1
|
Kučerová-Chlupáčová M. Systematic Review on 1,2,3-Oxadiazoles, 1,2,4-Oxadiazoles, and 1,2,5-Oxadiazoles in the Antimycobacterial Drug Discovery. ChemMedChem 2025; 20:e202400971. [PMID: 39846226 DOI: 10.1002/cmdc.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery. We focus on various classes of oxadiazoles, especially 1,2,3-oxadiazoles, 1,2,4-oxadiazoles, and 1,2,5-s in structure-activity relationship studies are discussed, emphasizing the mechanisms of antimycobacterial action. Additionally, the synergistic potential of 1,2,4-oxadiazoles in enhancing the efficacy of existing tuberculosis treatment with ethionamide is also discussed. By integrating insights from recent research, this review aims to provide a comprehensive overview of the role of oxadiazoles in the fight against tuberculosis, paving the way for future investigations and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203/8, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Fazl-Ur-Rahman K, Shanker G, Periyasamy G. DFT investigations on the influence of stacking on the electronic structure, absorption, and non-linear optical properties of 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole. J Mol Model 2024; 31:14. [PMID: 39652196 DOI: 10.1007/s00894-024-06235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
CONTEXT 1,2,4-Oxadiazole serves as a fundamental building block driving advancements across diverse scientific and technological arenas, contributing to the creation of innovative materials for various applications including devices, sensors, medications, agrochemicals, and biomedical instruments. Employing density functional theory (DFT) methods, we investigate the impact of different conformers of an oxadiazole substituted derivative, specifically 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole, in both monomeric and stacked configurations (dimeric and tetrameric). We analyze the electronic structures of various conformers, including assessment of HOMO-LUMO energy gaps, to detect the influence of diverse substituents and stacking arrangements. We have also explored the stability of stacked structure in explicit solvent environment. Additionally, we examine absorption spectra, non-linear optical properties, and electronic circular dichroism to evaluate the potential applications of these molecules in optoelectronic devices. Our calculations showed that all the conformers were thermodynamically stable within an energy difference of 2.64 kcal mol-1. The study also suggests possible application of the material in optical and electronic devices. METHODS DFT calculations were carried out using the CAM-B3LYP and wB97XD functionals with a 6-31 + G* all-electron basis set, paired with the SCRF/PCM solvation model, implemented in the Gaussian 09 package. Equilibrium structure was achieved by performing NPT and NVT simulations using the Gromacs package.
Collapse
Affiliation(s)
| | - Govindaswamy Shanker
- Department of Chemistry, Bangalore University, Bangalore, 560 056, Karnataka, India
| | - Ganga Periyasamy
- Department of Chemistry, Bangalore University, Bangalore, 560 056, Karnataka, India.
| |
Collapse
|
3
|
Pan S, Wu P, Bampi D, Ward JS, Rissanen K, Bolm C. Mechanochemical Conditions for Intramolecular N-O Couplings via Rhodium Nitrenoids Generated from N-Acyl Sulfonimidamides. Angew Chem Int Ed Engl 2024:e202413181. [PMID: 39381922 DOI: 10.1002/anie.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Starting from N-acyl sulfonimidamides, mechanochemically generated rhodium nitrenoids undergo intramolecular N-O couplings to provide unprecedented 1,3,2,4-oxathiadiazole 3-oxides in good to excellent yields. The cyclization proceeds efficiently with a catalyst loading of only 0.5 mol % in the presence of phenyliodine(III) diacetate (PIDA) as oxidant. Neither an inert atmosphere nor additional heating is required in this solvent-free procedure. Under heat or blue light, the newly formed five-membered heterocycles function as nitrene precursors reacting with sulfoxides as exemplified by the imidation of dimethyl sulfoxide.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dimitra Bampi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
4
|
Lu Z, Zhang F, Yang Y, Zhang H, Liu J, Hou Z, Zhao D, Meng X, Ren W, Lu Z. Aqueous degradation of tioxazafen: Kinetics, products, pathways, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173817. [PMID: 38880139 DOI: 10.1016/j.scitotenv.2024.173817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tioxazafen (TXF) is the first 1,2,4-oxadiazole nematicide. In the present study, the aqueous degradation of TXF was investigated in terms of hydrolysis and photolysis. Under the irradiation of simulated sunlight, TXF degraded very fast in ultrapure water and buffers with half-lives (t1/2s) <8.3 min. A sole photoproduct (PP) PP228a was isolated, and identified by spectroscopic means (UV, IR, HRMS, and 1H NMR) to be the thiophen-3-yl isomer converted from its thiophen-2-yl parent. Comparing with TXF, PP228a had quite extended t1/2s ranging from 6.9 to 7.9 d. The photolysis kinetics of TXF and PP228a showed no pH-dependence, and varied for each individual compound as affected by nitrate, fulvic acid, and humic acid. Besides, both compounds were hydrolytically stable. 6 PPs of PP228a were identified, with two of them being its isomers. The mechanisms involved in the process included the biradical photosensitization, photoinduced electron transfer, and ring contraction-ring expansion reactions. The 48 h-EC50 to Daphnia magna was 0.808 mg/L for PP228a comparing to >1.12 mg/L for TXF, while the results of Vibrio fischeri assays indicated that one or more PPs of PP228a might have higher toxicity.
Collapse
Affiliation(s)
- Zhou Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Fuying Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yiqi Yang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hong Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jianguo Liu
- Jilin Agro-Tech Extension Station, Changchun, Jilin 130022, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dan Zhao
- Center of Quality Standard and Testing Technology for Agro-Products, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xinxin Meng
- Center of Quality Standard and Testing Technology for Agro-Products, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Weiming Ren
- Center of Quality Standard and Testing Technology for Agro-Products, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
5
|
Punna SK, Arockiaraj M, Rajeshkumar V. I 2-catalyzed tandem sp 3 C-H oxidation and annulation of aryl methyl ketones with amidoximes for the synthesis of 5-aroyl-1,2,4-oxadiazoles. Org Biomol Chem 2024; 22:7478-7484. [PMID: 39189408 DOI: 10.1039/d4ob01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A metal-free, iodine-catalyzed protocol has been developed for constructing biologically significant 5-aroyl 1,2,4-oxadiazole scaffolds using aryl methyl ketones and amidoximes. The strategy produces structurally diverse 5-aroyl 1,2,4-oxadiazoles in good to excellent yields, with a broad substrate scope that includes drug derived substrates. The reaction proceeds through iodine/DMSO-mediated oxidation of aryl methyl ketones, followed by imine formation and subsequent cyclization to yield the desired products. Additionally, this protocol has successfully produced the carbonyl analogs of ataluren and tioxazafen and has facilitated some intriguing late-stage transformations.
Collapse
Affiliation(s)
- Shiva Kumar Punna
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| |
Collapse
|
6
|
Simonyan H, Palumbo R, Petrosyan S, Mkrtchyan A, Galstyan A, Saghyan A, Scognamiglio PL, Vicidomini C, Fik-Jaskólka M, Roviello GN. BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study. Biomolecules 2024; 14:579. [PMID: 38785986 PMCID: PMC11118884 DOI: 10.3390/biom14050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior.
Collapse
Affiliation(s)
- Hayarpi Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Satenik Petrosyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Anna Mkrtchyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Armen Galstyan
- Department of Chemistry, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | | | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marta Fik-Jaskólka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
7
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Flores Sepúlveda A, Soriano Vázquez C, Hernán Vieco C, Rumbero Sánchez Á. Novel 1,2,4-oxadiazole compounds as PPAR-α ligand agonists: a new strategy for the design of antitumour compounds. RSC Med Chem 2023; 14:1377-1388. [PMID: 37484563 PMCID: PMC10357926 DOI: 10.1039/d3md00063j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
Modulation of PPAR-α by natural ligands is a novel strategy for the development of anticancer therapies. A series of 16 compounds based on the structure of 3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole (natural compound) with antitumour potential were designed and synthesised. The cytotoxicity and PPAR agonist activity of these synthetic 1,2,4-oxadiazoles were evaluated in the A-498 and DU 145 tumour cell lines. Preliminary biological evaluation showed that most of these synthetic 1,2,4-oxadiazoles are less cytotoxic (sulforhodamine B assay) than the positive control WY-14643. Regarding the PPAR-α modulation, compound 16 was the most active, with EC50 = 0.23-0.83 μM (PPAR-α). Additionally, compound 16 had a similar activity to the natural compound (EC50 = 0.18-0.77 μM) and was less toxic in the RPTEC and WPMY-1 cell lines (non-tumour cells) (CC50 = 81.66-92.67 μM) than the natural compound. Looking at the link between chemical structure and activity, our study demonstrates that changes to the natural 1,2,4-oxadiazole at the level of the thiophenyl residue can lead to new agonists of PPAR-α with promising anti-tumour activity.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid Cantoblanco 28040 Madrid Spain
| | | | | | - Carmen Soriano Vázquez
- Faculty of Pharmacy, Universidad Complutense of Madrid Plaza Ramón y Cajal s/n 28040 Madrid Spain
| | - Carmen Hernán Vieco
- Faculty of Pharmacy, Universidad Complutense of Madrid Plaza Ramón y Cajal s/n 28040 Madrid Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid Cantoblanco 28040 Madrid Spain
| |
Collapse
|
8
|
Finamore C, Festa C, Fiorillo B, Leva FSD, Roselli R, Marchianò S, Biagioli M, Spinelli L, Fiorucci S, Limongelli V, Zampella A, De Marino S. Expanding the Library of 1,2,4-Oxadiazole Derivatives: Discovery of New Farnesoid X Receptor (FXR) Antagonists/Pregnane X Receptor (PXR) Agonists. Molecules 2023; 28:molecules28062840. [PMID: 36985811 PMCID: PMC10057480 DOI: 10.3390/molecules28062840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Compounds featuring a 1,2,4-oxadiazole core have been recently identified as a new chemotype of farnesoid X receptor (FXR) antagonists. With the aim to expand this class of compounds and to understand the building blocks necessary to maintain the antagonistic activity, we describe herein the synthesis, the pharmacological evaluation, and the in vitro pharmacokinetic properties of a novel series of 1,2,4-oxadiazole derivatives decorated on the nitrogen of the piperidine ring with different N-alkyl and N-aryl side chains. In vitro pharmacological evaluation showed compounds 5 and 11 as the first examples of nonsteroidal dual FXR/Pregnane X receptor (PXR) modulators. In HepG2 cells, these compounds modulated PXR- and FXR-regulated genes, resulting in interesting leads in the treatment of inflammatory disorders. Moreover, molecular docking studies supported the experimental results, disclosing the ligand binding mode and allowing rationalization of the activities of compounds 5 and 11.
Collapse
Affiliation(s)
- Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029, USA
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Rosalinda Roselli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), Via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
9
|
Rydfjord J, Al-Bazaz S, Roslin S. Palladium-Mediated Synthesis of [Carbonyl- 11C]acyl Amidines from Aryl Iodides and Aryl Bromides and Their One-Pot Cyclization to 11C-Labeled Oxadiazoles. J Org Chem 2022; 88:5118-5126. [PMID: 36512765 PMCID: PMC10127284 DOI: 10.1021/acs.joc.2c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Positron emission tomography (PET) is a highly valuable imaging technique with many clinical applications. The possibility to study physiological and biochemical processes in vivo also makes PET an important tool in drug discovery. Of importance is the possibility of labelling the compound of interest with a positron-emitting radionuclide, such as carbon-11. Carbonylation reactions with [11C]carbon monoxide ([11C]CO) has been used to label a number of molecules containing a carbonyl derivative, such as amides and esters, with carbon-11. Presented herein is the palladium-mediated carbonylative synthesis of [carbonyl-11C]acyl amidines and their subsequent cyclization to 11C-labeled 1,2,4-oxadiazoles. Starting from amidines, [11C]CO, and either aryl iodides or aryl bromides, [carbonyl-11C]acyl amidines were synthesized and isolated in good to very good radiochemical yields (RCY). The 11C-labeled 1,2,4-oxadiazoles were synthesized without the isolation of the intermediate [carbonyl-11C]acyl amidines and isolated in useful RCYs, including the NF-E2-related factor 2 activator DDO-7263. 3-Phenyl-5-(4-tolyl)-1,2,4-(5-11C)oxadiazole was synthesized and isolated with a clinically relevant molar activity. The broadened substrate scope, together with the good RCY and high Am, demonstrates the utility of this method for the incorporation of carbon-11 into acyl amidines and 1,2,4-oxadiazoles, structural motifs of pharmacological interest.
Collapse
Affiliation(s)
- Jonas Rydfjord
- Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Silav Al-Bazaz
- Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Sara Roslin
- Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
10
|
Khan BA, Hamdani SS, Ahmed MN, Hameed S, Ashfaq M, Shawky AM, Ibrahim MAA, Sidhom PA. Synthesis, X-ray diffraction analysis, quantum chemical studies and α-amylase inhibition of probenecid derived S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. J Enzyme Inhib Med Chem 2022; 37:1464-1478. [PMID: 35616297 PMCID: PMC9154803 DOI: 10.1080/14756366.2022.2078969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sulphonamide and 1,3,4-oxadiazole moieties are present as integral structural parts of many drugs and pharmaceuticals. Taking into account the significance of these moieties, we herein present the synthesis, single-crystal X-ray analysis, DFT studies, and α-amylase inhibition of probenecid derived two S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. The synthesis has been accomplished in high yields. The final structures of both hybrids have been established completely with the help of different spectro-analytical techniques, including NMR, FTIR, HR-MS, and single-crystal X-ray diffraction analyses. In an effort to confirm the experimental findings, versatile quantum mechanical calculations and Hirshfeld Surface analysis have been performed. α-Amylase inhibition assay has been executed to investigate the enzyme inhibitory potential of both hybrids. The low IC50 value (76.92 ± 0.19 μg/mL) of hybrid 2 shows the good α-amylase inhibition potential of the respective compound. Ultimately, the binding affinities and features of the two hybrids are elucidated utilising a molecular docking technique against the α-amylase enzyme.
Collapse
Affiliation(s)
- Bilal Ahmad Khan
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Syeda Shamila Hamdani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha, Pakistan
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Mohammad BD, Baig MS, Bhandari N, Siddiqui FA, Khan SL, Ahmad Z, Khan FS, Tagde P, Jeandet P. Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents. Molecules 2022; 27:molecules27186001. [PMID: 36144735 PMCID: PMC9502781 DOI: 10.3390/molecules27186001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.
Collapse
Affiliation(s)
- Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, G R T Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani 631209, Tamil Nadu, India
| | - Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad 431001, Maharashtra, India
| | - Neeraj Bhandari
- Arni School of Pharmacy, Arni University, Kathgarh, Indora 176401, Himachal Pradesh, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
- Correspondence: (S.L.K.); (P.J.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection, University of Reims, USC INRAe 1488, SFR Condorcet FR CNRS 3417, 51687 Reims, France
- Correspondence: (S.L.K.); (P.J.)
| |
Collapse
|
12
|
Reaction of N-acetylbenzamides with hydroxylamine hydrochloride: synthesis of 3-methyl-5-aryl-1,2,4-oxadiazoles. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Synthesis of 3-dinitromethyl-1,2,4-oxadiazoles from dinitroacetamidoximes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Apaza Ticona L, Rumbero Sánchez Á, Humanes Bastante M, Serban AM, Hernáiz MJ. Antitumoral activity of 1,2,4-oxadiazoles compounds isolated from the Neowerdermannia vorwerkii in liver and colon human cancer cells. PHYTOCHEMISTRY 2022; 201:113259. [PMID: 35662550 DOI: 10.1016/j.phytochem.2022.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Two unknown 1,2,4-oxadiazoles (3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole and 5-(3-hydroxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole) and one known 1,2,4-oxadiazole (5-(3-methoxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole) were isolated from tubers of Neowerdermannia vorwerkii, collected from the San Juan Huancollo, Ingavi province, La Paz, Bolivia. The chemical structures of these compounds were elucidated through NMR and HRMS spectroscopic analyses. All compounds showed apoptotic capacity against the SK-HEP-1 and Caco-2 tumour cells. 5-(3-methoxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole and 5-(3-hydroxyphenyl)-3-(pyridin-3-yl)-1,2, 4-oxadiazole showed slight apoptotic capacities, with an IC50 between 17.46 ± 0.75 to 15.91 ± 0.62 μM and 39.29 ± 0.98 to 34.81 ± 0.70 μM, respectively. 3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole showed a higher apoptotic capacity with an IC50 in the range of 0.98 ± 0.11 to 0.76 ± 0.03 μM, similar to that of the positive control (Dimethylenastron).
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain; Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
15
|
Baykov SV, Tarasenko MV, Semenov AV, Katlenok EA, Shetnev AA, Boyarskiy VP. Dualism of 1,2,4-oxadiazole ring in noncovalent interactions with carboxylic group. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Sidneva VV, Tarasenko MV, Kofanov ER. One-pot synthesis of 3,5-disubstituted 1,2,4-oxadiazoles containing an alkenyl moiety. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Atmaram UA, Roopan SM. Biological activity of oxadiazole and thiadiazole derivatives. Appl Microbiol Biotechnol 2022; 106:3489-3505. [PMID: 35562490 PMCID: PMC9106569 DOI: 10.1007/s00253-022-11969-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. Key points • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11969-0.
Collapse
Affiliation(s)
- Upare Abhay Atmaram
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Asgari M, Memarian HR, Sabzyan H. Electron-transfer induced photo-oxidation of 4,5-dihydro-1,2,4-oxadiazoles: Experimental and computational studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Diana R, Caruso U, Di Costanzo L, Concilio S, Piotto S, Sessa L, Panunzi B. A Water Soluble 2-Phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole Based Probe: Antimicrobial Activity and Colorimetric/Fluorescence pH Response. Molecules 2022; 27:1824. [PMID: 35335188 PMCID: PMC8952330 DOI: 10.3390/molecules27061824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians. Here, we present a novel pH-responsive probe with a three-ring heteroaromatic pattern and a flexible cationic chain. The novel molecule shows real-time naked-eye colorimetric and fluorescence response in the slightly acidic pH range besides its excellent solubility both in the organic phase and in water. In addition, the small probe shows significant antibacterial activity, particularly against Escherichia coli. Single-crystal X-ray study and density functional theory (DFT) calculations rationalize the molecule spectroscopic response. Finally, molecular dynamics (MD) elucidate the interactions between the probe and a model cell membrane.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Naples Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| |
Collapse
|
20
|
Poonam, Bhasin G, Srivastava R, Singh R. Oxadiazoles: moiety to synthesis and utilize. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022; 19:665-677. [DOI: 10.1007/s13738-021-02335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
|
21
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Jiang C, Li M, Xu L, Yi Y, Ye J, Hu A. Electrochemical synthesis of 1,2,4-oxadiazoles from amidoximes through dehydrogenative cyclization. Org Biomol Chem 2021; 19:10611-10616. [PMID: 34854450 DOI: 10.1039/d1ob02040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and efficient method for the generation of the iminoxy radical through anodic oxidation was developed for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from N-benzyl amidoximes. The transformation proceeds through 1.5-Hydrogen Atom Transfer (1,5-HAT) and intramolecular cyclization. The process features simple operation, mild conditions, broad substrate scope and high functional group compatibility, and provides a facile and practical way for the preparation of 1,2,4-oxadiazoles.
Collapse
Affiliation(s)
- Chan Jiang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Mingfang Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Leitao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yangjie Yi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Aixi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
23
|
Zou D, Gan L, Yang F, Wang H, Pu Y, Li J, Walsh PJ. SET activation of nitroarenes by 2-azaallyl anions as a straightforward access to 2,5-dihydro-1,2,4-oxadiazoles. Nat Commun 2021; 12:7060. [PMID: 34862375 PMCID: PMC8642414 DOI: 10.1038/s41467-021-26767-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
The use of nitroarenes as amino sources in synthesis is challenging. Herein is reported an unusual, straightforward, and transition metal-free method for the net [3 + 2]-cycloaddition reaction of 2-azaallyl anions with nitroarenes. The products of this reaction are diverse 2,5-dihydro-1,2,4-oxadiazoles (>40 examples, up to 95% yield). This method does not require an external reductant to reduce nitroarenes, nor does it employ nitrosoarenes, which are often used in N-O cycloadditions. Instead, it is proposed that the 2-azaallyl anions, which behave as super electron donors (SEDs), deliver an electron to the nitroarene to generate a nitroarene radical anion. A downstream 2-azaallyl radical coupling with a newly formed nitrosoarene is followed by ring closure to afford the observed products. This proposed reaction pathway is supported by computational studies and experimental evidence. Overall, this method uses readily available materials, is green, and exhibits a broad scope.
Collapse
Affiliation(s)
- Dong Zou
- grid.13402.340000 0004 1759 700XDepartment of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, 310015 Hangzhou, P. R. China
| | - Lishe Gan
- grid.500400.10000 0001 2375 7370School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, P. R. China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, 310015 Hangzhou, P. R. China
| | - Huan Wang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, 310015 Hangzhou, P. R. China
| | - Youge Pu
- grid.25879.310000 0004 1936 8972Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 USA
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, 310015, Hangzhou, P. R. China.
| | - Patrick J. Walsh
- grid.25879.310000 0004 1936 8972Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 USA
| |
Collapse
|
24
|
Wang X, Wang Y, Liu X, He T, Li L, Wu H, Zhou S, Li D, Liao S, Xu P, Huang X, Yuan J. Imidazole hydrochloride promoted synthesis of 3,5-disubstituted-1,2,4-oxadiazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Puzanov AI, Ryabukhin DS, Zalivatskaya AS, Zakusilo DN, Mikson DS, Boyarskaya IA, Vasilyev AV. Synthesis of 5-arylacetylenyl-1,2,4-oxadiazoles and their transformations under superelectrophilic activation conditions. Beilstein J Org Chem 2021; 17:2417-2424. [PMID: 34621403 PMCID: PMC8450969 DOI: 10.3762/bjoc.17.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Acetylene derivatives of 1,2,4-oxadiazoles, i.e., 5-(2-arylethynyl)-3-aryl-1,2,4-oxadiazoles, have been obtained, for the first time reported, from 5-(2-arylethenyl)-3-aryl-1,2,4-oxadiazoles by their bromination at the carbon–carbon double bond followed by di-dehydrobromination with NaNH2 in liquid NH3. The reaction of the acetylenyl-1,2,4-oxadiazoles with arenes in neat triflic acid TfOH (CF3SO3H) at room temperature for 1 h resulted in the formation of E/Z-5-(2,2-diarylethenyl)-3-aryl-1,2,4-oxadiazoles as products of regioselective hydroarylation of the acetylene bond. The addition of TfOH to the acetylene bond of these oxadiazoles quantitatively resulted in E/Z-vinyl triflates. The reactions of the cationic intermediates have been studied by DFT calculations and the reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Andrey I Puzanov
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia
| | - Dmitry S Ryabukhin
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia.,All-Russia Research Institute for Food Additives - Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, Liteyniy pr., 55, Saint Petersburg, 191014, Russia
| | - Anna S Zalivatskaya
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia.,Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| | - Dmitriy N Zakusilo
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia.,Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| | - Darya S Mikson
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia
| | - Irina A Boyarskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| | - Aleksander V Vasilyev
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia.,Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| |
Collapse
|
26
|
One-pot synthesis of 1,2,4-oxadiazoles from chalcogen amino acid derivatives under microwave irradiation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Abstract
Incorporation of heterocycles into drug molecules can enhance physical properties and biological activity. A variety of heterocyclic groups is available to medicinal chemists, many of which have been reviewed in detail elsewhere. Oxadiazoles are a class of heterocycle containing one oxygen and two nitrogen atoms, available in three isomeric forms. While the 1,2,4- and 1,3,4-oxadiazoles have seen widespread application in medicinal chemistry, 1,2,5-oxadiazoles (furazans) are less common. This Review provides a summary of the application of furazan-containing molecules in medicinal chemistry and drug development programs from analysis of both patent and academic literature. Emphasis is placed on programs that reached clinical or preclinical stages of development. The examples provided herein describe the pharmacology and biological activity of furazan derivatives with comparative data provided where possible for other heterocyclic groups and pharmacophores commonly used in medicinal chemistry.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Mark A Reed
- Treventis Corporation, Toronto, Ontario M5T 0S8, Canada.,Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada
| |
Collapse
|
28
|
An efficient synthesis tetrazole and oxadiazole analogues of novel 2'-deoxy-C-nucleosides and their antitumor activity. Bioorg Med Chem Lett 2020; 30:127612. [PMID: 33098969 PMCID: PMC7576186 DOI: 10.1016/j.bmcl.2020.127612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022]
Abstract
Various tetrazole and oxadiazole C-nucleoside analogues were synthesized starting from pure α- or β-glycosyl-cyanide. The synthesis of glycosyl-cyanide as key precursor was optimized on gram-scale to furnish crystalline starting material for the assembly of C-nucleosides. Oxadizole C-nucleosides were synthesized via two independent routes. First, the glycosyl-cyanide was converted into an amidoxime which upon ring closure offered an alternative pathway for the assembly of 1,2,4-oxadizoles in an efficient manner. Second, both anomers of glycosyl-cyanide were transformed into tetrazole nucleosides followed by acylative rearrangement to furnish 1,3,4-oxadiazoles in high yields. These protocols offer an easy access to otherwise difficult to synthesize C-nucleosides in good yield and protecting group compatibility. These C-nucleosides were evaluated for their antitumor activity. This work paves a path for facile assembly of library of new chemical entities useful for drug discovery.
Collapse
|
29
|
Bitla S, Sagurthi SR, Dhanavath R, Puchakayala MR, Birudaraju S, Gayatri AA, Bhukya VK, Atcha KR. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ölmez NA, Waseer F. New Potential Biologically Active Compounds: Synthesis and Characterization of Urea and Thiourea Derivativpes Bearing 1,2,4-oxadiazole Ring. Curr Org Synth 2020; 17:525-534. [DOI: 10.2174/1570179417666200417112106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Background:
Urea, thiourea, and 1,2,4-oxadiazole compounds are of great interest due to their
different activities such as anti-inflammatory, antiviral, analgesic, fungicidal, herbicidal, diuretic,
antihelminthic and antitumor along with antimicrobial activities.
Objective:
In this work, we provide a new series of potential biologically active compounds containing both
1,2,4-oxadiazole and urea/thiouprea moiety.
Materials and Methods:
Firstly, 5-chloromethyl-3-aryl-1,2,4-oxadiazoles (3a-j) were synthesized from the
reaction of different substituted amidoximes (2a-j) and chloroacetyl chloride in the presence of pyridine by
conventional and microwave-assisted methods. In the conventional method, 1,2,4-oxadiazoles were obtained in
two steps. O-acylamidoximes obtained in the first step at room temperature were heated in toluene for an average
of one hour to obtain 1,2,4-oxadiazoles. The yields varied from 70 to 96 %. 1,2,4-oxadiazoles were obtained under
microwave irradiation in a single step in a 90-98 % yield at 160 °C in five minutes. 5-aminomethyl-3-aryl-1,2,4-
oxadiazoles (5a-j) were obtained by Gabriel amine synthesis in two steps from corresponding 5-chloromethyl-3-
aryl-1,2,4-oxadiazoles. Finally, twenty new urea (6a-j) and thiourea (7a-j) compounds bearing oxadiazole ring
were synthesized by reacting 5-aminomethyl-3-aryl-1,2,4-oxadiazoles with phenyl isocyanate and isothiocyanate
in tetrahydrofuran (THF) at room temperature with average yields (40-70%).
Results and Discussions:
An efficient and rapid method for the synthesis of 1,2,4-oxadiazoles from the
reaction of amidoximes and acyl halides without using any coupling reagent under microwave irradiation has
been developed, and twenty new urea/thiourea compounds bearing 1,2,4-oxadiazole ring have been synthesized
and characterized.
Conclusion:
We have synthesized a new series of urea/thiourea derivatives bearing 1,2,4-oxadiazole ring. Also
facile synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from amidoximes and acyl chlorides under microwave
irradiation was reported. The compounds were characterized using FTIR, 1H NMR, 13C NMR, and elemental
analysis techniques.
Collapse
Affiliation(s)
| | - Faryal Waseer
- Department of Chemistry, Bursa Uludag University, Bursa-16059, Turkey
| |
Collapse
|
31
|
|
32
|
Fernandes FS, Santos H, Lima SR, Conti C, Rodrigues MT, Zeoly LA, Ferreira LLG, Krogh R, Andricopulo AD, Coelho F. Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. Eur J Med Chem 2020; 201:112418. [PMID: 32590115 DOI: 10.1016/j.ejmech.2020.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
Abstract
A series of highly active hybrids were discovered as novel antiparasitic agents. Two heterocyclic scaffolds (1,2,4-oxadiazole and 3-hydroxy-2-oxindole) were linked, and the resulting compounds showed in vitro activities against intracellular amastigotes of two protozoan parasites, Trypanosoma cruzi and Leishmania infantum. Their cytotoxicity was assessed using HFF-1 fibroblasts and HepG2 hepatocytes. Compounds 5b, 5d, 8h and 8o showed selectivity against L. infantum (IC50 values of 3.89, 2.38, 2.50 and 2.85 μM, respectively). Compounds 4c, 4q, 8a and 8k were the most potent against T. cruzi, exhibiting IC50 values of 6.20, 2.20, 2.30 and 2.20 μM, respectively. Additionally, the most potent anti-T. cruzi compounds showed in vitro efficacies comparable or superior to that of benznidazole. These easy-to-synthesize molecules represent novel chemotypes for the design of potent and selective lead compounds for Chagas disease and leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Fábio S Fernandes
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Hugo Santos
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Samia R Lima
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Caroline Conti
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Manoel T Rodrigues
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil.
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
33
|
Baek J, Je EK, Kim J, Qi A, Ahn KH, Kim Y. Experimental and Theoretical Studies on the Mechanism of DDQ-Mediated Oxidative Cyclization of N-Aroylhydrazones. J Org Chem 2020; 85:9727-9736. [PMID: 32614179 DOI: 10.1021/acs.joc.0c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The controversial single-electron-transfer process, frequently proposed in many 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated reactions, was investigated experimentally and theoretically using the oxidative cyclization of aroylhydrazone with DDQ. DDQ-mediated oxadiazole formation involves several processes, including cyclization to form an oxadiazole ring and N-H bond cleavage, either by proton, hydride, or hydrogen atom transfer. The detailed mechanistic study using the M06-2X density functional theory, and the 6-31+G(d,p) basis set, suggests that the pathways involving radical ion pair (RIP) intermediates, which resulted from single-electron transfer (SET), were found to be energetically nearly identical to the pathway without the SET. The substituent-dependent reactivity of oxadiazole formation was consistent with the free energy profiles of both pathways, with or without the SET. This result indicates that in addition to the electron-transfer pathway, the nucleophilic addition/elimination pathway for DDQ should be considered as a possible mechanism of the oxidative transformation reaction using DDQ.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Eun-Kyung Je
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Jina Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Ai Qi
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Yongho Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| |
Collapse
|
34
|
Shetnev AA, Pankratieva VE, Kunichkina AS, Vlasov AS, Proskurina IK, Kotov AD, Korsakov MK. Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles from Amidoximes and Aldehydes in the Superbasic System NaOH/DMSO. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802007009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Markov AV, Sen’kova AV, Popadyuk II, Salomatina OV, Logashenko EB, Komarova NI, Ilyina AA, Salakhutdinov NF, Zenkova MA. Novel 3'-Substituted-1',2',4'-Oxadiazole Derivatives of 18βH-Glycyrrhetinic Acid and Their O-Acylated Amidoximes: Synthesis and Evaluation of Antitumor and Anti-Inflammatory Potential In Vitro and In Vivo. Int J Mol Sci 2020; 21:E3511. [PMID: 32429154 PMCID: PMC7279002 DOI: 10.3390/ijms21103511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
A series of novel 18βH-glycyrrhetinic acid (GA) derivatives containing 3'-(alkyl/phenyl/pyridin(-2″, -3″, and -4″)-yl)-1',2',4'-oxadiazole moieties at the C-30 position were synthesized by condensation of triterpenoid's carboxyl group with corresponding amidoximes and further cyclization. Screening of the cytotoxicity of novel GA derivatives on a panel of tumor cell lines showed that the 3-acetoxy triterpenoid intermediates-O-acylated amidoxime 3a-h-display better solubility under bioassay conditions and more pronounced cytotoxicity compared to their 1',2',4'-oxadiazole analogs 4f-h (median IC50 = 7.0 and 49.7 µM, respectively). Subsequent replacement of the 3-acetoxy group by the hydroxyl group of pyridin(-2″, 3″, and -4″)-yl-1',2',4'-oxadiazole-bearing GA derivatives produced compounds 5f-h, showing the most pronounced selective toxicity toward tumor cells (median selectivity index (SI) > 12.1). Further detailed analysis of the antitumor activity of hit derivative 5f revealed its marked proapoptotic activity and inhibitory effects on clonogenicity and motility of HeLa cervical carcinoma cells in vitro, and the metastatic growth of B16 melanoma in vivo. Additionally, the comprehensive in silico study revealed intermediate 3d, bearing the tert-butyl moiety in O-acylated amidoxime, as a potent anti-inflammatory candidate, which was able to effectively inhibit inflammatory response induced by IFNγ in macrophages in vitro and carrageenan in murine models in vivo, probably by primary interactions with active sites of MMP9, neutrophil elastase, and thrombin. Taken together, our findings provide a basis for a better understanding of the structure-activity relationship of 1',2',4'-oxadiazole-containing triterpenoids and reveal two hit molecules with pronounced antitumor (5f) and anti-inflammatory (3d) activities.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
| | - Irina I. Popadyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (I.I.P.); (N.I.K.); (N.F.S.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (I.I.P.); (N.I.K.); (N.F.S.)
| | - Evgeniya B. Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
| | - Nina I. Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (I.I.P.); (N.I.K.); (N.F.S.)
| | - Anna A. Ilyina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (I.I.P.); (N.I.K.); (N.F.S.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (A.A.I.); (M.A.Z.)
| |
Collapse
|
36
|
Krauskopf F, Truong K, Rissanen K, Bolm C. [3+2]‐Cycloadditions of
N
‐Cyano Sulfoximines with 1,3‐Dipoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Felix Krauskopf
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Khai‐Nghi Truong
- Department of Chemistry University of Jyvaskyla P.O. Box. 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry University of Jyvaskyla P.O. Box. 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
37
|
Mokenapelli S, Thalari G, Vadiyaala N, Yerrabelli JR, Irlapati VK, Gorityala N, Sagurthi SR, Chitneni PR. Synthesis, cytotoxicity, and molecular docking of substituted 3-(2-methylbenzofuran-3-yl)-5-(phenoxymethyl)-1,2,4-oxadiazoles. Arch Pharm (Weinheim) 2020; 353:e2000006. [PMID: 32309890 DOI: 10.1002/ardp.202000006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
Abstract
A series of new benzofuran/oxadiazole hybrids (8a-n) was synthesized from 2H-chromene-3-carbonitriles (3a-c) through the multistep synthetic methodology, and these hybrids are known to exhibit anticancer activities. All the compounds were evaluated for their in vitro cytotoxicity against the HCT116 and MIA PaCa2 cell lines. Compounds 6a (IC50 : 9.71 ± 1.9 μM), 6b (IC50 : 7.48 ± 0.6 μM), and 6c (IC50 : 3.27 ± 1.1 μM) displayed a significant cytotoxic activity, whereas compounds 8d and 8e exhibited good activity against both cell lines. The depletion of glycogen synthase kinase-3β (GSK3β) induces apoptosis through the inhibition of basal NF-κB activity in HCT116 colon cancer cells and MIA PaCa2 pancreatic cancer cells. Molecular docking of compounds 6a, 6b, 6c, 8d, and 8e with GSK3β demonstrated the best binding affinity, correlating with the biological activity assay. Furthermore, the structure-activity relationship of these novel compounds reveals promising features for their use in anticancer therapy.
Collapse
Affiliation(s)
- Sudhakar Mokenapelli
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Gangadhar Thalari
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Naveen Vadiyaala
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Jayaprakash R Yerrabelli
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Vamshi K Irlapati
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Neelima Gorityala
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Someswar R Sagurthi
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Prasad R Chitneni
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
38
|
Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
3-Amino-4-[5-(chloromethyl)-1,2,4-oxadiazol-3-yl]furazan –a multifunctional synthon for the synthesis of 1,2,5-oxadiazole derivatives. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
M L CR, Nawaz Khan FR, Saravanan V. Facile synthesis of N-1,2,4-oxadiazole substituted sulfoximines from N-cyano sulfoximines. Org Biomol Chem 2019; 17:9187-9199. [PMID: 31595935 DOI: 10.1039/c9ob01931f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent approach has been successfully developed for the synthesis of N-1,2,4-oxadiazole substituted sulfoximines starting from N-cyano sulfoximines. This method has a wide degree of substrate scope that includes aryl, heteroaryl, alkyl, fluoroalkyl and saturated heterocyclic compounds. Excellent functional group tolerability was also observed. Extension of this methodology to nucleosides, amino acids and dipeptides was found to be successful. A gram scale reaction was also established. The major part of this method is metal free and the utility of environmentally friendly solvents such as 2-methyl THF and ionic liquids is an added advantage.
Collapse
Affiliation(s)
- Chenna Reddy M L
- Medicinal Chemistry, Jubilant Biosys Ltd, #96, Industrial, Suburb, 2nd Stage, Yeshwanthpur, Bangalore, 560022, India.
| | | | | |
Collapse
|
41
|
Lefebvre C, Fortier L, Hoffmann N. Photochemical Rearrangements in Heterocyclic Chemistry. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corentin Lefebvre
- CNRS, Université de Reims Champagne-Ardenne; ICMR, Equipe de Photochimie, UFR Sciences; B.P. 1039 51687 Reims France
| | - Lucas Fortier
- CNRS, Université de Reims Champagne-Ardenne; ICMR, Equipe de Photochimie, UFR Sciences; B.P. 1039 51687 Reims France
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne; ICMR, Equipe de Photochimie, UFR Sciences; B.P. 1039 51687 Reims France
| |
Collapse
|
42
|
Geyl K, Baykov S, Tarasenko M, Zelenkov LE, Matveevskaya V, Boyarskiy VP. Convenient entry to N-pyridinylureas with pharmaceutically privileged oxadiazole substituents via the acid-catalyzed C H activation of N-oxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Sudhakar DGS, Rao AS, Reddy CVR. Design, Synthesis and Anticancer Activity of 1,2,4-Thiadiazole Derivatives Bearing 1,2,4-Oxadiazole. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219080243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Yakantham T, Sreenivasulu R, Raju RR. Design, Synthesis, and Anticancer Evaluation of 2-{3-{4-[(5-Aryl-1,2,4-oxadiazol-3-yl)methoxy]phenyl}isoxazol-5-yl}-N-(3,4,5-trimethylphenyl)thiazol-4-amine Derivatives. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Salassa G, Terenzi A. Metal Complexes of Oxadiazole Ligands: An Overview. Int J Mol Sci 2019; 20:ijms20143483. [PMID: 31315181 PMCID: PMC6678488 DOI: 10.3390/ijms20143483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 01/12/2023] Open
Abstract
Oxadizoles are heterocyclic ring systems that find application in different scientific disciplines, from medicinal chemistry to optoelectronics. Coordination with metals (especially the transition ones) proved to enhance the intrinsic characteristics of these organic ligands and many metal complexes of oxadiazoles showed attractive characteristics for different research fields. In this review, we provide a general overview on different metal complexes and polymers containing oxadiazole moieties, reporting the principal synthetic approaches adopted for their preparation and showing the variety of applications they found in the last 40 years.
Collapse
Affiliation(s)
- Giovanni Salassa
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Alessio Terenzi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| |
Collapse
|
46
|
Campofelice A, Lentini L, Di Leonardo A, Melfi R, Tutone M, Pace A, Pibiri I. Strategies against Nonsense: Oxadiazoles as Translational Readthrough-Inducing Drugs (TRIDs). Int J Mol Sci 2019; 20:ijms20133329. [PMID: 31284579 PMCID: PMC6651739 DOI: 10.3390/ijms20133329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison to aminoglycosides. Additionally, recent results on the efficiency of new candidate TRIDs in restoring the production of the cystic fibrosis transmembrane regulator (CFTR) protein will be presented. Finally, a prospectus on complementary strategies to enhance the effect of TRIDs will be illustrated together with a conclusive paragraph about perspectives, opportunities, and caveats in developing small molecules as TRIDs.
Collapse
Affiliation(s)
- Ambra Campofelice
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy.
| |
Collapse
|
47
|
Soni VK, Hwang HS, Moon YK, Park SW, You Y, Cho EJ. Generation of N-Centered Radicals via a Photocatalytic Energy Transfer: Remote Double Functionalization of Arenes Facilitated by Singlet Oxygen. J Am Chem Soc 2019; 141:10538-10545. [DOI: 10.1021/jacs.9b05572] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vineet Kumar Soni
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yu Kyung Moon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
48
|
Guirado A, Sandoval JA, Alarcón E, Vera M, Bautista D, Gálvez J. Synthesis of Novel 3‐Aryl‐5‐dichloromethyl‐Δ
2
‐1,2,4‐oxadiazolines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Guirado
- Departamento de Química Orgánica, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| | - José A. Sandoval
- Departamento de Química Orgánica, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| | - Enrique Alarcón
- Departamento de Química Orgánica, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| | - María Vera
- Departamento de Química Orgánica, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| | - Delia Bautista
- Departamento de Química Orgánica, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| | - Jesús Gálvez
- Departamento de Química Física, Facultad de QuímicaUniversidad de Murcia Campus de Espinardo 3100 Murcia Spain
| |
Collapse
|
49
|
Golushko AA, Khoroshilova OV, Vasilyev AV. Synthesis of 1,2,4-Oxadiazoles by Tandem Reaction of Nitroalkenes with Arenes and Nitriles in the Superacid TfOH. J Org Chem 2019; 84:7495-7500. [PMID: 31117566 DOI: 10.1021/acs.joc.9b00812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tandem reaction of nitroalkenes with arenes and nitriles in the superacid CF3SO3H (TfOH) results in the formation of 1,2,4-oxadiazole derivatives in yields up to 96%. This reaction proceeds via the consequent interaction of arenes and nitriles, as nucleophiles, with intermediate cationic species derived by the protonation of nitroalkenes in TfOH. This is novel and general synthesis of 1,2,4-oxadiazoles, which are very important compounds for medicinal chemistry.
Collapse
Affiliation(s)
- Andrei A Golushko
- Department of Organic Chemistry, Institute of Chemistry , Saint Petersburg State University , Universitetskaya nab., 7/9 , Saint Petersburg 199034 , Russia
| | - Olesya V Khoroshilova
- Center for X-ray Diffraction Studies, Research Park , Saint Petersburg State University , Universitetskiy pr., 26 , Saint Petersburg , Petrodvoretz 198504 , Russia
| | - Aleksander V Vasilyev
- Department of Organic Chemistry, Institute of Chemistry , Saint Petersburg State University , Universitetskaya nab., 7/9 , Saint Petersburg 199034 , Russia.,Department of Chemistry , Saint Petersburg State Forest Technical University , Institutsky per., 5 , Saint Petersburg 194021 , Russia
| |
Collapse
|
50
|
Cai BG, Chen ZL, Xu GY, Xuan J, Xiao WJ. [3 + 2]-Cycloaddition of 2H-Azirines with Nitrosoarenes: Visible-Light-Promoted Synthesis of 2,5-Dihydro-1,2,4-oxadiazoles. Org Lett 2019; 21:4234-4238. [DOI: 10.1021/acs.orglett.9b01416] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Ze-Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People’s Republic of China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| |
Collapse
|