1
|
Avasthi I, Muthukumaran R, Prajapati RK, Sankararamakrishnan R, Verma S. Crystal Engineering and Self-Assembled Nanoring Formation with Purine-Cd II /Hg II Supramolecular Frameworks. Chem Asian J 2024:e202301119. [PMID: 38286758 DOI: 10.1002/asia.202301119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
We report three complexes of CdII and HgII with two purine rare tautomers, N9-(pyridin-2-ylmethyl)-N6 -methoxyadenine, L1 and N7-(pyridin-2-ylmethyl)-N6 -methoxyadenine, L2, highlighting diverse crystallographic signatures exhibited by them. Influence of substituents, binding sites, steric effects and metal salts on the different modes of binding enabled an insight into metal-nucleobase interactions. L1 interacted with two and three equivalents of Cd(NO3 )2 .4H2 O and HgCl2 , respectively, while L2 interacted with two equivalents of HgCl2 , altogether leading to three different complexes (1 [C48 H48 Cd6 N34 O50 ], 2 [C12 H12 Cl4 Hg2 N6 O] and 3 [C12 H12 Cl2 HgN6 O]) possessing varied dimensionality and stabilising interactions. The photoluminescent properties of these coordination frameworks have also been probed. Notably, nanoring-like structures were obtained, as a result of self-assembly of 3 when investigated by transmission electron microscopy, additionally supported by molecular dynamics simulations.
Collapse
Affiliation(s)
- Ilesha Avasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP (208016), India
| | - R Muthukumaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP (208016), India
| | - Rajneesh K Prajapati
- Centre for Nanoscience and Advanced Imaging Centre, Indian Institute of Technology Kanpur, Kanpur, UP (208016), India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP (208016), India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP (208016), India
| |
Collapse
|
2
|
Jezuita A, Wieczorkiewicz PA, Krygowski TM, Szatylowicz H. Influence of the Solvent on the Stability of Aminopurine Tautomers and Properties of the Amino Group. Molecules 2023; 28:molecules28072993. [PMID: 37049758 PMCID: PMC10095612 DOI: 10.3390/molecules28072993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Amino derivatives of purine (2-, 6-, 8-, and N-NH2) have found many applications in biochemistry. This paper presents the results of a systematic computational study of the substituent and solvent effects in these systems. The issues considered are the electron-donating properties of NH2, its geometry, π-electron delocalization in purine rings and tautomeric stability. Calculations were performed in ten environments, with 1 < ε < 109, using the polarizable continuum model of solvation. Electron-donating properties were quantitatively described by cSAR (charge of the substituent active region) parameter and π-electron delocalization by using the HOMA (harmonic oscillator model of aromaticity) index. In aminopurines, NH2 proximity interactions depend on its position and the tautomer. The results show that they are the main factor determining how solvation affects the electron-donating strength and geometry of NH2. Proximity with the NH∙∙∙HN repulsive interaction between the NH2 and endocyclic NH group results in stronger solvent effects than the proximity with two attractive NH∙∙∙N interactions. The effect of amino and nitro (previously studied) substitution on aromaticity was compared; these two groups have, in most cases, the opposite effect, with the largest being in N1H and N3H purine tautomers. The amino group has a smaller effect on the tautomeric preferences of purine than the nitro group. Only in 8-aminopurine do tautomeric preferences change: N7H is more stable than N9H in H2O.
Collapse
Affiliation(s)
- Anna Jezuita
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Paweł A. Wieczorkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (P.A.W.); (H.S.)
| | | | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (P.A.W.); (H.S.)
| |
Collapse
|
3
|
Intramolecular Interactions in Derivatives of Uracil Tautomers. Molecules 2022; 27:molecules27217240. [PMID: 36364066 PMCID: PMC9656941 DOI: 10.3390/molecules27217240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The influence of solvents on intramolecular interactions in 5- or 6-substituted nitro and amino derivatives of six tautomeric forms of uracil was investigated. For this purpose, the density functional theory (B97-D3/aug-cc-pVDZ) calculations were performed in ten environments (1 > ε > 109) using the polarizable continuum model (PCM) of solvation. The substituents were characterized by electronic (charge of the substituent active region, cSAR) and geometric parameters. Intramolecular interactions between non-covalently bonded atoms were investigated using the theory of atoms in molecules (AIM) and the non-covalent interaction index (NCI) method, which allowed discussion of possible interactions between the substituents and N/NH endocyclic as well as =O/−OH exocyclic groups. The nitro group was more electron-withdrawing in the 5 than in the 6 position, while the opposite effect was observed in the case of electron donation of the amino group. These properties of both groups were enhanced in polar solvents; the enhancement depended on the ortho interactions. Substitution or solvation did not change tautomeric preferences of uracil significantly. However, the formation of a strong NO∙∙∙HO intramolecular hydrogen bond in the 5-NO2 derivative stabilized the dienol tautomer from +17.9 (unsubstituted) to +5.4 kcal/mol (substituted, energy relative to the most stable diketo tautomer).
Collapse
|
4
|
Lippert B, Sanz Miguel PJ. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
7
|
Szatylowicz H, Stasyuk OA, Solà M, Krygowski TM. Aromaticity of nucleic acid bases. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Halina Szatylowicz
- Faculty of Chemistry Warsaw University of Technology, Noakowskiego 3, 00‐664 Warsaw Poland
| | - Olga A. Stasyuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | | |
Collapse
|
8
|
Eun HJ, Ishiuchi SI, Baek JY, Lee S, Heo J, Fujii M, Kim NJ. Cryogenic ion spectroscopy of adenine complexes containing alkali metal cations. Phys Chem Chem Phys 2021; 23:6783-6790. [PMID: 33720244 DOI: 10.1039/d1cp00312g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryogenic ion spectroscopy was used to characterize adenine complexes containing alkali metal cations (M+A, M = Cs, Rb, K, Na, and Li) produced by electrospray ionization. The ultraviolet (UV) photodissociation spectra of the complexes stored in a cryogenic ion trap exhibited well-resolved vibronic bands near their origin bands of the S0-S1 transition. The UV-UV hole-burning and infrared ion-dip spectra showed that all the M+A ions in the ion trap were single isomers of M+A7a, where the M+ ion was not bound to canonical 9H-adenine (A9) but bound to a rare tautomer, 7H-adenine (A7). Density functional theory calculations showed lower tautomerization barriers for M+A9 than for bare A9 in aqueous solution. We suggest that M+ ions not only play a catalytic role in the tautomerization of A9 to A7 but also increase the tautomerization yield by forming stable M+A7a isomers.
Collapse
Affiliation(s)
- Han Jun Eun
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ventura G, Calvano CD, Losito I, Viola A, Cinquepalmi V, Cataldi TRI. In vitro reactions of a cyanocobalamin-cisplatin conjugate with nucleoside monophosphates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8945. [PMID: 32910479 DOI: 10.1002/rcm.8945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Cisplatin (CP) is a widely used anticancer drug characterized by toxic side effects that could be alleviated using novel delivery systems including CP prodrugs. The in vitro incubation of a putative prodrug, obtained from cyanocobalamin (CNCbl) and cis-diamminemonochloroplatinum(II) (mCP), with nucleoside monophosphates (NMPs) was investigated. METHODS The in vitro reactions between the putative prodrug CNCbl-mCP and the NMPs of adenosine (AMP), guanosine (GMP), cytidine (CMP) and uridine (UMP) were carried out in slightly acidic water-methanol solutions at 37°C for 24 h. Each sample was examined using reversed-phase liquid chromatography coupled with electrospray ionization in positive ion mode and tandem mass spectrometry (RPLC/ESI-MS/MS) by collision-induced dissociation in a linear ion-trap mass spectrometer. RESULTS Seven adducts were recognized as formed by substitution reactions of the chloride ligand in planar CP. Comparison between observed and theoretical isotopic patterns together with MS/MS fragmentation pathways revealed the presence of single or multiple binding sites depending on the NMP involved. The CNCbl-mCP conjugate was found to interact with N7 or O4 atoms of GMP and UMP, respectively, generating single adducts, while two isomeric adducts were observed for CMP. Finally, AMP gave rise to three isomeric adducts. CONCLUSIONS In agreement with literature data relevant to the interaction between CP and NMPs, the most reactive nucleotides were AMP and GMP. The present RPLC/ESI-MS/MS approach is very promising for investigation of the reactions of CP conjugates with ribonucleotides not only in vitro but also in vivo.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Cosima Damiana Calvano
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Andrea Viola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Valeria Cinquepalmi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, Bari, 70126, Italy
| |
Collapse
|
10
|
Sharafdini R, Ramazani S. A theoretical study on the role of stability of cytosine and its tautomers in DNA (deoxyribonucleic acid), and investigation of interactions of Na +, K +, Mg 2+, Ca 2+, Zn 2+ metal ions and OH radical with cytosine tautomers. J Biomol Struct Dyn 2020; 40:3819-3836. [PMID: 33252005 DOI: 10.1080/07391102.2020.1850526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, 21 cytosine tautomers were investigated so that some tautomers were reported for the first time in the gas phase and aqueous solution. C3 tautomer was the most stable tautomer in gas phase but C1 was the most stable structure in aqueous solution. The potential energy surface of all trajectories was determined for 21 tautomers and 22 transition states. Also, interactions of cytosine tautomers with Na+, K+, Mg2+, Ca2+ and Zn2+ metal ions were studied in gas phase and aqueous solution. Three types of interactions among metal ions and (N1 and O10), (N3 and O10) and (N3 and N9) of cytosine tautomers were investigated. The study of interaction energies of all complexes showed the stability of complexes in which interactions among Mg2+ and Zn2+ with tautomers were stronger than interactions among Ca2+, Na+ and K+ with tautomers, respectively. Some interactions of metal ions with cytosine tautomers made the most stable tautomers. So, the stability of rare tutomeric forms had a significant effect on stabilization of anomalous DNA (deoxyribonucleic acid) double helix and spontaneous mutations. Also, one of the most important causes of mutations in DNA (deoxyribonucleic acid) was the reaction of OH radical with nucleotide bases. So, interactions of OH radical with cytosine and its tautomers were investigated in gas phase and aqueous solution.Communicated by Ramaswamy H. Sarma.
Collapse
|
11
|
The effect of metal alkali cations on the properties of hydrogen bonds in tautomeric forms of adenine - Guanine mismatch. J Mol Graph Model 2020; 100:107705. [PMID: 32810731 DOI: 10.1016/j.jmgm.2020.107705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022]
Abstract
The effect of interactions of Li+, Na+ and K+ cations with two preferred configuration of the A-G mispairs, AantiGanti and AsynGanti, on the geometries and hydrogen bond energies have been studied at the MP2/6-311++G(d,p) level of theory. For each ion type, the most stable complex in AantiGanti and AsynGanti configurations are related to binding cation to N3 atom of guanine and N1 atom of adenine, respectively. The AantiGanti configuration is higher in the absolute values of binding energy than the AsynGanti configuration, indicating that AantiGanti configuration is more stable than AsynGanti ones. The results indicate that the strength of hydrogen bonds depends on the type and position of cations in considered systems. The values of hydrogen bonding energies estimated by the EML formula in AantiGanti mismatch are higher than AsynGanti case. The influences of cations binding in hydrogen bond strength are confirmed by the results of natural bond orbital (NBO) and atoms in molecules (AIM) analyses.
Collapse
|
12
|
Seligmann H, Demongeot J. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. Int J Mol Sci 2020; 21:E347. [PMID: 31948054 PMCID: PMC6981979 DOI: 10.3390/ijms21010347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Codon directional asymmetry (CDA) classifies the 64 codons into palindromes (XYX, CDA = 0), and 5'- and 3'-dominant (YXX and XXY, CDA < 0 and CDA > 0, respectively). Previously, CDA was defined by the purine/pyrimidine divide (A,G/C,T), where X is either a purine or a pyrimidine. For the remaining codons with undefined CDA, CDA was defined by the 5' or 3' nucleotide complementary to Y. This CDA correlates with cognate amino acid tRNA synthetase classes, antiparallel beta sheet conformation index and the evolutionary order defined by the self-referential genetic code evolution model (CDA < 0: class I, high beta sheet index, late genetic code inclusion). Methods: We explore associations of CDAs defined by nucleotide classifications according to complementarity strengths (A:T, weak; C:G, strong) and keto-enol/amino-imino groupings (G,T/A,C), also after swapping 1st and 2nd codon positions with amino acid physicochemical and structural properties. Results: Here, analyses show that for the eight codons whose purine/pyrimidine-based CDA requires using the rule of complementarity with the midposition, using weak interactions to define CDA instead of complementarity increases associations with tRNA synthetase classes, antiparallel beta sheet index and genetic code evolutionary order. CDA defined by keto-enol/amino-imino groups, 1st and 2nd codon positions swapped, correlates with amino acid parallel beta sheet formation indices and Doolittle's hydropathicities. Conclusions: Results suggest (a) prebiotic swaps from N2N1N3 to N1N2N3 codon structures, (b) that tRNA-mediated translation replaced direct codon-amino acid interactions, and (c) links between codon structures and cognate amino acid properties.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
- Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France;
| | - Jacques Demongeot
- Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France;
| |
Collapse
|
13
|
García-Terán JP, Beobide G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Román P. Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Liska A, Triskova I, Ludvik J, Trnkova L. Oxidation potentials of guanine, guanosine and guanosine-5′-monophosphate: Theory and experiment. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Rachuri Y, Kurisingal JF, Chitumalla RK, Vuppala S, Gu Y, Jang J, Choe Y, Suresh E, Park DW. Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO2 Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorg Chem 2019; 58:11389-11403. [DOI: 10.1021/acs.inorgchem.9b00814] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Eringathodi Suresh
- Analytical and Environmental Science Division and Centralized Instrument Facility, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, India
| | | |
Collapse
|
16
|
Taccone MI, Cruz-Ortiz AF, Dezalay J, Soorkia S, Broquier M, Grégoire G, Sánchez CG, Pino GA. UV Photofragmentation of Cold Cytosine–M+ Complexes (M+: Na+, K+, Ag+). J Phys Chem A 2019; 123:7744-7750. [DOI: 10.1021/acs.jpca.9b06495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martín I. Taccone
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Andrés F. Cruz-Ortiz
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Jordan Dezalay
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Michel Broquier
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Centre Laser de I’Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Cristián G. Sánchez
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Gustavo A. Pino
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| |
Collapse
|
17
|
|
18
|
Sinha I, Heller L, Kösters J, Müller J. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Two dinuclear metal complexes bearing the purine derivative 7-methyl-6-furylpurine (1b) as a ligand are reported. In [Ag2(1b)2(DMSO)2](ClO4)2·DMSO and [Cu2(1b)2(NO3)2], two bridging purine derivatives coordinate the two metal ions via their N3 and N9 positions. In the silver(I) complex, the coordination environment of each metal ion is completed by a DMSO ligand, whereas an additional nitrato ligand coordinates to each copper(I) ion. The intramolecular Ag···Ag distance of 3.1069(5) Å is in agreement with the presence of a weak argentophilic interaction, whereas the Cu···Cu distance of 2.9382(4) Å is too long to be indicative of a cuprophilic interaction. The compounds represent the first examples of dinuclear complexes comprising two N3,N9-bridging purine derivatives without any additional bridging ligand.
Collapse
Affiliation(s)
- Indranil Sinha
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28/30 , 48149 Münster , Germany
| | - Lukas Heller
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28/30 , 48149 Münster , Germany
| | - Jutta Kösters
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28/30 , 48149 Münster , Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster , Institut für Anorganische und Analytische Chemie , Corrensstraße 28/30 , 48149 Münster , Germany , Phone: +49 251 83 36006
| |
Collapse
|
19
|
Karthikeyan A, Zeller M, Thomas Muthiah P. Supramolecular architectures in metal(II) (Cd/Zn) halide/nitrate complexes of cytosine/5-fluorocytosine. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:789-796. [PMID: 29973418 DOI: 10.1107/s2053229618007672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022]
Abstract
Three new metal(II)-cytosine (Cy)/5-fluorocytosine (5FC) complexes, namely bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)diiodidocadmium(II) or bis(cytosine)diiodidocadmium(II), [CdI2(C4H5N3O)2], (I), bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)bis(nitrato-κ2O,O')cadmium(II) or bis(cytosine)bis(nitrato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], (II), and (6-amino-5-fluoro-1,2-dihydropyrimidin-2-one-κN3)aquadibromidozinc(II)-6-amino-5-fluoro-1,2-dihydropyrimidin-2-one (1/1) or (6-amino-5-fluorocytosine)aquadibromidozinc(II)-4-amino-5-fluorocytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, (III), have been synthesized and characterized by single-crystal X-ray diffraction. In complex (I), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine molecules, leading to a distorted tetrahedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E57, m558-m560]. In compound (II), each of the two cytosine molecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octahedral geometry around cadmium. The typical interligand N-H...O hydrogen bond involving two cytosine molecules is also present. In compound (III), one zinc-coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC molecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)-H tautomer of 5FC mimics N(3)-protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetrahedral geometry around zinc is completed by two bromide ions and a water molecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a-axis direction, forming the rungs of a ladder motif, whereas Zn-Br bonds and N-H...Br hydrogen bonds form the rails of the ladder. The coordinated water molecules bridge the two types of 5FC molecules via O-H...O hydrogen bonds. The cytosine molecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound (III), the uncoordinated 5FC molecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N-H...O, N-H...N, O-H...O, N-H...I and N-H...Br hydrogen bonds, and stacking interactions.
Collapse
Affiliation(s)
- Ammasai Karthikeyan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
20
|
Valadbeigi Y. Effect of alkali metal cations interactions on the intramolecular proton transfers in [cytosine-X]+ adduct ions, X = H, Li, Na, K. MAIN GROUP CHEMISTRY 2018. [DOI: 10.3233/mgc-180257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Masoodi HR, Bagheri S, Ghaderi Z. The influence of Cu + binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study. J Biomol Struct Dyn 2018; 37:1923-1934. [PMID: 29757083 DOI: 10.1080/07391102.2018.1475256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present work, the influence of Cu+ binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu+ binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu+ binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu+ on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Zahra Ghaderi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| |
Collapse
|
22
|
Li D, Han Y, Li H, Zhang P, Kang Q, Li Z, Shen D. The influence of isolated and penta-hydrated Zn 2+ on some of the intramolecular proton-transfer processes of thymine: a quantum chemical study. RSC Adv 2018; 8:11021-11026. [PMID: 35541537 PMCID: PMC9078977 DOI: 10.1039/c7ra13750h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 02/02/2023] Open
Abstract
Zinc cation (Zn2+) plays an important role in the chemistry of DNA base pairs. In this work, the influence of isolated and penta-hydrated Zn2+ on some of the intramolecular proton-transfer processes of thymine (T) is investigated by the density functional theory method. It is shown that the calculated binding energies between Zn2+ and T are exothermic in vacuum. Compared to T, Zn2+ increases the stability of tautomer T' by 28.7 kcal mol-1, promoting the intramolecular proton transfer of T. But in a micro-water environment, the attachment processes of Zn2+ to T hydrates, penta-hydrated Zn2+ to T, and penta-hydrated Zn2+ to T hydrates lead to the rearrangement of molecules and the redistribution of charges. The conventional T is still the most stable form and the influence of Zn2+ is much reduced and the proton transfer is thermodynamically unfavored. The detailed characterization is helpful to understand the genotoxicity of zinc ions.
Collapse
Affiliation(s)
- Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Ying Han
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Huijuan Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Zhihua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
23
|
Lippert B, Sanz Miguel PJ. Merging Metal–Nucleobase Chemistry With Supramolecular Chemistry. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Basumatary J, Bezbaruah B, Kalita R, Barman TK, Medhi C. Quantum mechanical studies on the existence of AC mismatches through prototopic tautomerization pathway in adenine and cytosine recognition. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gas phase studies on the electronic stabilities and thermochemical properties of metastable AC mismatches have been performed and the results are analyzed to explain the features of experimentally available AC mismatches. The hydrogen bonding patterns observed in these mismatches are relevant to the formation of stable AC mismatches. In these AC pairs, the H migration mechanism to generate other tautomeric forms is not observed, which shows the compatibility of H bonding capacity of the sites involved in H bonds. The presence of hydrogen bond type –N[Formula: see text]H–N– may contribute to better AC pairing, hence cisA1-1cisC2, transA2-cisC1 and transA1-1cisC2 are found to be more favorable pairs compared to other AC pairs.
Collapse
Affiliation(s)
| | | | - Rinki Kalita
- Department of Chemistry, Gauhati University, P.O Gauhati University, Guwahati 781014, India
| | - Tapash Kumar Barman
- Department of Chemistry, Gauhati University, P.O Gauhati University, Guwahati 781014, India
| | - Chitrani Medhi
- Department of Chemistry, Gauhati University, P.O Gauhati University, Guwahati 781014, India
| |
Collapse
|
25
|
Thomas‐Gipson J, Beobide G, Castillo O, Luque A, Pérez‐Yáñez S, Román P. Supramolecular Architectures Based on Metal–Cytosine Systems. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jintha Thomas‐Gipson
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
| | - Garikoitz Beobide
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
| | - Oscar Castillo
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
| | - Antonio Luque
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
| | - Sonia Pérez‐Yáñez
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
- Departamento de Química Inorgánica Facultad de Farmacia Universidad del País Vasco (UPV/EHU) 01006 Vitoria‐Gasteiz Spain
| | - Pascual Román
- Departamento de Química Inorgánica Facultad de Ciencia y Tecnología Universidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
| |
Collapse
|
26
|
Nguyen DB, Nguyen TD, Kim S, Joo SW. Raman spectroscopy and quantum-mechanical analysis of tautomeric forms in cytosine and 5-methylcytosine on gold surfaces. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:183-188. [PMID: 27912177 DOI: 10.1016/j.saa.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Spectral differences between cytosine (Cyt) and 5-methylcytosine (5MC) were investigated by means of Raman spectroscopy with a combination of density functional theory (DFT) calculations. Surface-enhanced Raman scattering (SERS) revealed discriminating peaks of 5MC from those of Cyt upon adsorption on gold nanoparticles (AuNPs). Among the notable features, the multiple bands between 850 and 700cm-1 for the ring-breathing modes of 5MC and Cyt could be correlated well with the simulated spectra based on the DFT calculations of the adsorbates on the gold cluster atoms. The relative energetic stabilities of the enol/keto and the amino/imino tautomeric forms of Cyt and 5MC have been estimated using DFT calculations, before and after binding six atom gold clusters. Among the six tautomeric forms, the 7H keto amino and the 4H imino trans forms are expected to be predominant in binding gold atoms, whereas the enol trans/cis conformers would coexist in the free gas phase. Our approach may provide useful theoretical guidelines for identifying 5MC from Cyt by analyzing Raman spectra on gold surfaces on the basis of quantum-mechanical calculations.
Collapse
Affiliation(s)
- Dinh Bao Nguyen
- Department of Chemistry, Soongsil University, Seoul 156-743, Republic of Korea; Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 156-743, Republic of Korea
| | - Thanh Danh Nguyen
- Department of Chemistry, Soongsil University, Seoul 156-743, Republic of Korea; Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 156-743, Republic of Korea
| | - Sangsoo Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 156-743, Republic of Korea; Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 156-743, Republic of Korea.
| |
Collapse
|
27
|
Lippert B, Sanz Miguel PJ. More of a misunderstanding than a real mismatch? Platinum and its affinity for aqua, hydroxido, and oxido ligands. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Raj P, Singh A, Kaur K, Aree T, Singh A, Singh N. Fluorescent Chemosensors for Selective and Sensitive Detection of Phosmet/Chlorpyrifos with Octahedral Ni(2+) Complexes. Inorg Chem 2016; 55:4874-83. [PMID: 27115348 DOI: 10.1021/acs.inorgchem.6b00332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.
Collapse
Affiliation(s)
- Pushap Raj
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Amanpreet Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Kamalpreet Kaur
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Phyathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities, Jawaharlal Nehru Government Engineering College , Sundernagar, Mandi (H.P.) 175018, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| |
Collapse
|
29
|
|
30
|
Synthesis and X-ray crystal structure of the dirhenium complex Re2(i-C3H7COO)4Cl2 and its interactions with the DNA purine nucleobases. J Inorg Biochem 2015; 153:114-120. [DOI: 10.1016/j.jinorgbio.2015.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 11/18/2022]
|
31
|
Masoodi HR, Bagheri S, Abareghi M. The effects of tautomerization and protonation on the adenine-cytosine mismatches: a density functional theory study. J Biomol Struct Dyn 2015. [PMID: 26198186 DOI: 10.1080/07391102.2015.1072734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine-cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Mahsa Abareghi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| |
Collapse
|
32
|
Baek JY, Choi CM, Eun HJ, Park KS, Choi MC, Heo J, Kim NJ. Ultraviolet photodissociation spectroscopy of cold, isolated adenine complexes with a potassium cation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Taccone MI, Féraud G, Berdakin M, Dedonder-Lardeux C, Jouvet C, Pino GA. Communication: UV photoionization of cytosine catalyzed by Ag+. J Chem Phys 2015; 143:041103. [DOI: 10.1063/1.4927469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Martín I. Taccone
- INFIQC (CONICET – Universidad Nacional de Córdoba), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Geraldine Féraud
- Physique des Interactions Ioniques et Moléculaires (PIIM): UMR- 7345, CNRS, Aix Marseille Université, 13397 Marseille, France
| | - Matías Berdakin
- INFIQC (CONICET – Universidad Nacional de Córdoba), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Claude Dedonder-Lardeux
- Physique des Interactions Ioniques et Moléculaires (PIIM): UMR- 7345, CNRS, Aix Marseille Université, 13397 Marseille, France
| | - Christophe Jouvet
- Physique des Interactions Ioniques et Moléculaires (PIIM): UMR- 7345, CNRS, Aix Marseille Université, 13397 Marseille, France
| | - Gustavo A. Pino
- INFIQC (CONICET – Universidad Nacional de Córdoba), Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
34
|
Stasyuk OA, Szatylowicz H, Krygowski TM. Aromaticity of H-bonded and metal complexes of guanine tautomers. Struct Chem 2015. [DOI: 10.1007/s11224-015-0605-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Ganbold EO, Yoon J, Cho KH, Joo SW. Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:104-110. [PMID: 26037494 DOI: 10.1016/j.saa.2015.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs.
Collapse
Affiliation(s)
- Erdene-Ochir Ganbold
- Department of Chemistry, Soongsil University, Sangdo-dong, Dongjak-gu, Seoul 156-743, Republic of Korea
| | - Jinha Yoon
- Department of Chemistry, Soongsil University, Sangdo-dong, Dongjak-gu, Seoul 156-743, Republic of Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Sangdo-dong, Dongjak-gu, Seoul, Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Sangdo-dong, Dongjak-gu, Seoul 156-743, Republic of Korea.
| |
Collapse
|
36
|
Lüth MS, Freisinger E, Kampf G, Garijo Anorbe M, Griesser R, Operschall BP, Sigel H, Lippert B. Connectivity patterns and rotamer states of nucleobases determine acid-base properties of metalated purine quartets. J Inorg Biochem 2015; 148:93-104. [PMID: 25773716 DOI: 10.1016/j.jinorgbio.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
Abstract
Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.
Collapse
Affiliation(s)
- Marc Sven Lüth
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany; Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Gunnar Kampf
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany; Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Marta Garijo Anorbe
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Bert P Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | - Bernhard Lippert
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany.
| |
Collapse
|
37
|
Berdakin M, Steinmetz V, Maitre P, Pino GA. On the Ag+–cytosine interaction: the effect of microhydration probed by IR optical spectroscopy and density functional theory. Phys Chem Chem Phys 2015; 17:25915-24. [DOI: 10.1039/c5cp02221e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single water molecule hydration stabilizes two quasi-isoenergetic complexes of cytosine⋯Ag+.
Collapse
Affiliation(s)
- Matias Berdakin
- INFIQC (CONICET – Universidad Nacional de Córdoba)
- Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- Centro Láser de Ciencias Moleculares
- Universidad Nacional de Córdoba
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- Université Paris Sud
- UMR8000 CNRS
- Faculté des Sciences
- 91405 Orsay Cedex
| | - Philippe Maitre
- Laboratoire de Chimie Physique
- Université Paris Sud
- UMR8000 CNRS
- Faculté des Sciences
- 91405 Orsay Cedex
| | - Gustavo A. Pino
- INFIQC (CONICET – Universidad Nacional de Córdoba)
- Dpto. de Fisicoquímica
- Facultad de Ciencias Químicas
- Centro Láser de Ciencias Moleculares
- Universidad Nacional de Córdoba
| |
Collapse
|
38
|
Abstract
Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.
Collapse
Affiliation(s)
- Vipender Singh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Wincel H. Hydration energies of protonated and sodiated thiouracils. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2134-2142. [PMID: 25270881 PMCID: PMC4221615 DOI: 10.1007/s13361-014-0987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Hydration reactions of protonated and sodiated thiouracils (2-thiouracil, 6-methyl-2-thiouracil, and 4-thiouracil) generated by electrospray ionization have been studied in a gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH(o)n, ΔS(o)n, and ΔG(o)n, for the hydrated systems were obtained by equilibrium measurements. The water binding energies of protonated thiouracils, [2SU]H(+) and [6Me2SU]H(+), were found to be of the order of 51 kJ/mol for the first, and 46 kJ/mol for the second water molecule. For [4SU]H(+), these values are 3-4 kJ/mol lower. For sodiated complexes, these energies are similar for all studied systems, and varied between 62 and 68 kJ/mol for the first and between 48 and 51 kJ/mol for the second water molecule. The structural aspects of the precursors for hydrated complexes are discussed in conjunction with available literature data.
Collapse
Affiliation(s)
- Henryk Wincel
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland,
| |
Collapse
|
40
|
Galvão TLP, Ribeiro da Silva MDMC, Ribeiro da Silva MAV. From 2,4-Dimethoxypyrimidine to 1,3-Dimethyluracil: Isomerization and Hydrogenation Enthalpies and Noncovalent Interactions. J Phys Chem A 2014; 118:4816-23. [DOI: 10.1021/jp503412u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tiago L. P. Galvão
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, Faculty
of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Maria D. M. C. Ribeiro da Silva
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, Faculty
of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | - Manuel A. V. Ribeiro da Silva
- Centro de Investigação
em Química, Department of Chemistry and Biochemistry, Faculty
of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| |
Collapse
|
41
|
Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 2014; 114:6383-422. [PMID: 24779633 DOI: 10.1021/cr400252h] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadeusz M Krygowski
- Department of Chemistry, Warsaw University , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
42
|
Jennifer SJ, Muthiah PT. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds. Chem Cent J 2014; 8:20. [PMID: 24655545 PMCID: PMC3996520 DOI: 10.1186/1752-153x-8-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 11/29/2022] Open
Abstract
Background The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Results Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C–H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. Conclusions In all the compounds (1a-14b) either neutral O–H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).
Collapse
|
43
|
Singh V, Peng CS, Li D, Mitra K, Silvestre KJ, Tokmakoff A, Essigmann JM. Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch. ACS Chem Biol 2014; 9:227-36. [PMID: 24252063 DOI: 10.1021/cb400581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural diversification of canonical nucleic acid bases and nucleotide analogues by tautomerism has been proposed to be a powerful on/off switching mechanism allowing regulation of many biological processes mediated by RNA enzymes and aptamers. Despite the suspected biological importance of tautomerism, attempts to observe minor tautomeric forms in nucleic acid or hybrid nucleic acid-ligand complexes have met with challenges due to the lack of sensitive methods. Here, a combination of spectroscopic, biochemical, and computational tools probed tautomerism in the context of an RNA aptamer-ligand complex; studies involved a model ligand, oxythiamine pyrophosphate (OxyTPP), bound to the thiamine pyrophosphate (TPP) riboswitch (an RNA aptamer) as well as its unbound nonphosphorylated form, oxythiamine (OxyT). OxyTPP, similarly to canonical heteroaromatic nucleic acid bases, has a pyrimidine ring that forms hydrogen bonding interactions with the riboswitch. Tautomerism was established using two-dimensional infrared (2D IR) spectroscopy, variable temperature FTIR and NMR spectroscopies, binding isotope effects (BIEs), and computational methods. All three possible tautomers of OxyT, including the minor enol tautomer, were directly identified, and their distributions were quantitated. In the bound form, BIE data suggested that OxyTPP existed as a 4'-keto tautomer that was likely protonated at the N1'-position. These results also provide a mechanistic framework for understanding the activation of riboswitch in response to deamination of the active form of vitamin B1 (or TPP). The combination of methods reported here revealing the fine details of tautomerism can be applied to other systems where the importance of tautomerism is suspected.
Collapse
Affiliation(s)
- Vipender Singh
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| | - Chunte Sam Peng
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Deyu Li
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| | | | - Katherine J. Silvestre
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Khanna S, Verma S. Crystal engineering with a purine rare tautomer: structures and luminescence properties. CrystEngComm 2014. [DOI: 10.1039/c4ce00611a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium interacts with purine nucleobases through N7 imino nitrogen and alters their amino–imino tautomeric equilibrium. Herein, we report unique crystallographic signatures and luminescence properties of cadmium complexes of N9-benzyl-N6-methoxyadenine exhibiting a variety of coordination numbers and spatial geometries.
Collapse
Affiliation(s)
- Shruti Khanna
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Sandeep Verma
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
- Centre for Environmental Sciences and Engineering
- Indian Institute of Technology Kanpur
| |
Collapse
|
45
|
First X-ray diffraction and quantum chemical study of proton-acceptor and proton-donor forms of 5-carboxylcytosine, the last-discovered nucleobase. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Yang B, Wu RR, Polfer NC, Berden G, Oomens J, Rodgers MT. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1523-1533. [PMID: 23893433 DOI: 10.1007/s13361-013-0689-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNA(Met). This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f(5)C), at the wobble position-34 of human mitochondrial tRNA(f5CAU)(Met) (hmtRNA(f5CAU)(Met)) enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson-Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f(5)C34•A base pair geometry with two hydrogen bonds.
Collapse
|
48
|
Rostov IV, Kobayashi R. A correlated ab initio quantum chemical study of the interaction of the Na+, Mg2+, Ca2+ and Zn2+ ions with the tautomers of cytosine in the presence of polar solvent. Phys Chem Chem Phys 2013; 15:12930-9. [DOI: 10.1039/c3cp51574e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Natesan S, Balaz S. Rigorous incorporation of tautomers, ionization species, and different binding modes into ligand-based and receptor-based 3D-QSAR methods. Curr Pharm Des 2013; 19:4316-22. [PMID: 23170882 PMCID: PMC3778504 DOI: 10.2174/1381612811319230013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022]
Abstract
Speciation of drug candidates and receptors caused by ionization, tautomerism, and/or covalent hydration complicates ligandand receptor-based predictions of binding affinities by 3-dimensional structure-activity relationships (3D-QSAR). The speciation problem is exacerbated by tendency of tautomers to bind in multiple conformations or orientations (modes) in the same binding site. New forms of the 3D-QSAR correlation equations, capable of capturing this complexity, can be developed using the time hierarchy of all steps that lie behind the monitored biological process - binding, enzyme inhibition or receptor activity. In most cases, reversible interconversions of individual ligand and receptor species can be treated as quickly established equilibria because they are finished in a small fraction of the exposure time that is used to determine biological effects. The speciation equilibria are satisfactorily approximated by invariant fractions of individual ligand and receptor species for buffered experimental or in vivo conditions. For such situations, the observed drug-receptor association constant of a ligand is expressed as the sum of products, for each ligand and receptor species pair, of the association microconstant and the fractions of involved species. For multiple binding modes, each microconstant is expressed as the sum of microconstants of individual modes. This master equation leads to new 3D-QSAR correlation equations integrating the results of all molecular simulations or calculations, which are run for each ligand-receptor species pair separately. The multispecies, multimode 3D-QSAR approach is illustrated by a ligand-based correlation of transthyretin binding of thyroxine analogs and by a receptor-based correlation of inhibition of MK2 by benzothiophenes and pyrrolopyrimidines.
Collapse
Affiliation(s)
- Senthil Natesan
- Albany College of Pharmacy and Health Sciences, Vermont Campus, Colchester, VT 05446
| | - Stefan Balaz
- Albany College of Pharmacy and Health Sciences, Vermont Campus, Colchester, VT 05446
| |
Collapse
|
50
|
Reedijk J. Coordination chemistry beyond Werner: interplay between hydrogen bonding and coordination. Chem Soc Rev 2013; 42:1776-83. [DOI: 10.1039/c2cs35239g] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|