1
|
King A, Wang J, Liu T, Raghavan A, Tomson NC, Zhukhovitskiy AV. Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold. ACS POLYMERS AU 2023; 3:475-481. [PMID: 38107419 PMCID: PMC10722565 DOI: 10.1021/acspolymersau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2-Csp3 and Csp2-Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2-Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.
Collapse
Affiliation(s)
- Andrew
J. King
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| | - Jiashu Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianchang Liu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adharsh Raghavan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandr V. Zhukhovitskiy
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| |
Collapse
|
2
|
Castanet AS, Nafie MS, Said SA, Arafa RK. Discovery of PIM-1 kinase inhibitors based on the 2,5-disubstituted 1,3,4-oxadiazole scaffold against prostate cancer: Design, synthesis, in vitro and in vivo cytotoxicity investigation. Eur J Med Chem 2023; 250:115220. [PMID: 36848846 DOI: 10.1016/j.ejmech.2023.115220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
PIM-1 kinases play an established role in prostate cancer development and progression. This research work tackles the design and synthesis of new PIM-1 kinase targeting 2,5-disubstituted-1,3,4-oxadiazoles 10a-g&11a-f, and investigation thereof as potential anti-cancer agents through in vitro cytotoxicity assay followed by in vivo studies along with exploration of this chemotype's plausible mechanism of action. In vitro cytotoxicity experiments have disclosed 10f as the most potent derivative against PC-3 cells (IC50 = 16 nM) compared to the reference drug Staurosporine (IC50 = 0.36 μM), also eliciting good cytotoxicity against HepG2 and MCF-7 cells (IC50 = 0.13 and 5.37 μM, respectively). Investigating PIM-1 kinase inhibitory activity of compound 10f revealed an IC50 of 17 nM paralleled to that of Staurosporine (IC50 = 16.7 nM). Furthermore, compound 10f displayed an antioxidant activity eliciting a DPPH inhibition ratio of 94% as compared to Trolox (96%). Further investigation demonstrated that 10f induced apoptosis in treated PC-3 cells by 43.2-fold (19.44%) compared to 0.45% in control. 10f also disrupted the PC-3 cell cycle by increasing the cell population at the PreG1-phase by 19.29-fold while decreasing the G2/M-phase by 0.56-fold compared to control. Moreover, 10f affected a downregulation of JAK2, STAT3 and Bcl-2 and upregulation of caspases 3, 8 and 9 levels that activated the caspase-dependent apoptosis. Finally, in vivo 10f-treatment caused a significant increase in tumor inhibition by 64.2% compared to 44.5% in Staurosporine treatment of the PC-3 xenograft mouse model. Additionally, it improved the hematological, biochemical parameters, and histopathological examinations compared to control untreated animals. Finally, docking of 10f with the ATP-binding site of PIM-1 kinase demonstrated good recognition of and effective binding to the active site. In conclusion, compound 10f represents a promising lead compound that merits further future optimization for controlling prostate cancer.
Collapse
Affiliation(s)
- Anne-Sophie Castanet
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085, LE MANS CEDEX 9, France
| | - Mohamed S Nafie
- Chemistry Department (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Sara A Said
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Adak L, Hatakeyama T, Nakamura M. Iron-Catalyzed Cross-Coupling Reactions Tuned by Bulky Ortho-Phenylene Bisphosphine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Tailor SB, Manzotti M, Smith GJ, Davis SA, Bedford RB. Cobalt-Catalyzed Coupling of Aryl Chlorides with Aryl Boron Esters Activated by Alkoxides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sanita B. Tailor
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Mattia Manzotti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Gavin J. Smith
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robin B. Bedford
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
5
|
Hajipour AR, Khorsandi Z, Ahmadi M, Jouypazadeh H, Mohammadi B, Farrokhpour H. Pd/Cu-Free Cobalt-Catalyzed Suzuki and Heck Using Green Bio-Magnetic Hybrid and DFT-Based Theoretical Study. Catal Letters 2021. [DOI: 10.1007/s10562-020-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Sonei S, Taghavi F, Khojastehnezhad A, Gholizadeh M. Copper‐Functionalized Silica‐Coated Magnetic Nanoparticles for an Efficient Suzuki Cross‐Coupling Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202004148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samin Sonei
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Faezeh Taghavi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Mostafa Gholizadeh
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
7
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
8
|
Crockett MP, Wong AS, Li B, Byers JA. Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew Chem Int Ed Engl 2020; 59:5392-5397. [DOI: 10.1002/anie.201914315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Michael P. Crockett
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Alexander S. Wong
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Bo Li
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Jeffery A. Byers
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| |
Collapse
|
9
|
Crockett MP, Wong AS, Li B, Byers JA. Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael P. Crockett
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Alexander S. Wong
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Bo Li
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Jeffery A. Byers
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| |
Collapse
|
10
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
11
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
12
|
Can Immobilization of an Inactive Iron Species Switch on Catalytic Activity in the Suzuki Reaction? Catal Letters 2019. [DOI: 10.1007/s10562-019-02978-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Duong HA, Yeow ZH, Tiong YL, Mohamad Kamal NHB, Wu W. Cobalt-Catalyzed Cross-Coupling Reactions of Aryl Triflates and Lithium Arylborates. J Org Chem 2019; 84:12686-12691. [DOI: 10.1021/acs.joc.9b02105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hung A. Duong
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Zong-Han Yeow
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Yong-Lun Tiong
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Nur Haidah Binte Mohamad Kamal
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Wenqin Wu
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| |
Collapse
|
14
|
Hashimoto T, Maruyama T, Yamaguchi T, Matsubara Y, Yamaguchi Y. Cross‐Coupling Reactions of Alkyl Halides with Aryl Grignard Reagents Using a Tetrachloroferrate with an Innocent Countercation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Tsubasa Maruyama
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Takamichi Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Yutaka Matsubara
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| |
Collapse
|
15
|
Akkarasamiyo S, Margalef J, Samec JSM. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction of Naphthyl and Quinolyl Alcohols with Boronic Acids. Org Lett 2019; 21:4782-4787. [DOI: 10.1021/acs.orglett.9b01669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sunisa Akkarasamiyo
- Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Jèssica Margalef
- Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Joseph S. M. Samec
- Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Tailor SB, Manzotti M, Asghar S, Rowsell BJS, Luckham SLJ, Sparkes HA, Bedford RB. Revisiting Claims of the Iron-, Cobalt-, Nickel-, and Copper-Catalyzed Suzuki Biaryl Cross-Coupling of Aryl Halides with Aryl Boronic Acids. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sanita B. Tailor
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Mattia Manzotti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Soneela Asghar
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | | | | | - Hazel A. Sparkes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robin B. Bedford
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
17
|
Wang L, Wei YM, Zhao Y, Duan XF. Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents. J Org Chem 2019; 84:5176-5186. [DOI: 10.1021/acs.joc.9b00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Liu S, Huang W, Wang D, Wei P, Shen Q. Cobalt-catalyzed cross-coupling of lithium (hetero)aryl zincates with heteroaryl chlorides and bromides. Org Chem Front 2019. [DOI: 10.1039/c9qo00551j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A mild, efficient and practical Co-catalyzed cross coupling reaction of a variety of activated heteroaryl chlorides and bromides with lithium aryl zincates that were in situ generated from lithium aryl boronates with ZnBr2 was described.
Collapse
Affiliation(s)
- Shuanshuan Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Weichen Huang
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Decai Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
19
|
Iwamoto T, Okuzono C, Adak L, Jin M, Nakamura M. Iron-catalysed enantioselective Suzuki–Miyaura coupling of racemic alkyl bromides. Chem Commun (Camb) 2019; 55:1128-1131. [DOI: 10.1039/c8cc09523j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first iron-catalyzed enantioselective Suzuki–Miyaura coupling reaction has been established by using electron-deficient P-chiral bisphosphine ligand (R,R)-QuinoxP*.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| | - Chiemi Okuzono
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| | - Laksmikanta Adak
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Masayoshi Jin
- Process Technology Research Laboratories
- Pharmaceutical Technology Division
- Daiichi Sankyo Co., Ltd
- Hiratsuka
- Japan
| | - Masaharu Nakamura
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
- Department of Energy and Hydrocarbon Chemistry
| |
Collapse
|
20
|
The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling. Nat Catal 2018. [DOI: 10.1038/s41929-018-0197-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Zhang R, Zhao Y, Liu KM, Duan XF. Phenolate Enabled General and Selective Fe/Ti Cocatalyzed Biaryl Cross-Couplings between Aryl Halides and Aryl Grignard Reagents. Org Lett 2018; 20:7942-7946. [DOI: 10.1021/acs.orglett.8b03513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kun-Ming Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Crockett MP, Tyrol CC, Wong AS, Li B, Byers JA. Iron-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions between Alkyl Halides and Unactivated Arylboronic Esters. Org Lett 2018; 20:5233-5237. [PMID: 30132330 DOI: 10.1021/acs.orglett.8b02184] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An iron-catalyzed cross-coupling reaction between alkyl halides and arylboronic esters was developed that does not involve activation of the boronic ester with alkyllithium reagents nor requires magnesium additives. A combination of experimental and theoretical investigations revealed that lithium amide bases coupled with iron complexes containing deprotonated cyanobis(oxazoline) ligands were best to obtain high yields (up to 89%) in catalytic cross-coupling reactions. Mechanistic investigations implicate carbon-centered radical intermediates and highlight the critical importance of avoiding conditions that lead to iron aggregates. The new iron-catalyzed Suzuki-Miyaura reaction was applied toward the shortest reported synthesis of the pharmaceutical Cinacalcet.
Collapse
Affiliation(s)
- Michael P Crockett
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Chet C Tyrol
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Alexander S Wong
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Bo Li
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Jeffery A Byers
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
23
|
|
24
|
|
25
|
Richard CJ, Macmillan D, Hogarth G. Microwave-assisted synthesis of cyclopentadienone iron tricarbonyl complexes: molecular structures of [{η4-C4R2C(O)C4H8}Fe(CO)3] (R = Ph, 2,4-F2C6H3, 4-MeOC6H4) and attempts to prepare Fe(II) hydroxycyclopentadienyl–hydride complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0229-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Xu X, Sun J, Lin Y, Cheng J, Li P, Jiang X, Bai R, Xie Y. Iron-Nitrate-Catalyzed Oxidative Esterification of Aldehydes and Alcohols with N
-Hydroxyphthalimide: Efficient Synthesis of N
-Hydroxyimide Esters. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaohe Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jian Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Yuyan Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jingya Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Pingping Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Xiaoying Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Renren Bai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
27
|
Asghar S, Tailor SB, Elorriaga D, Bedford RB. Cobalt-Catalyzed Suzuki Biaryl Coupling of Aryl Halides. Angew Chem Int Ed Engl 2017; 56:16367-16370. [PMID: 29135071 PMCID: PMC5767760 DOI: 10.1002/anie.201710053] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 12/28/2022]
Abstract
Readily accessed cobalt pre-catalysts with N-heterocyclic carbene ligands catalyze the Suzuki cross-coupling of aryl chlorides and bromides with alkyllithium-activated arylboronic pinacolate esters. Preliminary mechanistic studies indicate that the cobalt species is reduced to Co0 during the reaction.
Collapse
Affiliation(s)
- Soneela Asghar
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of Chemistry and Chemical EngineeringSBA School of Science & EngineeringLahore University of Management SciencesLahore54792Pakistan
| | - Sanita B. Tailor
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - David Elorriaga
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Robin B. Bedford
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
28
|
Asghar S, Tailor SB, Elorriaga D, Bedford RB. Cobalt-Catalyzed Suzuki Biaryl Coupling of Aryl Halides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Soneela Asghar
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry and Chemical Engineering; SBA School of Science & Engineering; Lahore University of Management Sciences; Lahore 54792 Pakistan
| | - Sanita B. Tailor
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - David Elorriaga
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Robin B. Bedford
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
29
|
Duong HA, Wu W, Teo YY. Cobalt-Catalyzed Cross-Coupling Reactions of Arylboronic Esters and Aryl Halides. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00726] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hung A. Duong
- Organic Chemistry, Institute of Chemical
and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Wenqin Wu
- Organic Chemistry, Institute of Chemical
and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Yu-Yuan Teo
- Organic Chemistry, Institute of Chemical
and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| |
Collapse
|
30
|
Affiliation(s)
- Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
31
|
Kneebone JL, Brennessel WW, Neidig ML. Intermediates and Reactivity in Iron-Catalyzed Cross-Couplings of Alkynyl Grignards with Alkyl Halides. J Am Chem Soc 2017; 139:6988-7003. [PMID: 28445045 PMCID: PMC5539525 DOI: 10.1021/jacs.7b02363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron-catalyzed cross-coupling reactions using alkynyl nucleophiles represent an attractive approach for the incorporation of alkynyl moieties into organic molecules. In the present study, a multitechnique approach combining inorganic spectroscopic methods, inorganic synthesis, and reaction studies is applied to iron-SciOPP catalyzed alkynyl-alkyl cross-couplings, providing the first detailed insight into the effects of variation from sp2- to sp-hybridized nucleophiles on iron speciation and reactivity. Reaction studies demonstrate that reaction of FeBr2(SciOPP) with 1 equiv (triisopropylsilyl)ethynylmagnesium bromide (TIPS-CC-MgBr) leads to a distribution of mono-, bis-, and tris-alkynylated iron(II)-SciOPP species due to rapid alkynyl ligand redistribution. While solvents such as THF promote these complex redistribution pathways, nonpolar solvents such as toluene enable increased stabilization of these iron species and further enabled assessment of their reactivity with electrophile. While the tris-alkynylated iron(II)-SciOPP species was found to be unreactive with the cycloheptyl bromide electrophile over the average turnover time of catalysis, the in situ formed neutral mono- and bis-alkynylated iron(II)-SciOPP complexes are consumed upon reaction with the electrophile with concomitant generation of cross-coupled product at catalytically relevant rates, indicating the ability of one or both of these species to react selectively with the electrophile. The nature of the reaction solvent and Grignard reagent addition rate were found to have broader implications in overall reaction selectivity, reaction rate, and accessibility of off-cycle iron(I)-SciOPP species. Additionally, the effects of steric substitution of the alkynyl Grignard reagent on catalytic performance were investigated. Fundamental insight into iron speciation and reactivity with alkynyl nucleophiles reported herein provides an essential foundation for the continued development of this important class of reactions.
Collapse
Affiliation(s)
- Jared L. Kneebone
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael L. Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
32
|
Affiliation(s)
- Laurean Ilies
- Department of Chemistry, School of Science, The University of Tokyo
| |
Collapse
|
33
|
Neely J, Bezdek M, Chirik PJ. Insight into Transmetalation Enables Cobalt-Catalyzed Suzuki-Miyaura Cross Coupling. ACS CENTRAL SCIENCE 2016; 2:935-942. [PMID: 28058283 PMCID: PMC5200927 DOI: 10.1021/acscentsci.6b00283] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Among the fundamental transformations that comprise a catalytic cycle for cross coupling, transmetalation from the nucleophile to the metal catalyst is perhaps the least understood. Optimizing this elementary step has enabled the first example of a cobalt-catalyzed Suzuki-Miyaura cross coupling between aryl triflate electrophiles and heteroaryl boron nucleophiles. Key to this discovery was the preparation and characterization of a new class of tetrahedral, high-spin bis(phosphino)pyridine cobalt(I) alkoxide and aryloxide complexes, (iPrPNP)CoOR, and optimizing their reactivity with 2-benzofuranylBPin (Pin = pinacolate). Cobalt compounds with small alkoxide substituents such as R = methyl and ethyl underwent swift transmetalation at 23 °C but also proved kinetically unstable toward β-H elimination. Secondary alkoxides such as R = iPr or CH(Ph)Me balanced stability and reactivity. Isolation and structural characterization of the product following transmetalation, (iPrPNP)Co(2-benzofuranyl), established a planar, diamagnetic cobalt(I) complex, demonstrating the high- and low-spin states of cobalt(I) rapidly interconvert during this reaction. The insights from the studies in this elementary step guided selection of appropriate reaction conditions to enable the first examples of cobalt-catalyzed C-C bond formation between neutral boron nucleophiles and aryl triflate electrophiles, and a model for the successful transmetalation reactivity is proposed.
Collapse
|
34
|
Ilies L, Itabashi Y, Shang R, Nakamura E. Iron/Zinc-Co-catalyzed Directed Arylation and Alkenylation of C(sp3)–H Bonds with Organoborates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laurean Ilies
- Department of Chemistry,
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Itabashi
- Department of Chemistry,
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rui Shang
- Department of Chemistry,
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry,
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Ueda M, Nakakoji D, Kuwahara Y, Nishimura K, Ryu I. Transition-metal-free cross-coupling reaction of benzylic halides with arylboronic acids leading to diarylmethanes. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Guérinot A, Cossy J. Iron-Catalyzed C-C Cross-Couplings Using Organometallics. Top Curr Chem (Cham) 2016; 374:49. [PMID: 27573401 DOI: 10.1007/s41061-016-0047-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
Abstract
Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed.
Collapse
Affiliation(s)
- Amandine Guérinot
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231, ESPCI Paris/CNRS/PSL* Research Institute, 10 rue Vauquelin, 75231, Paris Cedex 05, France.
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231, ESPCI Paris/CNRS/PSL* Research Institute, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
37
|
Anka-Lufford LL, Huihui KMM, Gower NJ, Ackerman LKG, Weix DJ. Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents. Chemistry 2016; 22:11564-7. [DOI: 10.1002/chem.201602668] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Kierra M. M. Huihui
- Department of Chemistry; University of Rochester; Rochester NY 14627-0216 USA
| | - Nicholas J. Gower
- Department of Chemistry; University of Rochester; Rochester NY 14627-0216 USA
| | | | - Daniel J. Weix
- Department of Chemistry; University of Rochester; Rochester NY 14627-0216 USA
| |
Collapse
|
38
|
Miao C, Zhao H, Zhao Q, Xia C, Sun W. NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01245g] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An NHPI and ferric nitrate system was developed for efficient oxidation of benzylic methylenes with 1 atm of oxygen at 25 °C, providing up to 97% yield.
Collapse
Affiliation(s)
- Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| | - Hanqing Zhao
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Quanyi Zhao
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
39
|
Waldhart GW, Mankad NP. Photochemical Heck benzylation of styrenes catalyzed by Na[FeCp(CO)2]. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Parmelee SR, Mazzacano TJ, Zhu Y, Mankad NP, Keith JA. A Heterobimetallic Mechanism for C–H Borylation Elucidated from Experimental and Computational Data. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sean R. Parmelee
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| | - Thomas J. Mazzacano
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| | - Yaqun Zhu
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Neal P. Mankad
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| | - John A. Keith
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
41
|
Bedford RB. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions. Acc Chem Res 2015; 48:1485-93. [PMID: 25916260 DOI: 10.1021/acs.accounts.5b00042] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the catalytic cycle. Meanwhile, the reactivity required of the lowest-oxidation-state species has been observed with model compounds in higher oxidation states, implying that there is no need to invoke such low oxidation states. While subzero-valent complexes do indeed act as effective precatalysts, it is important to recognize that this tells us that they are efficiently converted to an active catalyst but says nothing about the oxidation states of the species in the catalytic cycle. Zero-valent heterogeneous iron nanoparticles can be formed under typical catalytic conditions, but there is no evidence to suggest that homogeneous Fe(0) complexes can be produced under comparable conditions. It seems likely that the zero-valent nanoparticles act as a reservoir for soluble higher-oxidation-state species. Fe(II) complexes can certainly be formed under catalytically relevant conditions, and when bulky nucleophilic coupling partners are exploited, potential intermediates can be isolated. However, the bulky reagents act as poor proxies for most nucleophiles used in cross-coupling, as they give Fe(II) organometallic intermediates that are kinetically stabilized with respect to reductive elimination. When more realistic substrates are exploited, reduction or disproportionation to Fe(I) is widely observed, and while it still has not been conclusively proved, this oxidation state currently represents a likely candidate for the lowest one active in many iron-catalyzed cross-coupling processes.
Collapse
Affiliation(s)
- Robin B. Bedford
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
42
|
Kuzmina OM, Steib AK, Fernandez S, Boudot W, Markiewicz JT, Knochel P. Practical Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Aryl or Heteroaryl Magnesium Reagents. Chemistry 2015; 21:8242-9. [PMID: 25899175 DOI: 10.1002/chem.201500747] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/07/2022]
Abstract
The reaction scope of iron- and cobalt-catalyzed cross-coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2-halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe-catalyzed cross-coupling reactions between 6-chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10% N,N-dimethylquinoline-8-amine increases the yields of some Co-catalyzed cross-coupling reactions with chloropyridines bearing electron-withdrawing substituents.
Collapse
Affiliation(s)
- Olesya M Kuzmina
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany)
| | - Andreas K Steib
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany)
| | - Sarah Fernandez
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany)
| | - Willy Boudot
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany)
| | - John T Markiewicz
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany)
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich (Germany).
| |
Collapse
|
43
|
Dunsford JJ, Clark ER, Ingleson MJ. Direct C(sp2)C(sp3) Cross-Coupling of Diaryl Zinc Reagents with Benzylic, Primary, Secondary, and Tertiary Alkyl Halides. Angew Chem Int Ed Engl 2015; 54:5688-92. [DOI: 10.1002/anie.201411403] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/23/2015] [Indexed: 11/10/2022]
|
44
|
Dunsford JJ, Clark ER, Ingleson MJ. Direct C(sp2)C(sp3) Cross-Coupling of Diaryl Zinc Reagents with Benzylic, Primary, Secondary, and Tertiary Alkyl Halides. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
46
|
Hedström A, Izakian Z, Vreto I, Wallentin CJ, Norrby PO. On the Radical Nature of Iron-Catalyzed Cross-Coupling Reactions. Chemistry 2015; 21:5946-53. [DOI: 10.1002/chem.201406096] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 12/31/2022]
|
47
|
Clifton J, Habraken ERM, Pringle PG, Manners I. Subtle effects of ligand backbone on the efficiency of iron-diphos catalysed Negishi cross-coupling reactions. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00851d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Readily available and modifiable diphosphines with a thiophene backbone produce more efficient iron catalysts for Negishi cross-coupling than analogues with a phenylene backbone.
Collapse
Affiliation(s)
- Jamie Clifton
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - Evi R. M. Habraken
- Department of Chemistry and Pharmaceutical Sciences
- VU University Amsterdam
- De Boelelaan 1083
- 1081 HV Amsterdam
- The Netherlands
| | | | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| |
Collapse
|
48
|
Bedford RB, Brenner PB. The Development of Iron Catalysts for Cross-Coupling Reactions. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_99] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Prajapati D, Schulzke C, Kindermann MK, Kapdi AR. Selective palladium-catalysed arylation of 2,6-dibromopyridine using N-heterocyclic carbene ligands. RSC Adv 2015. [DOI: 10.1039/c5ra10561g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A selective palladium-catalysed arylation of 2,6-dibromopyridine has been developed by employing N-heterocyclic carbene ligands. Selective mono-arylation was performed in water/acetonitrile solvent at ambient temperature and low catalyst loading.
Collapse
Affiliation(s)
- D. Prajapati
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - C. Schulzke
- Institute fur Biochemie
- Ernst-Moritz-Arndt Universität Greifswald
- D-17487 Greifswald
- Germany
| | - M. K. Kindermann
- Institute fur Biochemie
- Ernst-Moritz-Arndt Universität Greifswald
- D-17487 Greifswald
- Germany
| | - A. R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
50
|
Kawamura S, Agata R, Nakamura M. Regio- and stereoselective multisubstituted olefin synthesis via hydro/carboalumination of alkynes and subsequent iron-catalysed cross-coupling reaction with alkyl halides. Org Chem Front 2015. [DOI: 10.1039/c5qo00147a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic route towards multisubstituted olefins was developed based on the direct cross coupling of alkenyl aluminium reagents, prepared by hydro- and carboalumination, with alkyl halides in the presence of an iron catalyst.
Collapse
Affiliation(s)
- Shintaro Kawamura
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| | - Ryosuke Agata
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS)
- Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|