1
|
Aluri KC, Datta D, Waldron S, Taneja N, Qin J, Donnelly DP, Theile CS, Guenther DC, Lei L, Harp JM, Pallan PS, Egli M, Zlatev I, Manoharan M. Single-Stranded Hairpin Loop RNAs (loopmeRNAs) Potently Induce Gene Silencing through the RNA Interference Pathway. J Am Chem Soc 2024. [PMID: 39373383 DOI: 10.1021/jacs.4c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Synthetic small interfering RNAs conjugated to trivalent N-acetylgalactosamine (GalNAc) are clinically validated drugs for treatment of liver diseases. Incorporation of phosphorothioate linkages and ribose modifications are necessary for stability, potency, and duration of pharmacology. Although multiple alternative siRNA designs such as Dicer-substrate RNA, shRNA, and circular RNA have been evaluated in vitro and in preclinical studies with some success, clinical applications of these designs are limited as it is difficult to incorporate chemical modifications in these designs. An alternative siRNA design that can incorporate chemical modifications through straightforward synthesis without compromising potency will significantly advance the field. Here, we report a facile synthesis of GalNAc ligand-containing single-stranded loop hairpin RNAs (loopmeRNAs) with clinically relevant chemical modifications. We evaluated the efficiency of novel loopmeRNA designs in vivo and correlated their structure-activity relationship with the support of in vitro metabolism data. Sequences and chemical modifications in the loop region of the loopmeRNA design were optimized for maximal potency. Our studies demonstrate that loopmeRNAs can efficiently silence expression of target genes with comparable efficacy to conventional double-stranded siRNAs but reduced environmental and regulatory burdens.
Collapse
Affiliation(s)
- Krishna C Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Scott Waldron
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - June Qin
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel P Donnelly
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Dale C Guenther
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Structural Modifications of siRNA Improve Its Performance In Vivo. Int J Mol Sci 2023; 24:ijms24020956. [PMID: 36674473 PMCID: PMC9862127 DOI: 10.3390/ijms24020956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The use of small interfering RNA (siRNA) in the clinic gives a wide range of possibilities for the treatment of previously incurable diseases. However, the main limitation for biomedical applications is their delivery to target cells and organs. Currently, delivery of siRNA to liver cells is a solved problem due to the bioconjugation of siRNA with N-acetylgalactosamine; other organs remain challenging for siRNA delivery to them. Despite the important role of the ligand in the composition of the bioconjugate, the structure and molecular weight of siRNA also play an important role in the delivery of siRNA. The basic principle is that siRNAs with smaller molecular weights are more efficient at entering cells, whereas siRNAs with larger molecular weights have advantages at the organism level. Here we review the relationships between siRNA structure and its biodistribution and activity to find new strategies for improving siRNA performance.
Collapse
|
4
|
Jahns H, Degaonkar R, Podbevsek P, Gupta S, Bisbe A, Aluri K, Szeto J, Kumar P, LeBlanc S, Racie T, Brown CR, Castoreno A, Guenther DC, Jadhav V, Maier MA, Plavec J, Egli M, Manoharan M, Zlatev I. Small circular interfering RNAs (sciRNAs) as a potent therapeutic platform for gene-silencing. Nucleic Acids Res 2021; 49:10250-10264. [PMID: 34508350 PMCID: PMC8501968 DOI: 10.1093/nar/gkab724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using ‘click’ chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circular RNA mimics. We evaluated various sciRNA designs in vitro and in vivo. We observed improved metabolic stability of the sense strand upon circularization and off-target effects were eliminated. The 5′-(E)-vinylphosphonate modification of the antisense strand resulted in GalNAc-sciRNAs that are potent in vivo at therapeutically relevant doses. Physicochemical studies and NMR-based structural analysis, together with molecular modeling studies, shed light on the interactions of this novel class of siRNAs, which have a partial duplex character, with the RNAi machinery.
Collapse
Affiliation(s)
- Hartmut Jahns
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Peter Podbevsek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, EU
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Krishna Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - John Szeto
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Pawan Kumar
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Sarah LeBlanc
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Tim Racie
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | | | - Vasant Jadhav
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, EU
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Lu X, Wu X, Wu T, Han L, Liu J, Ding B. Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chem Commun (Camb) 2021; 56:9894-9897. [PMID: 32720666 DOI: 10.1039/d0cc04356g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A terminal-closed linear gene with strong exonuclease resistance and serum stability was successfully constructed by polymerase chain reaction (PCR) with an α-l-threose nucleic acid (TNA) loop modified primer pair, which can be used as an efficient gene expression system in eukaryotic cells for gene delivery.
Collapse
Affiliation(s)
- Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
7
|
Li Q, Zhang S, Li W, Ge Z, Fan C, Gu H. Programming CircLigase Catalysis for DNA Rings and Topologies. Anal Chem 2020; 93:1801-1810. [PMID: 33382236 DOI: 10.1021/acs.analchem.0c04668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular single-stranded (ss) DNA is an essential element in rolling circle amplification and many DNA nanotechnology constructions. It is commonly synthesized from linear ssDNA by a ligase, which nevertheless suffers from low and inconsistent efficiency due to the simultaneous formation of concatemeric byproducts. Here, we design an intramolecular terminal hybridization strategy to program the ring formation catalytic process of CircLigase, a thermostable RNA ligase 1 that can ligate ssDNA in an intramolecular fashion. With the enthalpy gained from the programmed hybridization to override disfavored entropic factors associated with end coupling, we broke the limit of natural CircLigase on circularization of ssDNA, realizing over 75% yields of byproduct-free monomeric rings on a series of hundred-to-half-kilo-based linear DNAs. We found that this hybridization strategy can be twisted from intra- to intermolecular to also program CircLigase to efficiently and predominantly join one ssDNA strand to another. We focused on DNA rings premade by CircLigase and demonstrated their utility in elevating the preparation, quantity, and quality of DNA topologies. We expect that the new insights on engineering CircLigase will further promote the development of nucleic acid biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Shu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Chemical synthesis and biochemical characterization of cyclic oligonucleotides containing acyl groups at both 5'- and 3'-terminal positions. Bioorg Med Chem 2020; 28:115799. [PMID: 33069130 DOI: 10.1016/j.bmc.2020.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022]
Abstract
Modified oligonucleotides, whose ON-OFF switch of hybridization can be controlled by an external stimulus, are important to understanding life phenomena and efficient treatment of diseases. The ON-OFF switch can be completely controlled by chemical modification of the oligonucleotide such as cyclization. However, their chemical modifications of the previous cyclic oligonucleotides remain after the addition of an external stimulus. To overcome this problem, we carried out the first synthesis of cyclic oligonucleotides containing acyl groups at both 5'- and 3'-terminal positions, which can be hydrolyzed by intracellular esterase. The cyclic oligonucleotides were successfully synthesized via disulfide bond formation and the phosphoramidite method without base protection on polymer supports containing a silyl linker. Subsequently, we were able to introduce a functional group into the cyclic oligonucleotide using the corresponding isothiocyanate reagent. Additionally, a cyclic oligonucleotide with acyl groups was found to have a much lower binding ability than the corresponding linear oligonucleotide. Moreover, we demonstrated its structural conversion to the corresponding linear oligonucleotide with two thiol groups under reducing conditions using dithiothreitol. It was also confirmed that the two terminal acyl groups of the linear oligonucleotide were hydrolyzed by pig liver esterase. These results indicate that hybridization of cyclic acylated nucleic acid drugs with high nuclease resistance is regulated by intracellular esterase under the reducing conditions in the cell cytoplasm.
Collapse
|
9
|
Circular siRNAs for Reducing Off-Target Effects and Enhancing Long-Term Gene Silencing in Cells and Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:237-244. [PMID: 29499936 PMCID: PMC5768153 DOI: 10.1016/j.omtn.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022]
Abstract
Circular non-coding RNAs are found to play important roles in biology but are still relatively unexplored as a structural motif for chemically regulating gene function. Here, we investigated whether small interfering RNA (siRNA) with a circular structure can circumvent off-target gene silencing, a problem often observed with standard linear duplex siRNA. In the present work, we, for the first time, synthesized a series of circular siRNAs by cyclizing two ends of a single-stranded RNA (sense or antisense strand) to construct circular siRNAs that were more resistant to enzymatic degradation. Gene silencing of GFP and luciferase was successfully achieved using these circular siRNAs with circular sense strand RNAs and their complementary linear antisense strand RNAs. The off-target effect of sense strand RNAs was evaluated and no cross off-target effects were observed. In addition, we successfully achieved longer gene-silencing efficiency in mice with circular siRNAs than with linear siRNAs. These results indicate the promise of circular siRNAs for overcoming off-target effects of siRNAs and enhancing the possible long-term effect of siRNA gene silencing in basic research and drug development.
Collapse
|
10
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
11
|
Generation of siRNA Nanosheets for Efficient RNA Interference. Sci Rep 2016; 6:25146. [PMID: 27120975 PMCID: PMC4848498 DOI: 10.1038/srep25146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.
Collapse
|
12
|
Kim H, Park Y, Kim J, Jeong J, Han S, Lee JS, Lee JB. Nucleic Acid Engineering: RNA Following the Trail of DNA. ACS COMBINATORIAL SCIENCE 2016; 18:87-99. [PMID: 26735596 DOI: 10.1021/acscombsci.5b00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Yongkuk Park
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jieun Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jae Sung Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| |
Collapse
|
13
|
Nanostructured RNAs for RNA interference. Methods Mol Biol 2014; 1218:17-36. [PMID: 25319643 DOI: 10.1007/978-1-4939-1538-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We synthesized three types of nanostructured RNAs that induce RNA interference (RNAi): branched RNAs, dumbbell-shaped RNA, and circular double-stranded RNAs. All three nanostructured RNAs were transformed into double-stranded RNA of approximately 20 base pairs when they were treated with nuclease enzymes such as Dicer. These dsRNA species induced gene silencing when they are were introduced into mammalian cells.
Collapse
|
14
|
Abstract
RNA interference (RNAi) is a potent and highly specific gene-silencing phenomenon which is initiated or triggered by double-stranded RNAs (dsRNAs). Shortly after the development of RNAi, small interfering RNAs (siRNAs) that are 21 nucleotides in length with a 3' nucleotide overhang were shown to be very effective in mammalian cells. Much effort has been dedicated to the application of siRNAs, both as biological tools and as therapeutic agents. Currently, synthetic siRNA would be the method of choice for clinical purposes. However, natural RNA strands are quickly degraded in biological fluids. Chemically synthesized unnatural nucleotides have been developed and introduced into the siRNA strand. For example, modification of the ribose moiety with a 2'-deoxy, 2'-O-methyl, or 2'-fluoro group, or modification of the phosphate backbone have been examined. Although these modifications improve the stability of siRNA in serum, they often cause a decrease in RNAi activity. There is also concern that unnatural RNA derivatives are toxic in the human body. A method to stabilize nontoxic natural RNA strands should be very useful for applications in RNAi technology. We came up with an idea that nano-structural design stabilizes natural RNA. We tested several new designs such as dumbbell RNA, double stranded circular RNA, or branched RNA in biological stability and RNA interference activity. Consequently, dumbbell or branched design offered prolonged RNAi effect due to high biological stability.
Collapse
Affiliation(s)
- Hiroshi Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Abe N, Abe H, Nagai C, Harada M, Hatakeyama H, Harashima H, Ohshiro T, Nishihara M, Furukawa K, Maeda M, Tsuneda S, Ito Y. Synthesis, structure, and biological activity of dumbbell-shaped nanocircular RNAs for RNA interference. Bioconjug Chem 2011; 22:2082-92. [PMID: 21899349 DOI: 10.1021/bc2003154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi) is one of the most promising new approaches for disease therapy. The design of a dumbbell-shaped nanocircular RNA allows it to act as a short interfering RNA (siRNA) precursor. To optimize the design, we studied the relationship between the nanostructure and RNAi activity by synthesizing various RNA dumbbells. An RNA dumbbell with a 23-bp stem and 9-nt loops was the most potent. Sequence analysis by mass spectrometry showed that Dicer could edit RNA dumbbells to siRNA species. The reaction offered the slow release of siRNA species, which conferred prolonged RNAi activity. Introduction of DNA into the loop position significantly stabilized the dumbbell in biological fluid without any loss of RNAi activity. In-depth pharmacological evaluation was performed by introducing dumbbells into HeLa cells that stably express the target luciferase gene. The dumbbells provided a rapid silencing effect and retained this effect for a longer time even at a lower concentration than that at which standard siRNA completely lost RNAi activity. We conclude that an RNA dumbbell with DNA loops is the most promising design for in vivo applications for RNA medicine.
Collapse
Affiliation(s)
- Naoko Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakashima Y, Abe H, Abe N, Aikawa K, Ito Y. Branched RNA nanostructures for RNA interference. Chem Commun (Camb) 2011; 47:8367-9. [DOI: 10.1039/c1cc11780g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|