1.45 ± 0.03, and -2.67 ± 0.12, respectively. Both tracers were chemically stable, and the brightnesses of DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] and DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK] were, respectively, 23 × 103 and 40 × 103 M-1 cm-1; lower than that of the reference tracer DTPA-Lys(Cy5(SO 3 )methyl)-Cys-c[RGDyK] (50 × 103 M-1 cm-1). Assessment of serum protein binding revealed no statistically significant difference (44 ± 2 and 40 ± 2% bound for DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] and DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK], respectively; 36 ± 5% bound for DTPA-Lys(Cy5(SO 3 )methyl)-Cys-c[RGDyK]; p > 0.05). DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] (K D = 17.5 ± 6.0) had a statistically significantly higher affinity than the reference compound DTPA-Lys(Cy5(SO 3 )methyl)-Cys-c[RGDyK] (K D = 30.3 ± 5.7; p < 0.0001), but DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK] had a statistically significantly lower affinity (K D = 76.5 ± 18.3 nM; p < 0.0001). Both [ 111 In]DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] and [ 111 In]DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK] enabled in vivo visualization of the 4T1 tumor via fluorescence and single-photon emission computed tomography (SPECT) imaging. Biodistribution data (% ID/g) revealed a significant increase in nonspecific uptake in the kidney, liver, and muscle for both [ 111 In]DTPA.DBCO.N 3 (SO 3 )-Cy5-c[RGDyK] and [ 111 In]DTPA.BCN.N 3 (SO 3 )-Cy5-c[RGDyK]. As a result of the higher background activity, the tumor-to-background ratio of the click-labeled RGD analogues was twofold lower compared to the end-labeled reference compound. The use of click chemistry labeling did not yield a pronounced negative effect on serum protein binding, in vitro stability, and receptor affinity; and tumors could still be visualized using SPECT and fluorescence imaging. However, quantitative in vivo biodistribution data suggest that the triazole and strained cyclooctyne moieties associated with this type of click chemistry negatively influence the pharmacokinetics of RGD peptides. Nevertheless, the design might still hold promise for other targets/targeting moieties.
Collapse
Affiliation(s)
- Albertus
W. Hensbergen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Felicia A. van der Wijk
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Clarize M. de Korne
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Matthias N. van Oosterom
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Margret Schottelius
- Pharmaceutical
Radiochemistry, Technische Universität
München, Garching 85748, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical
Radiochemistry, Technische Universität
München, Garching 85748, Germany
| | - Tessa Buckle
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
13
|
Braun AB, Wehl I, Kölmel DK, Schepers U, Bräse S. New Polyfluorinated Cyanine Dyes for Selective NIR Staining of Mitochondria. Chemistry 2019; 25:7998-8002. [PMID: 30947363 DOI: 10.1002/chem.201900412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 12/26/2022]
Abstract
In this communication, the synthesis of three unknown polyfluorinated cyanine dyes and their application as selective markers for mitochondria are presented. By incorporating fluorous side chains into cyanine dyes, their remarkable photophysical properties were enhanced. To investigate their biological application, several different cell lines were incubated with the synthesized cyanine dyes. It was discovered that the presented dyes can be utilized for selective near-infrared-light (NIR) staining of mitochondria, with very low cytotoxicity determined by MTT assay. This is the first time that polyfluorinated cyanine fluorophores are presented as selective markers for mitochondria. Due to the versatile applications of polyfluorinated fluorophores in bioimaging and materials science, it is expected that the presented fluorophores will be stimulating for the scientific community.
Collapse
Affiliation(s)
- Alexander B Braun
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik K Kölmel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
|
15
|
Natyrov AN, Vlasova NA, Matvienko IV, Volkov EM, Bayramov VM, Kurochkin VE, Alexeev JI. Synthesis of Unsymmetrical Polymethine Cyanine Fluorescent Dyes for Nucleic Acid Analysis by Real-Time PCR. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
van der Wal S, de Korne CM, Sand LGL, van Willigen DM, Hogendoorn PCW, Szuhai K, van Leeuwen FWB, Buckle T. Bioorthogonally Applicable Fluorescence Deactivation Strategy for Receptor Kinetics Study and Theranostic Pretargeting Approaches. Chembiochem 2018; 19:1758-1765. [PMID: 29863301 PMCID: PMC6120557 DOI: 10.1002/cbic.201800229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/14/2022]
Abstract
The availability of a receptor for theranostic pretargeting approaches was assessed by use of a new click-chemistry-based deactivatable fluorescence-quenching concept. The efficacy was evaluated in a cell-based model system featuring both membranous (available) and internalized (unavailable) receptor fractions of the clinically relevant receptor chemokine receptor 4 (CXCR4). Proof of concept was achieved with a deactivatable tracer consisting of a CXCR4-specific peptide functionalized with a Cy5 dye bearing a chemoselective azide handle (N3 -Cy5-AcTZ14011). Treatment with a Cy7 quencher dye (Cy7-DBCO) resulted in optically silent Cy7-[click]-Cy5-AcTZ14011. In situ, a >90 % FRET-based reduction of the signal intensity of N3 -Cy5-AcTZ14011 [KD =(222.4±25.2) nm] was seen within minutes after quencher addition. In cells, discrimination between the membranous and the internalized receptor fraction could be achieved through quantitative assessment of quenching/internalization kinetics. Similar evaluation of an activatable tracer variant based on the same targeting moiety (Cy5-S-S-Cy3-AcTZ14011) was unsuccessful in vitro. As such, using the described deactivatable approach to screen membrane receptors and their applicability in receptor-(pre-)targeted theranostics can become straightforward.
Collapse
Affiliation(s)
- Steffen van der Wal
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Clarize M. de Korne
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Laurens G. L. Sand
- Department of PathologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
- Bone Marrow Transplantation and Cell TherapySt. Jude Children's Research Hospital262 Danny Thomas PlaceMemphisTN38105USA
| | - Danny M. van Willigen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Pancras C. W. Hogendoorn
- Department of PathologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell BiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
- Division of Molecular PathologyNetherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL)Plesmanlaan 1211066 CXAmsterdamThe Netherlands
| |
Collapse
|
17
|
Buckle T, van Willigen DM, Spa SJ, Hensbergen AW, van der Wal S, de Korne CM, Welling MM, van der Poel HG, Hardwick JCH, van Leeuwen FWB. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. J Nucl Med 2018; 59:986-992. [PMID: 29449447 DOI: 10.2967/jnumed.117.205575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
The potential of receptor-mediated fluorescence-based image-guided surgery tracers is generally linked to the near-infrared emission profile and good-manufacturing-production availability of fluorescent dyes. Surprisingly, little is known about the critical interaction between the structural composition of the dyes and the pharmacokinetics of the tracers. In this study, a dual-modality tracer design was used to systematically and quantitatively evaluate the influence of elongation of the polymethine chain in a fluorescent cyanine dye on the imaging potential of a targeted tracer. Methods: As a model system, the integrin marker αvβ3 was targeted using arginylglycylaspartisc acid [RGD]-based vectors functionalized with a 111In-diethylenetriaminepentaacetic acid (DTPA) chelate and a fluorescent dye: (Cy3-(SO3)methyl-COOH [emission wavelength (λem), 580 nm], Cy5-(SO3)methyl-COOH [λem, 680 nm], or Cy7-(SO3)methyl-COOH [λem, 780 nm]). Tracers were analyzed for differences in photophysical properties, serum protein binding, chemical or optical stability, and signal penetration through tissue. Receptor affinities were evaluated using saturation and competition experiments. In vivo biodistribution (SPECT imaging and percentage injected dose per gram of tissue) was assessed in tumor-bearing mice and complemented with in vivo and ex vivo fluorescence images obtained using a clinical-grade multispectral fluorescence laparoscope. Results: Two carbon-atom-step variations in the polymethine chain of the fluorescent cyanine dyes were shown to significantly influence the chemical and photophysical characteristics (e.g., stability, brightness, and tissue penetration) of the hybrid RGD tracers. DTPA-Cy5-(SO3)methyl-COOH-c[RGDyK] structurally outperformed its Cy3 and Cy7 derivatives. Radioactivity-based evaluation of in vivo tracer pharmacokinetics yielded the lowest nonspecific uptake and highest tumor-to-background ratio for DTPA-Cy5-(SO3)methyl-COOH-c[RGDyK] (13.2 ± 1.7), with the Cy3 and Cy7 analogs trailing at respective tumor-to-background ratios of 5.7 ± 0.7 and 4.7 ± 0.7. Fluorescence-based assessment of tumor visibility revealed a similar trend. Conclusion: These findings underline that variations in the polymethine chain lengths of cyanine dyes have a profound influence on the photophysical properties, stability, and in vivo targeting capabilities of fluorescent imaging tracers. In a direct comparison, the intermediate-length dye (Cy5) yielded a superior c[RGDyK] tracer, compared with the shorter (Cy3) and longer (Cy7) analogs.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Silvia J Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albertus W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen van der Wal
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clarize M de Korne
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; and
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; and
| |
Collapse
|
18
|
Li W, Geng J, Titmarsh H, Megia-Fernandez A, Dhaliwal K, Frame M, Bradley M. Rapid Polymer Conjugation Strategies for the Generation of pH-Responsive, Cancer Targeting, Polymeric Nanoparticles. Biomacromolecules 2018; 19:2721-2730. [DOI: 10.1021/acs.biomac.8b00309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Helen Titmarsh
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, U.K
| | | | | | - Margaret Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, U.K
| | | |
Collapse
|
19
|
Perry A, Kousseff CJ. Synthesis and metal binding properties of N-alkylcarboxyspiropyrans. Beilstein J Org Chem 2017; 13:1542-1550. [PMID: 28845199 PMCID: PMC5550821 DOI: 10.3762/bjoc.13.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022] Open
Abstract
Spiropyrans bearing an N-alkylcarboxylate tether are a common structure in dynamic, photoactive materials and serve as colourimetric/fluorimetric cation receptors. In this study, we describe an efficient synthesis of spiropyrans with 2-12 carbon atom alkylcarboxylate substituents, and a systematic analysis of their interactions with metal cations using 1H NMR and UV-visible spectroscopy. All N-alkylcarboxyspiropyrans in this study displayed a strong preference for binding divalent metal cations and a modest increase in M2+ binding affinity correlated with increased alkycarboxylate tether length.
Collapse
Affiliation(s)
- Alexis Perry
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | |
Collapse
|
20
|
Barbero N, Magistris C, Park J, Saccone D, Quagliotto P, Buscaino R, Medana C, Barolo C, Viscardi G. Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Org Lett 2015; 17:3306-9. [DOI: 10.1021/acs.orglett.5b01453] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nadia Barbero
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Claudio Magistris
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Jinhyung Park
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Davide Saccone
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Pierluigi Quagliotto
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Roberto Buscaino
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Claudio Medana
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Claudia Barolo
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| | - Guido Viscardi
- Department of Chemistry and NIS Interdepartmental
Centre and ‡Dipartimento di
Biotecnologie Molecolari e Scienze per la Salute, University of Torino, Via Giuria 7, I-10125 Torino, Italy
| |
Collapse
|
21
|
Lavis LD, Raines RT. Bright building blocks for chemical biology. ACS Chem Biol 2014; 9:855-66. [PMID: 24579725 PMCID: PMC4006396 DOI: 10.1021/cb500078u] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/28/2014] [Indexed: 02/08/2023]
Abstract
Small-molecule fluorophores manifest the ability of chemistry to solve problems in biology. As we noted in a previous review (Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142-155), the extant collection of fluorescent probes is built on a modest set of "core" scaffolds that evolved during a century of academic and industrial research. Here, we survey traditional and modern synthetic routes to small-molecule fluorophores and highlight recent biological insights attained with customized fluorescent probes. Our intent is to inspire the design and creation of new high-precision tools that empower chemical biologists.
Collapse
Affiliation(s)
- Luke D. Lavis
- Janelia Farm Research
Campus, Howard Hughes Medical
Institute, Ashburn, Virginia 20147, United
States
| | - Ronald T. Raines
- Departments
of Biochemistry and Chemistry, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Steponavičiūtė R, Martynaitis V, Bieliauskas A, Šačkus A. Synthesis of new fluorescent building blocks via the microwave-assisted annulation reaction of 1,1,2-trimethyl-1H-benzo[e]indole with acrylic acid and its derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ramos SS, Reis LV, Boto RE, Santos PF, Almeida P. Synthesis and dynamic study of new ortho-(alkylchalcogen)acetanilide atropisomers. A second look at the hydrolysis of quaternary 2-methylbenzazol-3-ium salts. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Facile synthesis of spiro[benzo[e]indole-2,2′-piperidine] derivatives and their transformation to novel fluorescent scaffolds. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Vendrell M, Zhai D, Er JC, Chang YT. Combinatorial strategies in fluorescent probe development. Chem Rev 2012; 112:4391-420. [PMID: 22616565 DOI: 10.1021/cr200355j] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marc Vendrell
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 138667 Singapore.
| | | | | | | |
Collapse
|
26
|
|
27
|
Dhaliwal K, Alexander L, Escher G, Unciti-Broceta A, Jansen M, Mcdonald N, Cardenas-Maestre JM, Sanchez-Martin R, Simpson J, Haslett C, Bradley M. Multi-modal molecular imaging approaches to detect primary cells in preclinical models. Faraday Discuss 2011; 149:107-14; discussion 137-57. [PMID: 21413177 DOI: 10.1039/c005410k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The need to understand cellular trafficking in vivo in situ requires the development and application of novel methodologies for cellular labeling and cell tracking. Here we applied new technologies associated with advances in molecular imaging to demonstrate the feasibility of labeling primary immune cells. We demonstrate the utility of fluorescently tagged polystyrene microspheres, MRI susceptible emulsions and cell entry peptoids. The adaptation of these labeling agents will permit cell specific delivery, diagnostic sensing and the delivery of therapeutic agents to sites of inflammation and infection.
Collapse
Affiliation(s)
- Kevin Dhaliwal
- MRC Centre for Inflammation Research, Queen's Medical Research Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dhaliwal K, Escher G, Unciti-Broceta A, McDonald N, Simpson AJ, Haslett C, Bradley M. Far red and NIR dye-peptoid conjugates for efficient immune cell labelling and tracking in preclinical models. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00171j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Das RK, Samanta A, Ha HH, Chang YT. Solid phase synthesis of ultra-photostable cyanine NIR dye library. RSC Adv 2011. [DOI: 10.1039/c1ra00498k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Romieu A, Bruckdorfer T, Clavé G, Grandclaude V, Massif C, Renard PY. N-Fmoc-α-sulfo-β-alanine: a versatile building block for the water solubilisation of chromophores and fluorophores by solid-phase strategy. Org Biomol Chem 2011; 9:5337-42. [DOI: 10.1039/c1ob05730h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Diversity-oriented fluorescence library approaches for probe discovery and development. Curr Opin Chem Biol 2010; 14:383-9. [DOI: 10.1016/j.cbpa.2010.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 11/20/2022]
|
32
|
Samanta A, Vendrell M, Das R, Chang YT. Development of photostable near-infrared cyanine dyes. Chem Commun (Camb) 2010; 46:7406-8. [DOI: 10.1039/c0cc02366c] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Maity S, Bhosale R, Banerji N, Vauthey E, Sakai N, Matile S. Optoelectronically mismatched oligophenylethynyl-naphthalenediimide SHJ architectures. Org Biomol Chem 2010; 8:1052-7. [DOI: 10.1039/b917188f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Bhosale R, Míšek J, Sakai N, Matile S. Supramolecular n/p-heterojunction photosystems with oriented multicolored antiparallel redox gradients (OMARG-SHJs). Chem Soc Rev 2010; 39:138-49. [DOI: 10.1039/b906115k] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Kishore RSK, Kel O, Banerji N, Emery D, Bollot G, Mareda J, Gomez-Casado A, Jonkheijm P, Huskens J, Maroni P, Borkovec M, Vauthey E, Sakai N, Matile S. Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection. J Am Chem Soc 2009; 131:11106-16. [DOI: 10.1021/ja9030648] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ravuri S. K. Kishore
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Oksana Kel
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Natalie Banerji
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Daniel Emery
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Guillaume Bollot
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Jiri Mareda
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Alberto Gomez-Casado
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Pascal Jonkheijm
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Jurriaan Huskens
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Plinio Maroni
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Michal Borkovec
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Eric Vauthey
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Naomi Sakai
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| | - Stefan Matile
- Departments of Organic, Inorganic and Analytical, and Physical Chemistry, University of Geneva, Geneva, Switzerland, and Molecular Nanofabrication Group, University of Twente, Enschede, The Netherlands
| |
Collapse
|