1
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
2
|
Tewari KM, Dondi R, Yaghini E, Pourzand C, MacRobert AJ, Eggleston IM. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy. Bioorg Chem 2021; 109:104667. [PMID: 33611140 DOI: 10.1016/j.bioorg.2021.104667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a promising approach for the targeted treatment of cancer and various other human disorders. An effective, clinically approved approach in PDT involves the administration of 5-aminolevulinic acid (ALA) to generate elevated levels of the natural photosensitiser protoporphyrin IX (PpIX). The development of prodrugs of ALA is of considerable interest as a means to enhance the efficiency and cell selectivity of PpIX accumulation for PDT applications. In this work a novel peptide-targeted dendrimeric prodrug of 5-aminolevulinic acid (ALA) 13 was synthesised which displays nine copies of ALA on a core structure that is linked to a homing peptide for targeted delivery to a specific cancer cell type. The synthesis was accomplished effectively via a flexible, modular solid phase and solution phase route, using a combination of solid phase peptide synthesis and copper-catalysed azide-alkyne cycloaddition chemistry. The prodrug system shows a sustained and enhanced production of protoporphyrin IX (PpIX) in the MDA-MB-231 cell line that over-expresses the epidernal growth factor receptor (EGFR+) in comparison to equimolar ALA and the corresponding non-targeted ALA dendrimer (nine copies of ALA). This study provides a proof of concept for the development of a new generation of prodrugs for ALA-based photodynamic therapy that can deliver an enhanced ALA payload to specific tissue types.
Collapse
Affiliation(s)
- K M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - R Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - E Yaghini
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - C Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - A J MacRobert
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - I M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
3
|
Abstract
Click chemistry is a powerful tool in constraining peptides into their active conformations. This chapter presents recent advancements involving the use of copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC), better known as "click reaction" in the design and synthesis of cyclic peptide and cyclic peptidomimetic compounds. The usage of "click chemistry" reactions includes various topics: (a) mimicking peptide bonds; (b) synthesis of ordered structures; (c) ligation of peptidomimetic scaffolds; and most importantly in this chapter (d) cyclization of peptidomimetic scaffolds using the triazole ring as constraint of conformation.
Collapse
|
4
|
Abstract
Living systems contain remarkable functional capability built within sophisticated self-organizing frameworks. Defining the assembly codes that coordinate these systems could greatly extend nanobiotechnology. To that end, we have highlighted the self-assembling architecture of the chlorosome antenna arrays and report the emulation and extension of their features for the development of cell-compatible photoredox materials. We specifically review work on amyloid peptide scaffolds able to (1) organize light-harvesting chromophores, (2) break peptide bilayer symmetry for directional energy and electron transfer, and (3) incorporate redox active metal ions at high density for energy storage.
Collapse
Affiliation(s)
- Rolando F Rengifo
- Emory University, Departments of Biology and Chemistry, 1515 Dickey Dr. NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
5
|
Folmert K, Broncel M, V Berlepsch H, Ullrich CH, Siegert MA, Koksch B. Inhibition of peptide aggregation by means of enzymatic phosphorylation. Beilstein J Org Chem 2017; 12:2462-2470. [PMID: 28144314 PMCID: PMC5238555 DOI: 10.3762/bjoc.12.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.
Collapse
Affiliation(s)
- Kristin Folmert
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Hans V Berlepsch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Mary-Ann Siegert
- Department of Organic Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Beate Koksch
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
6
|
Saha N, Gupta SD. Biogenic Synthesis and Structural Characterization of Polyshaped Gold Nanoparticles Using Leaf Extract of Swertia chirata Along with Process Optimization by Response Surface Methodology (RSM). J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1009-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Roberts DA, Crossley MJ, Perrier S. Fluorescent bowl-shaped nanoparticles from ‘clicked’ porphyrin–polymer conjugates. Polym Chem 2014. [DOI: 10.1039/c4py00250d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and post-synthetic modification of a library of hydrophilic and hydrophobic ‘clicked’ triazole-linked porphyrin–polymer conjugates (PPCs), and their subsequent assembly into fluorescent bowl-shaped nanoparticles.
Collapse
Affiliation(s)
- Derrick A. Roberts
- Key Centre for Polymers and Colloids
- The University of Sydney
- , Australia
- School of Chemistry
- The University of Sydney
| | | | - Sébastien Perrier
- Department of Chemistry
- The University of Warwick
- Coventry, UK
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
| |
Collapse
|
8
|
van der Wal S, Capicciotti CJ, Rontogianni S, Ben RN, Liskamp RMJ. Synthesis and evaluation of linear CuAAC-oligomerized antifreeze neo-glycopeptides. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00013g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An azido/alkyne-containing glycopeptide monomer was synthesized and CuAAC-oligomerized to obtain a triazole-containing antifreeze glycopeptide analogue with moderate antifreeze activity.
Collapse
Affiliation(s)
- Steffen van der Wal
- Medicinal Chemistry and Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences (UIPS)
- University Utrecht
- Utrecht
- The Netherlands
| | | | - Stamatia Rontogianni
- Medicinal Chemistry and Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences (UIPS)
- University Utrecht
- Utrecht
- The Netherlands
| | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada
| | - Rob M. J. Liskamp
- Medicinal Chemistry and Chemical Biology
- Utrecht Institute for Pharmaceutical Sciences (UIPS)
- University Utrecht
- Utrecht
- The Netherlands
| |
Collapse
|
9
|
Sokolova NV, Nenajdenko VG. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Adv 2013. [DOI: 10.1039/c3ra42482k] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Childers WS, Anthony NR, Mehta AK, Berland KM, Lynn DG. Phase networks of cross-β peptide assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6386-6395. [PMID: 22439620 DOI: 10.1021/la300143j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent evidence suggests that simple peptides can access diverse amphiphilic phases, and that these structures underlie the robust and widely distributed assemblies implicated in nearly 40 protein misfolding diseases. Here we exploit a minimal nucleating core of the Aβ peptide of Alzheimer's disease to map its morphologically accessible phases that include stable intermolecular molten particles, fibers, twisted and helical ribbons, and nanotubes. Analyses with both fluorescence lifetime imaging microscopy (FLIM) and transmission electron microscopy provide evidence for liquid-liquid phase separations, similar to the coexisting dilute and dense protein-rich liquid phases so critical for the liquid-solid transition in protein crystallization. We show that the observed particles are critical for transitions to the more ordered cross-β peptide phases, which are prevalent in all amyloid assemblies, and identify specific conditions that arrest assembly at the phase boundaries. We have identified a size dependence of the particles in order to transition to the para-crystalline phase and a width of the cross-β assemblies that defines the transition between twisted fibers and helically coiled ribbons. These experimental results reveal an interconnected network of increasing molecularly ordered cross-β transitions, greatly extending the initial computational models for cross-β assemblies.
Collapse
Affiliation(s)
- W Seth Childers
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
11
|
Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 2011; 12:1626-53. [PMID: 21751324 DOI: 10.1002/cbic.201000717] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 12/17/2022]
Abstract
Despite their enormous diversity in biological function and structure, peptides and proteins are endowed with properties that have induced and stimulated the development of peptidomimetics. Clearly, peptides can be considered as the "stem" of a phylogenetic molecular development tree from which branches of oligomeric peptidomimetics such as peptoids, peptidosulfonamides, urea peptidomimetics, as well as β-peptides have sprouted. It is still a challenge to efficiently synthesize these oligomeric species, and study their structural and biological properties. Combining peptides and peptidomimetics led to the emergence of peptide-peptidomimetic hybrids in which one or more (proteinogenic) amino acid residues have been replaced with these mimetic residues. In scan-like approaches, the influence of these replacements on biological activity can then be studied, to evaluate to what extent a peptide can be transformed into a peptidomimetic structure while maintaining, or even improving, its biological properties. A central issue, especially with the smaller peptides, is the lack of secondary structure. Important approaches to control secondary structure include the introduction of α,α-disubstituted amino acids, or (di)peptidomimetic structures such as the Freidinger lactam. Apart from intra-amino acid constraints, inter-amino acid constraints for formation of a diversity of cyclic peptides have shaped a thick branch. Apart from the classical disulfide bridges, the repertoire has been extended to include sulfide and triazole bridges as well as the single-, double- and even triple-bond replacements, accessible by the extremely versatile ring-closing alkene/alkyne metathesis approaches. The latter approach is now the method of choice for the secondary structure that presents the greatest challenge for structural stabilization: the α-helix.
Collapse
Affiliation(s)
- Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Daniel Sejer Pedersen
- Department of Medicinal Chemistry, University of Copenhagen Universitetsparken 2, 2100 Copenhagen, Denmark, Fax: +45‐3533‐6122
| | - Andrew Abell
- School of Chemistry and Physics, University of Adelaide North Terrace, South Australia 5005, Australia
| |
Collapse
|
13
|
Nagasawa J, Yoshida M, Tamaoki N. Synthesis, Gelation Properties and Photopolymerization of Macrocyclic Diacetylenedicarboxamides Derived from L-Glutamic Acid and trans-1,4-Cyclohexanediol. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001533] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Campo VL, Carvalho I, Da Silva CHTP, Schenkman S, Hill L, Nepogodiev SA, Field RA. Cyclooligomerisation of azido-alkyne-functionalised sugars: synthesis of 1,6-linked cyclic pseudo-galactooligosaccharides and assessment of their sialylation by Trypanosoma cruzi trans-sialidase. Chem Sci 2010. [DOI: 10.1039/c0sc00301h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|