1
|
A Mini Review on Thin Film Superconductors. Processes (Basel) 2022. [DOI: 10.3390/pr10061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thin superconducting films have been a significant part of superconductivity research for more than six decades. They have had a significant impact on the existing consensus on the microscopic and macroscopic nature of the superconducting state. Thin-film superconductors have properties that are very different and superior to bulk material. Amongst the various classification criteria, thin-film superconductors can be classified into Fe based thin-film superconductors, layered titanium compound thin-film superconductors, intercalation compounds of layered and cage-like structures, and other thin-film superconductors that do not fall into these groups. There are various techniques of manufacturing thin films, which include atomic layer deposition (ALD), chemical vapour deposition (CVD), physical vapour deposition (PVD), molecular beam epitaxy (MBE), sputtering, electron beam evaporation, laser ablation, cathodic arc, and pulsed laser deposition (PLD). Thin film technology offers a lucrative scheme of creating engineered surfaces and opens a wide exploration of prospects to modify material properties for specific applications, such as those that depend on surfaces. This review paper reports on the different types and groups of superconductors, fabrication of thin-film superconductors by MBE, PLD, and ALD, their applications, and various challenges faced by superconductor technologies. Amongst all the thin film manufacturing techniques, more focus is put on the fabrication of thin film superconductors by atomic layer deposition because of the growing popularity the process has gained in the past decade.
Collapse
|
2
|
Ryu G, Duong DL. V 2Se: a novel antifluorite-type cubic phase with a metal-metal bonding. Dalton Trans 2019; 48:8556-8559. [PMID: 31140502 DOI: 10.1039/c9dt01569h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new antifluorite-type (Li2O-type) cubic compound, V2Se, has been synthesized for the first time by changing the amount of selenium in chemical vapor transport. The vanadium-based cubic phase studied here reveals a metal-metal bonding feature in the electronic band structure. This compound is the first example of an antifluorite-type cubic structure in a V-Se system.
Collapse
Affiliation(s)
- Gihun Ryu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany. and Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Dinh Loc Duong
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany and Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:033503. [PMID: 27877784 PMCID: PMC5099821 DOI: 10.1088/1468-6996/16/3/033503] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 06/02/2023]
Abstract
This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.
Collapse
Affiliation(s)
- Hideo Hosono
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Keiichi Tanabe
- Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 2-11-19 Minowa-cho, Kohoku-ku, Yokohama, Kanagawa 223-0051, Japan
| | | | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shoji Yamanaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Hiroaki Kumakura
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Minoru Nohara
- Department of Physics, Okayama University, Okayama 700-8530, Japan
| | - Hidenori Hiramatsu
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Satoru Fujitsu
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Nuss J, Jansen M. New Ternary La 2Sb-Type Compounds, Sc RESb ( RE= La, Ce, Pr, Nd, Sm, Tb), and the Oxygen Stuffed Variant Sc 4Yb 4Sb 4O. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Gaudin E, Matar SF, Pöttgen R, Eul M, Chevalier B. Drastic Change of the Ferromagnetic Properties of the Ternary Germanide GdTiGe through Hydrogen Insertion. Inorg Chem 2011; 50:11046-54. [DOI: 10.1021/ic201579r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Etienne Gaudin
- CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France
| | - Samir F. Matar
- CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Matthias Eul
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Bernard Chevalier
- CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France
| |
Collapse
|