1
|
Sun H, Zhou P, Su B. Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review. BIOSENSORS 2023; 13:708. [PMID: 37504107 PMCID: PMC10377090 DOI: 10.3390/bios13070708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Electrochemiluminescence (ECL) is the chemiluminescence triggered by electrochemical reactions. Due to the unique excitation mode and inherent low background, ECL has been a powerful analytical technique to be widely used in biosensing and imaging. As an emerging ECL luminophore, semiconductor quantum dots (QDs) have apparent advantages over traditional molecular luminophores in terms of luminescence efficiency and signal modulation ability. Therefore, the development of an efficient ECL system with QDs as luminophores is of great significance to improve the sensitivity and detection flux of ECL biosensors. In this review, we give a comprehensive summary of recent advances in ECL using semiconductor QDs as luminophores. The luminescence process and ECL mechanism of semiconductor QDs with various coreactants are discussed first. Specifically, the influence of surface defects on ECL performance of semiconductor QDs is emphasized and several typical ECL enhancement strategies are summarized. Then, the applications of semiconductor QDs in ECL biosensing are overviewed, including immunoassay, nucleic acid analysis and the detection of small molecules. Finally, the challenges and prospects of semiconductor QDs as ECL luminophores in biosensing are featured.
Collapse
Affiliation(s)
- Hui Sun
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Liao N, Zhong X, Liang WB, Yuan R, Zhuo Y. Metal-organic Frameworks (MOF)-based Novel Electrochemiluminescence Biosensing Platform for Quantification of H2O2 Releasing from Tumor Cells. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105287] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Patel J, Jain B, Singh AK, Susan MABH, Jean-Paul L. Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
KONG Y, ZHANG BH, ZENG ZH, ZHANG YW, NIU L. Recent Advances in Electrochemiluminescence of Halide Perovskites. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61218-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Chen L, Kang Q, Li Z, Zhang B, Zou G, Shen D. Tunable electrochemiluminescence properties of CsPbBr3perovskite nanocrystals using mixed-monovalent cations. NEW J CHEM 2020. [DOI: 10.1039/c9nj05665c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrate a simple approach for tuning the elecrochemiluminescence (ECL) properties of CsPbBr3perovskite nanocrystals by using mixed-monovalent cations.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhe Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bin Zhang
- School of Chemistry and Chemical Engineering
- Jinan
- China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering
- Jinan
- China
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
8
|
Liang XL, Bao N, Luo X, Ding SN. CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosens Bioelectron 2018; 117:145-152. [DOI: 10.1016/j.bios.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
|
9
|
Gong YT, Yuan F, Dong Y, Li Z, Wang GL. Switched photoelectrochemistry of carbon dots for split-type immunoassay. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. SENSORS 2017; 17:s17122952. [PMID: 29257113 PMCID: PMC5750823 DOI: 10.3390/s17122952] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring.
Collapse
|
11
|
Chen A, Zhao M, Zhuo Y, Chai Y, Yuan R. Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction. Anal Chem 2017; 89:9232-9238. [DOI: 10.1021/acs.analchem.7b02003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anyi Chen
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Zhao
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Kirschbaum-Harriman S, Mayer M, Duerkop A, Hirsch T, Baeumner AJ. Signal enhancement and low oxidation potentials for miniaturized ECL biosensors via N-butyldiethanolamine. Analyst 2017; 142:2469-2474. [PMID: 28590001 DOI: 10.1039/c7an00261k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present studies on ruthenium-based electrochemiluminescence (ECL) focusing on conditions supporting signal enhancement and low oxidation potentials. Low oxidation potentials (LOPs) are especially attractive for miniaturized ECL biosensors, as microfabricated electrodes tend to detach from their support when used with high currents and operated at high potentials. Furthermore, high potentials or current densities can lead to damage of typical biosensor surface coatings and biological probes. The possibility of generating LOP ECL signals at a potential below 900 mV was therefore studied for Ru(bpy)32+ with two typical coreactants, i.e. 2-(dibutylamino)ethanol (DBAE) and tripropylamine (TPA), as well as with the tertiary amine N-butyldiethanolamine (NBEA). Furthermore, the effect of buffer components and pH values on ECL signal generation was investigated. We could show a significant LOP ECL signal for NBEA. We found that Tris buffer, with its ability to form complexes with transition metal ions, has a positive influence on this ECL signal in terms of signal strength and LOP capabilities. Specifically, at basic pH values significant increases in ECL signals were observed at 900 mV and at 1.2 V. In fact, the ECL signal at 1.2 V was three times higher than the signal observed in phosphate buffer at a pH of 7, and it was thirty times higher than the ECL signal for TPA under these conditions. The LOP signal for NBEA in Tris buffer at pH 8.5 was similar to the signal obtained for TPA in phosphate buffer at pH 8.5 but three times higher than for TPA at pH 7.0. Interestingly, the coreactant DBAE was neither significantly influenced by the buffer system or pH nor did it present a valuable LOP ECL signal. Finally, it was found that high peak currents in cyclic voltammograms are not the indicators for high ECL signals, which should be obvious because the ECL mechanism requires more complex electron transfers. Overall, the standard TPA ECL at 1.2 V in phosphate buffer at pH 7.0 can successfully be replaced by NBEA ECL at 900 mV in Tris at pH 8.5 providing significantly higher signals accompanied by more gentle electrochemical conditions.
Collapse
Affiliation(s)
| | - Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany. and Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016. [DOI: 10.1002/celc.201600602] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Andrea Fiorani
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Haidong Li
- University of Bordeaux; INP Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, ENSCBP; 33607 Pessac France
| | - Neso Sojic
- University of Bordeaux; INP Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, ENSCBP; 33607 Pessac France
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
14
|
An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Sci Rep 2016; 6:32227. [PMID: 27554037 PMCID: PMC4995374 DOI: 10.1038/srep32227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Zika virus (ZIKV) is a globally emerging mosquito-transmitted flavivirus that can cause severe fetal abnormalities, including microcephaly. As such, highly sensitive, specific, and cost-effective diagnostic methods are urgently needed. Here, we report a novel electrogenerated chemiluminescence (ECL)-based immunoassay for ultrasensitive and specific detection of ZIKV in human biological fluids. We loaded polystyrene beads (PSB) with a large number of ECL labels and conjugated them with anti-ZIKV monoclonal antibodies to generate anti-ZIKV-PSBs. These anti-ZIKV-PSBs efficiently captured ZIKV in solution forming ZIKV-anti-ZIKV-PSB complexes, which were subjected to measurement of ECL intensity after further magnetic beads separation. Our results show that the anti-ZIKV-PSBs can capture as little as 1 PFU of ZIKV in 100 μl of saline, human plasma, or human urine. This platform has the potential for development as a cost-effective, rapid and ultrasensitive assay for the detection of ZIKV and possibly other viruses in clinical diagnosis, epidemiologic and vector surveillance, and laboratory research.
Collapse
|
15
|
|
16
|
Ma X, Zhang X, Guo X, Kang Q, Shen D, Zou G. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite. Talanta 2016; 154:175-82. [DOI: 10.1016/j.talanta.2016.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 12/23/2022]
|
17
|
Wang F, Lin J, Zhao T, Hu D, Wu T, Liu Y. Intrinsic “Vacancy Point Defect” Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster. J Am Chem Soc 2016; 138:7718-24. [DOI: 10.1021/jacs.6b03662] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Feng Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jian Lin
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Tingbi Zhao
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Dandan Hu
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Tao Wu
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wusimanjiang Y, Meyer A, Lu L, Miao W. Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots. Anal Bioanal Chem 2016; 408:7049-57. [DOI: 10.1007/s00216-016-9573-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 01/11/2023]
|
19
|
Bioanalytical advances in assays for C-reactive protein. Biotechnol Adv 2016; 34:272-90. [DOI: 10.1016/j.biotechadv.2015.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
20
|
Russell R, Stewart AJ, Dennany L. Optimising electrogenerated chemiluminescence of quantum dots via co-reactant selection. Anal Bioanal Chem 2016; 408:7129-36. [PMID: 27113462 PMCID: PMC5025492 DOI: 10.1007/s00216-016-9557-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 01/06/2023]
Abstract
We demonstrate that for quantum dot (QD) based electrochemiluminescence (ECL), the commonly used co-reactant does not perform as effectively as potassium persulfate. By exploiting this small change in co-reactant, ECL intensity can be enhanced dramatically in a cathodic-based ECL system. However, TPA remains the preferential co-reactant-based system for anodic ECL. This phenomenon can be rationalised through the relative energy-level profiles of the QD to the co-reactant in conjunction with the applied potential range. This work highlights the importance of understanding the co-reactant pathway for optimising the application of ECL to bioanalytical analysis, in particular for near-infrared (NIR) QDs which can be utilised for analysis in blood. Optimising ECL Production Through Careful Selection of Co-Reactions Based on Energetics Involved ![]()
Collapse
Affiliation(s)
- Rebekah Russell
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Alasdair J Stewart
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Lynn Dennany
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
21
|
Quantum dot effects upon the interaction between porphyrins and phospholipids in cell membrane models. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:219-27. [DOI: 10.1007/s00249-015-1088-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023]
|
22
|
Dong YP, Gao TT, Zhou Y, Jiang LP, Zhu JJ. Anodic Electrogenerated Chemiluminescence of Ru(bpy)3(2+) with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA. Sci Rep 2015; 5:15392. [PMID: 26472243 PMCID: PMC4607998 DOI: 10.1038/srep15392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 12/27/2022] Open
Abstract
In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)32+ electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)32+. Ru(bpy)32+ can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)32+ can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)32+, which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit.
Collapse
Affiliation(s)
- Yong-Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ting-Ting Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ying Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
23
|
Kirschbaum SEK, Baeumner AJ. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal Bioanal Chem 2015; 407:3911-26. [DOI: 10.1007/s00216-015-8557-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
|
24
|
Czilwik G, Vashist SK, Klein V, Buderer A, Roth G, von Stetten F, Zengerle R, Mark D. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv 2015. [DOI: 10.1039/c5ra12527h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic of the LabDisk-based hCRP MCIA. The antibody-coated dynabeads are sequentially transported through the immunoassay buffers by magnetic actuation. Finally the chemiluminescence signal is acquired from a detection cavity.
Collapse
Affiliation(s)
| | - S. K. Vashist
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - V. Klein
- Hahn-Schickard
- 79110 Freiburg
- Germany
| | | | - G. Roth
- BIOSS – Center for Biological Signalling Studies
- University of Freiburg
- 79110 Freiburg
- Germany
- Laboratory for Microarray Copying
| | - F. von Stetten
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - R. Zengerle
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - D. Mark
- Hahn-Schickard
- 79110 Freiburg
- Germany
| |
Collapse
|
25
|
Dong YP, Gao TT, Zhou Y, Zhu JJ. Electrogenerated Chemiluminescence Resonance Energy Transfer between Luminol and CdSe@ZnS Quantum Dots and Its Sensing Application in the Determination of Thrombin. Anal Chem 2014; 86:11373-9. [DOI: 10.1021/ac5033319] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yong-Ping Dong
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School
of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ting-Ting Gao
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School
of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ying Zhou
- School
of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jun-Jie Zhu
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Wu P, Hou X, Xu JJ, Chen HY. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem Rev 2014; 114:11027-59. [DOI: 10.1021/cr400710z] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
27
|
Liu X, Wang N, Zhao W, Jiang H. Electrochemiluminescent pH sensor measured by the emission potential of TiO
2
nanocrystals and its biosensing application. LUMINESCENCE 2014; 30:98-101. [PMID: 24802560 DOI: 10.1002/bio.2697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Xuan Liu
- Department of Clinical LaboratorySecond Affiliated Hospital of Southeast University Nanjing People's Republic of China
| | - Nianyue Wang
- Department of Clinical LaboratorySecond Affiliated Hospital of Southeast University Nanjing People's Republic of China
| | - Wei Zhao
- Department of Clinical LaboratorySecond Affiliated Hospital of Southeast University Nanjing People's Republic of China
| | - Hui Jiang
- State Key Laboratory of BioelectronicsSoutheast University Nanjing People's Republic of China
| |
Collapse
|
28
|
Liu S, Zhang X, Yu Y, Zou G. Bandgap engineered and high monochromatic electrochemiluminescence from dual-stabilizers-capped CdSe nanocrystals with practical application potential. Biosens Bioelectron 2014; 55:203-8. [DOI: 10.1016/j.bios.2013.11.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
|
29
|
Hu T, Liu X, Liu S, Wang Z, Tang Z. Toward Understanding of Transfer Mechanism between Electrochemiluminescent Dyes and Luminescent Quantum Dots. Anal Chem 2014; 86:3939-46. [DOI: 10.1021/ac5004823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Hu
- Key
Laboratory of Microsystems and Micronanostructures Manufacturing,
Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
| | - Xuefeng Liu
- National Center for Nanoscience and Technology, Beijing 100090, China
| | - Shaoqin Liu
- Key
Laboratory of Microsystems and Micronanostructures Manufacturing,
Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
| | - Zhenlong Wang
- Key
Laboratory of Microsystems and Micronanostructures Manufacturing,
Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiyong Tang
- National Center for Nanoscience and Technology, Beijing 100090, China
| |
Collapse
|
30
|
Kargbo O, Zheng CL, Ding SN. Strong anodic electrochemiluminescence from dissolved oxygen with 2-(dibutylamino) ethanol for glucose oxidase assay. RSC Adv 2014. [DOI: 10.1039/c4ra05363j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strong anodic electrochemiluminescence of dissolved oxygen with 2-(dibutylamino) ethanol is developed to detect glucose oxidase.
Collapse
Affiliation(s)
- Osman Kargbo
- School of Chemistry and Chemical Engineering
- Southeast University
- 211189 Nanjing, China
| | - Chun-Lan Zheng
- School of Chemistry and Chemical Engineering
- Southeast University
- 211189 Nanjing, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering
- Southeast University
- 211189 Nanjing, China
| |
Collapse
|
31
|
Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci 2014. [DOI: 10.1039/c4sc00312h] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mapping the reactivity of a redox-sensitive luminescent microobject positioned in fluxes of reactive species allows analyzing complex mechanistic processes such as the electrogenerated chemiluminescence of model systems used in immunoassays.
Collapse
Affiliation(s)
- Milica Sentic
- University of Bordeaux
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- 33607 Pessac, France
- University of Belgrade
| | - Milena Milutinovic
- University of Bordeaux
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- 33607 Pessac, France
- University of Belgrade
| | | | | | - Stéphane Arbault
- University of Bordeaux
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- 33607 Pessac, France
| | - Neso Sojic
- University of Bordeaux
- Institut des Sciences Moléculaires
- CNRS UMR 5255
- 33607 Pessac, France
| |
Collapse
|
32
|
Use of Magnetic Nanoparticles and a Microplate Reader with Fluorescence Detection to Detect C-reactive Protein. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Zhang L, Cheng Y, Lei J, Liu Y, Hao Q, Ju H. Stepwise Chemical Reaction Strategy for Highly Sensitive Electrochemiluminescent Detection of Dopamine. Anal Chem 2013; 85:8001-7. [DOI: 10.1021/ac401894w] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yan Cheng
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yueting Liu
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Qing Hao
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
34
|
Lisdat F, Schäfer D, Kapp A. Quantum dots on electrodes—new tools for bioelectroanalysis. Anal Bioanal Chem 2013; 405:3739-52. [DOI: 10.1007/s00216-013-6789-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/18/2022]
|
35
|
Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 2013; 138:43-61. [DOI: 10.1039/c2an36122a] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Zhang J, Liu S, Bao J, Tu W, Dai Z. Dual signal amplification of zinc oxide nanoparticles and quantum dots-functionalized zinc oxide nanoparticles for highly sensitive electrochemiluminescence immunosensing. Analyst 2013; 138:5396-403. [DOI: 10.1039/c3an00705g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.156] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Algarra M, Gomes D, Esteves da Silva JCG. Current analytical strategies for C-reactive protein quantification in blood. Clin Chim Acta 2012; 415:1-9. [PMID: 22975530 DOI: 10.1016/j.cca.2012.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/02/2012] [Accepted: 09/06/2012] [Indexed: 01/17/2023]
Abstract
The measurement of serum C-reactive protein (CRP) levels has been given particular interest as a marker of inflammation associated with cardiovascular diseases. CRP belongs to the pentraxin family of proteins and the routine clinical analysis of CRP in blood samples is used as an important factor in primary prevention programmes together with causative and predisposing factors. This review focuses on the most representative methodologies and strategies for CRP detection and quantification that have been recently proposed, as well as reviewing those that are currently being developed for the specific, sensitive, inexpensive and high-throughput blood analysis of this protein.
Collapse
Affiliation(s)
- Manuel Algarra
- Centro de Geologia, Departamento de Geociências, Ambiente e Ordenamento do Território do Porto, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
39
|
Luo Y, Zhang B, Chen M, Jiang T, Zhou D, Huang J, Fu W. Sensitive and rapid quantification of C-reactive protein using quantum dot-labeled microplate immunoassay. J Transl Med 2012; 10:24. [PMID: 22309411 PMCID: PMC3295717 DOI: 10.1186/1479-5876-10-24] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background High-sensitivity C-reactive protein (hs-CRP) assay is of great clinical importance in predicting risks associated with coronary heart disease. Existing hs-CRP assays either require complex operation or have low throughput and cannot be routinely implemented in rural settings due to limited laboratory resources. Methods We developed a novel hs-CRP assay capable of simultaneously quantifying over 90 clinical samples by using quantum dots-labeled immunoassay within a standard 96-well microplate. The specificity of the assay was enhanced by adopting two monoclonal antibodies (mAbs) that target distinct hs-CRP epitopes, serving as the coating antibody and the detection antibody, respectively. In the presence of hs-CRP antigen, the fluorescence intensity of the mAb-Ag-mAb sandwich complex captured on the microplate can be read out using a microplate reader. Results The proposed hs-CRP assay provides a wide analytical range of 0.001-100 mg/L with a detection limit of 0.06 (0.19) μg/L within 1.5 h. The accuracy of the proposed assay has been confirmed for low coefficient of variations (CVs), 2.27% (intra-assay) and 8.52% (inter-assay), together with recoveries of 96.7-104.2%. Bland-Altman plots of 104 clinical samples exhibited good consistency among the proposed assay, commercial high-sensitivity ELISA, and nephelometry, indicating the prospects of the newly developed hs-CRP assay as an alternative to existing hs-CRP assays. Conclusion The developed assay meets the needs of the rapid, sensitive and high-throughput determination of hs-CRP levels within a short time using minimal resources. In addition, the developed assay can also be used to detect and quantify other diagnostic biomarkers by immobilizing specific monoclonal antibodies.
Collapse
Affiliation(s)
- Yang Luo
- Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chong Qing 400038, Peoples' Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Walker EK, Vanden Bout DA, Stevenson KJ. Carbon optically transparent electrodes for electrogenerated chemiluminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1604-1610. [PMID: 22188011 DOI: 10.1021/la2042394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic voltammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)(3)(2+), where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.
Collapse
Affiliation(s)
- E Kate Walker
- Department of Chemistry and Biochemistry, Center for Electrochemistry, Center The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
41
|
Amelia M, Lincheneau C, Silvi S, Credi A. Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 2012; 41:5728-43. [DOI: 10.1039/c2cs35117j] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Tian CY, Zhao WW, Wang J, Xu JJ, Chen HY. Amplified quenching of electrochemiluminescence from CdS sensitized TiO2 nanotubes by CdTe–carbon nanotube composite for detection of prostate protein antigen in serum. Analyst 2012; 137:3070-5. [DOI: 10.1039/c2an35493d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Liang G, Shen L, Zou G, Zhang X. Efficient near-infrared electrochemiluminescence from CdTe nanocrystals with low triggering potential and ultrasensitive sensing ability. Chemistry 2011; 17:10213-5. [PMID: 21837690 DOI: 10.1002/chem.201101154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Guodong Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | | | | | | |
Collapse
|
44
|
Zou GZ, Liang GD, Zhang XL. Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials. Chem Commun (Camb) 2011; 47:10115-7. [DOI: 10.1039/c1cc13168k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|