1
|
Di Grande S, Barone V. Toward Accurate Quantum Chemical Methods for Molecules of Increasing Dimension: The New Family of Pisa Composite Schemes. J Phys Chem A 2024; 128:4886-4900. [PMID: 38847454 DOI: 10.1021/acs.jpca.4c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The new versions of the Pisa composite scheme introduced in the present paper are based on the careful selection of different quantum chemical models for energies, geometries, and vibrational frequencies, with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, the computation of accurate electronic energies has been further improved introducing more reliable complete basis set extrapolations and estimation of core-valence correlation, together with improved basis sets for third-row atoms. Furthermore, the reduced-cost frozen natural orbital (FNO) model has been introduced and validated for large molecules. Accurate molecular structures can be obtained avoiding complete basis set extrapolation and evaluating core-valence correlation at the MP2 level. Unfortunately, analytical gradients are not available for the FNO version of the model. Therefore, for large molecules, an accurate reduced-cost alternative is offered by evaluation of valence contributions with a double-hybrid functional in conjunction with the same MP2 contribution for core-valence correlation or by means of a one-parameter approximation. The same double-hybrid functional and basis set are employed to evaluate zero-point energies and partition functions. After the validation of the new models for small systems, a panel of molecular bricks of life has been used to analyze their performances for problems of current fundamental or technological interest. The fully black-box implementation of the computational workflow paves the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by experimentally oriented researchers.
Collapse
Affiliation(s)
- Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | | |
Collapse
|
2
|
Barone V. Quantum chemistry meets high-resolution spectroscopy for characterizing the molecular bricks of life in the gas-phase. Phys Chem Chem Phys 2024; 26:5802-5821. [PMID: 38099409 DOI: 10.1039/d3cp05169b] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Computation of accurate geometrical structures and spectroscopic properties of large flexible molecules in the gas-phase is tackled at an affordable cost using a general exploration/exploitation strategy. The most distinctive feature of the approach is the careful selection of different quantum chemical models for energies, geometries and vibrational frequencies with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, a composite wave-function method is used for energies, whereas a double-hybrid functional (with the addition of core-valence correlation) is employed for geometries and harmonic frequencies and a cheaper hybrid functional for anharmonic contributions. A thorough benchmark based on a wide range of prototypical molecular bricks of life shows that the proposed strategy is close to the accuracy of state-of-the-art composite wave-function methods, and is applicable to much larger systems. A freely available web-utility post-processes the geometries optimized by standard electronic structure codes paving the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules by experimentally-oriented researchers.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
3
|
Raczyńska ED. On Prototropy and Bond Length Alternation in Neutral and Ionized Pyrimidine Bases and Their Model Azines in Vacuo. Molecules 2023; 28:7282. [PMID: 37959699 PMCID: PMC10648772 DOI: 10.3390/molecules28217282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the complete tautomeric equilibria are derived for disubstituted pyrimidine nucleic acid bases starting from phenol, aniline, and their model compounds-monosubstituted aromatic azines. The differences in tautomeric preferences for isolated (gaseous) neutral pyrimidine bases and their model compounds are discussed in light of different functional groups, their positions within the six-membered ring, electronic effects, and intramolecular interactions. For the discussion of tautomeric preferences and for the analysis of internal effects, recent quantum-chemical results are taken into account and compared to some experimental ones. For each possible tautomer-rotamer of the title compounds, the bond length alternation, measured by means of the harmonic oscillator model of electron delocalization (HOMED) index, is examined. Significant HOMED similarities exist for mono- and disubstituted derivatives. The lack of parallelism between the geometric (HOMED) and energetic (ΔG) parameters for all possible isomers clearly shows that aromaticity is not the main factor that dictates tautomeric preferences for pyrimidine bases, particularly for uracil and thymine. The effects of one-electron loss (positive ionization) and one-electron gain (negative ionization) on prototropy and bond length alternation are also reviewed for pyrimidine bases and their models.
Collapse
Affiliation(s)
- Ewa Daniela Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warszawa, Poland
| |
Collapse
|
4
|
Barone V, Crisci L, Di Grande S. Accurate Thermochemical and Kinetic Parameters at Affordable Cost by Means of the Pisa Composite Scheme (PCS). J Chem Theory Comput 2023; 19:7273-7286. [PMID: 37774410 PMCID: PMC10601482 DOI: 10.1021/acs.jctc.3c00817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/01/2023]
Abstract
A new strategy for the computation at an affordable cost of geometrical structures, thermochemical parameters, and rate constants for medium-sized molecules in the gas phase is proposed. The most distinctive features of the new model are the systematic use of cc-pVnZ-F12 basis sets, the addition of MP2 core-valence correlation in geometry optimizations by a double-hybrid functional, the separate extrapolation of MP2 and post-MP2 contributions, and the inclusion of anharmonic contributions in zero-point energies and thermodynamic functions. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme outperforms the most well-known model chemistries without the need for any empirical parameter. Additional tests show that the computed zero-point energies and thermal contributions can be confidently used for obtaining accurate thermochemical and kinetic parameters. Since the whole computational workflow is translated in a black-box procedure, which can be followed with standard electronic structure codes, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Luigi Crisci
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| |
Collapse
|
5
|
Cherneva TD, Todorova MM, Bakalska RI, Shterev IG, Horkel E, Delchev VB. Experimental and theoretical study of the cytosine tautomerism through excited states. J Mol Model 2023; 29:303. [PMID: 37665380 DOI: 10.1007/s00894-023-05707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
CONTEXT The irradiation of water solution of cytosine with UV light (λmax = 254 nm) shows oxo-hydroxy tautomerism with a rate constant of 6.297 × 10-3 min-1. The order of the reaction implies a tautomeric conversion. After removing the UV light source, we observed a dark reaction with a rate constant of 1.473 × 10-3 min-1 which leads to a restoration of the initial tautomer as before the irradiation. The mechanism of oxo-hydroxy tautomerism of cytosine in water solution was studied in the excited state. It was found that the transformations occur along the 1πσ* excited-state reaction paths which link the Franck-Condon geometries of the tautomers and the conical intersections S0/S1 connected with the H-detachment processes of the corresponding bonds. Furthermore, we established that the conical intersections S0/S1 are also mutually accessible along the 1πσ* excited-state reaction paths. METHODS The ground-state equilibrium geometries were optimized at the B3LYP/aug-cc-pVDZ level of theory in water environment according to PCM as well as at the CC2/aug-cc-pVDZ level in the gas phase. The TD B3LYP and CC2 methods were applied for the study of the excited states. The tautomerization mechanisms were studied with the use of the linear interpolation in internal coordinates approach using the optimized geometries of tautomers minima and conical intersections S0/S1 at the CASSCF(6,6)/6-31G* level. All calculations were performed with the GAUSSIAN 16 commercial software.
Collapse
Affiliation(s)
- Tsvetina D Cherneva
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, 4000, Plovdiv, Bulgaria
| | - Mina M Todorova
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, 4000, Plovdiv, Bulgaria
| | - Rumyana I Bakalska
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, 4000, Plovdiv, Bulgaria
| | - Ivan G Shterev
- Department of Inorganic and Physical Chemistry, University of Food Technologies, 4002, Plovdiv, Bulgaria
| | - Ernst Horkel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Vassil B Delchev
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
6
|
Barone V. DFT Meets Wave-Function Composite Methods for Characterizing Cytosine Tautomers in the Gas Phase. J Chem Theory Comput 2023; 19:4970-4981. [PMID: 37479680 PMCID: PMC10413851 DOI: 10.1021/acs.jctc.3c00465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/23/2023]
Abstract
A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase has been further improved and validated with a special reference to tautomeric equilibria. The main improvements concern the use of the cc-pVTZ-F12 basis set in both DFT and CCSD(T)-F12 computations, the inclusion of core-valence correlation in geometry optimizations by double hybrid functionals, and the use of the cc-pVQZ-F12 basis set for complete basis set extrapolation at the MP2-F12 level. The resulting model chemistry is applied to the challenging problem of cytosine tautomers in the gas phase. The results are in remarkable agreement with experiment concerning both rotational and vibrational spectroscopic parameters and permit their unbiased interpretation in terms of structural and thermochemical features. Together with the intrinsic interest of the studied molecule, the accuracy of the results obtained at reasonable cost without any empirical parameter suggests that the proposed composite method can be profitably employed for accurate investigations of other molecular bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore
di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
7
|
Henry B, Samokhvalov A. Characterization of tautomeric forms of anti-cancer drug gemcitabine and their interconversion upon mechano-chemical treatment, using ATR-FTIR spectroscopy and complementary methods. J Pharm Biomed Anal 2023; 226:115243. [PMID: 36657351 PMCID: PMC9977068 DOI: 10.1016/j.jpba.2023.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Gemcitabine is a widely used anti-cancer drug of pyrimidine structure, which can exist as a free base molecular form in crystals. Tautomers are structural isomers of molecules, which interconvert via proton transfer. Mechano-chemistry studies reactions of solids under mechanical impact. We investigated gemcitabine free base for the presence of specific molecular tautomers, using ATR-FTIR spectroscopic analysis, powder XRD, optical microscopy and HPLC. The amino-keto tautomer has the characteristic infrared (IR) peak of the amino group at 3390 cm-1. For the first time, the imino-keto tautomer of gemcitabine free base was detected. The imino-keto tautomer has the characteristic IR peak of the =N-H group, and its peak due to the CO group in pyrimidine ring is shifted vs. that of the amino-keto tautomer. This serves as the unique spectroscopic "fingerprints" of these tautomers. The ATR-FTIR spectroscopic analysis shows that gemcitabine free base can be enriched with the amino-keto or the imino-keto tautomer. Further, we studied the transformation of gemcitabine free base in crystals between its tautomers under conditions of liquid-assisted grinding (LAG). The imino-keto tautomer undergoes tautomerization to the amino-keto tautomer, while the amino-keto tautomer remains stable. No destruction of molecules of gemcitabine free base, when present as either tautomer, occurs during LAG as was verified by the HPLC-UV analysis. LAG is a new, straightforward, facile and fast method to interconvert tautomers in crystals, and ATR-FTIR spectroscopy is a method of choice to study tautomerization reactions of pharmaceuticals. The presented approach is promising for analysis of crystals of drugs containing one or more than one tautomer, and the knowledge-driven design of composite materials, which contain specific tautomeric molecular forms of pyrimidines, purines and other biologically active heterocyclic compounds.
Collapse
Affiliation(s)
- Barrington Henry
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
8
|
Xu Q, Liu Y, Wang M, Cerezo J, Improta R, Santoro F. The Resonance Raman Spectrum of Cytosine in Water: Analysis of the Effect of Specific Solute-Solvent Interactions and Non-Adiabatic Couplings. Molecules 2023; 28:2286. [PMID: 36903532 PMCID: PMC10005559 DOI: 10.3390/molecules28052286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
In this contribution, we report a computational study of the vibrational Resonance Raman (vRR) spectra of cytosine in water, on the grounds of potential energy surfaces (PES) computed by time-dependent density functional theory (TD-DFT) and CAM-B3LYP and PBE0 functionals. Cytosine is interesting because it is characterized by several close-lying and coupled electronic states, challenging the approach commonly used to compute the vRR for systems where the excitation frequency is in quasi-resonance with a single state. We adopt two recently developed time-dependent approaches, based either on quantum dynamical numerical propagations of vibronic wavepackets on coupled PES or on analytical correlation functions for cases in which inter-state couplings were neglected. In this way, we compute the vRR spectra, considering the quasi-resonance with the eight lowest-energy excited states, disentangling the role of their inter-state couplings from the mere interference of their different contributions to the transition polarizability. We show that these effects are only moderate in the excitation energy range explored by experiments, where the spectral patterns can be rationalized from the simple analysis of displacements of the equilibrium positions along the different states. Conversely, at higher energies, interference and inter-state couplings play a major role, and the adoption of a fully non-adiabatic approach is strongly recommended. We also investigate the effect of specific solute-solvent interactions on the vRR spectra, by considering a cluster of cytosine, hydrogen-bonded by six water molecules, and embedded in a polarizable continuum. We show that their inclusion remarkably improves the agreement with the experiments, mainly altering the composition of the normal modes, in terms of internal valence coordinates. We also document cases, mostly for low-frequency modes, in which a cluster model is not sufficient, and more elaborate mixed quantum classical approaches, in explicit solvent models, need to be applied.
Collapse
Affiliation(s)
- Qiushuang Xu
- School of Physics Engineering, Qufu Normal University, Qufu 273165, China
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Meishan Wang
- School of Physics Engineering, Qufu Normal University, Qufu 273165, China
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Javier Cerezo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
9
|
Sadiq S, Park W, Mironov V, Lee S, Filatov Gulak M, Choi CH. Prototropically Controlled Dynamics of Cytosine Photodecay. J Phys Chem Lett 2023; 14:791-797. [PMID: 36652675 DOI: 10.1021/acs.jpclett.2c03340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of the existence of several prototropic tautomers of cytosine on its UV/vis spectra and the excited state decay dynamics is studied by spectral and nonadiabatic molecular dynamics (NAMD) simulations in connection with the mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) method. Simulated UV/vis spectra provide a strong indication that the H3N keto-amino cytosine tautomer (the least anticipated species) may be present under experimental conditions. The NAMD simulations yield a wide range of excited state decay constants for various tautomers of cytosine, ranging from ∼1.3 ps for the biologically relevant H1N keto-amino tautomer to ∼0.1 ps for the keto-imino tautomer. The slowness of the H1N decay dynamics follows from the presence of a barrier on the excited state energy surface separating the Franck-Condon structure from the major decay funnel, the conical intersection seam. It is suggested that the experimentally observed photodecay dynamics may result from a combination of the decay processes of various tautomers (H3N in particular) present simultaneously under the experimental conditions.
Collapse
Affiliation(s)
- Saima Sadiq
- Department of Chemistry, Kyungpook National University, Daegu41566, South Korea
| | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu41566, South Korea
| | - Vladimir Mironov
- Department of Chemistry, Kyungpook National University, Daegu41566, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | | | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu41566, South Korea
| |
Collapse
|
10
|
Cherneva TD, Todorova MM, Bakalska RI, Horkel E, Delchev VB. Non-radiative deactivation of excited cytosine: probing of different DFT functionals and basis sets in solvents with different polarity. J Mol Model 2022; 28:306. [PMID: 36085333 DOI: 10.1007/s00894-022-05313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
The vertical excitation and emission energies of the cytosine oxo-amino form were calculated at the TD DFT level of theory with several functionals, basis sets, and solvents with different polarity (PCM). They were compared with the experimental UV absorption and fluorescence maxima, revealing that the minimal deviation of the vertical excitation energies from the of UV absorption maxima can be achieved when the hybrid functional B3LYP is applied within the calculations. Regular correlations like curves with saturation between the vertical excitation/emission energies and the dielectric constants were registered. The relaxation of the 1ππ* excited state through an ethylene-like conical intersection S0/S1 should occur through decrease of the decay rate (commented qualitatively here) with the rise of the solvent polarity.
Collapse
Affiliation(s)
- T D Cherneva
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, Plovdiv, Bulgaria
| | - M M Todorova
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, Plovdiv, Bulgaria
| | - R I Bakalska
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, Plovdiv, Bulgaria
| | - E Horkel
- Inst. Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - V B Delchev
- Faculty of Chemistry, University of Plovdiv, Tzar Assen 24 Str, Plovdiv, Bulgaria.
| |
Collapse
|
11
|
Fedotov DA, Paul AC, Koch H, Santoro F, Coriani S, Improta R. Excited state absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study. Phys Chem Chem Phys 2022; 24:4987-5000. [PMID: 35142309 DOI: 10.1039/d1cp04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We study the excited state absorption (ESA) properties of the four DNA bases (thymine, cytosine, adenine, and guanine) by different single reference quantum mechanical methods, namely, equation of motion coupled cluster singles and doubles (EOM-CCSD), singles, doubles and perturbative triples (EOM-CC3), and time-dependent density functional theory (TD-DFT), with the long-range corrected CAM-B3LYP functional. Preliminary results at the Tamm-Dancoff (TDA) CAM-B3LYP level using the maximum overlap method (MOM) are reported for thymine. In the gas phase, the three methods predict similar One Photon Absorption (OPA) spectra, which are consistent with the experimental results and with the most accurate computational studies available in the literature. The ESA spectra are then computed for the ππ* states (one for pyrimidine, two for purines) associated with the lowest-energy absorption band, and for the close-lying nπ* state. The EOM-CC3, EOM-CCSD and CAM-B3LYP methods provide similar ESA spectral patterns, which are also in qualitative agreement with literature RASPT2 results. Once validated in the gas phase, TD-CAM-B3LYP has been used to compute the ESA in chloroform, including solvent effects by the polarizable continuum model (PCM). The predicted OPA and ESA spectra in chloroform are very similar to those in the gas phase, most of the bands shifting by less than 0.1 eV, with a small increase of the intensities and a moderate destabilization of the nπ* state. Finally, ESA spectra have been computed from the minima of the lowest energy ππ* state, and found in line with the available experimental transient absorption spectra of the nucleosides in solution, providing further validation of our computational approach.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Alexander C Paul
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, I-56124 Pisa, Italy.
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. .,Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, I-80134 Napoli, Italy.
| |
Collapse
|
12
|
Ventura E, Andrade do Monte S, T. do Casal M, Pinheiro M, Toldo JM, Barbatti M. Modeling the heating and cooling of a chromophore after photoexcitation. Phys Chem Chem Phys 2022; 24:9403-9410. [PMID: 35385568 PMCID: PMC9020442 DOI: 10.1039/d2cp00686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents—argon matrix, benzene, and water—spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited. An analytical energy-transfer model is implemented to obtain a chromophore's heating and cooling times in a given solvent by using quantities available in nonadiabatic dynamics simulations.![]()
Collapse
Affiliation(s)
- Elizete Ventura
- Universidade Federal da Paraíba, 58059-900, João Pessoa-PB, Brazil
| | | | | | - Max Pinheiro
- Aix Marseille University, CNRS, ICR, Marseille, France
| | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
13
|
Molina F, Dezalay J, Soorkia S, Broquier M, Hochlaf M, Pino GA, Grégoire G. Cryogenic IR and UV spectroscopy of isomer-selected cytosine radical cation. Phys Chem Chem Phys 2022; 24:25182-25190. [DOI: 10.1039/d2cp03953b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The UV photodissociation of cryogenic-cooled isomer-selected cytosine–silver complex leads to the production of cytosine radical cation without isomerization.
Collapse
Affiliation(s)
- Franco Molina
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, F-91405 Orsay, France
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Jordan Dezalay
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, F-91405 Orsay, France
| | - Satchin Soorkia
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, F-91405 Orsay, France
| | - Michel Broquier
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, F-91405 Orsay, France
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes 77454, Champs sur Marne, France
| | - Gustavo Ariel Pino
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Gilles Grégoire
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, F-91405 Orsay, France
| |
Collapse
|
14
|
Breazu C, Socol M, Preda N, Rasoga O, Costas A, Socol G, Petre G, Stanculescu A. Nucleobases thin films deposited on nanostructured transparent conductive electrodes for optoelectronic applications. Sci Rep 2021; 11:7551. [PMID: 33824369 PMCID: PMC8024358 DOI: 10.1038/s41598-021-87181-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Environmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modification is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the influence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin films obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and flat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modification by nano-patterning affects both the optical (transmission and emission) properties by multiple reflections on the walls of nanostructures and the electrical properties by the effect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin films deposited on nanostructured conductive electrode in green optoelectronic devices.
Collapse
Affiliation(s)
- C Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania.
| | - M Socol
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - N Preda
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - O Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - A Costas
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - G Socol
- Plasma and Radiation Physics, National Institute for Lasers, 409 Atomistilor Street, 077125, Magurele, Romania
| | - G Petre
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele, Romania
| | - A Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania.
| |
Collapse
|
15
|
Parshotam S, Joy M, Rossano-Tapia M, Mora-Gomez VA, Brown A. The thermochemical, structural, and spectroscopic analyses of the tautomers of sulfur and selenium modified emissive nucleobases. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, density functional theory (DFT) and time dependent density functional theory (TD-DFT) are used to investigate the stabilities and spectral properties [IR, UV–vis, and two-photon absorption (2PA)] of two sets of modified RNA nucleobase tautomers. The modifications introduce either a sulfur or selenium atom to form an isothiazolo[4,3-d]pyrimidine or isoselenazolo[4,3-d]pyrimidine heterocyclic core, respectively. The relative stabilities of both sets of modified tautomers determined with B3LYP/6-31++G(d,p) reveal that in water (with a polarizable continuum model), the 6-keto-2-amino tautomer of guanine and the rare 4-imino-2-keto tautomer of cytosine may be present at significant populations, whereas the 6-enol-2-amino tautomer of guanine is more common in the gas phase. The identification of these modified tautomers is possible due to the natural differences in their vibrational modes and hence IR spectra. Furthermore, the photophysical properties of both these sets of modified tautomers indicate that excitation and emission energies are shifted relative to their more abundant form in both one photon absorption and emission and 2PA spectra, as determined at the B3LYP/6-31++G(d,p) and CAM-B3LYP/aug-cc-pVDZ levels of theory, respectively. Even though the 2PA cross sections in water for all of the species are small (0.3–2.3 GM), the modified cytosine tautomer shows promise, as its cross section is larger than the more dominant form. The spectral separation between the dominant form and the tautomers of isoselenazole and isothiazole modified cytosine and guanine are relatively similar, suggesting both modifications could be useful in elucidating the tautomers from their more abundant counterparts.
Collapse
Affiliation(s)
- Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Megan Joy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Maria Rossano-Tapia
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - V. A. Mora-Gomez
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
16
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
17
|
He Y, Buch A, Morisson M, Szopa C, Freissinet C, Williams A, Millan M, Guzman M, Navarro-Gonzalez R, Bonnet J, Coscia D, Eigenbrode J, Malespin C, Mahaffy P, Glavin D, Dworkin J, Lu P, Johnson S. Application of TMAH thermochemolysis to the detection of nucleobases: Application to the MOMA and SAM space experiment. Talanta 2019; 204:802-811. [DOI: 10.1016/j.talanta.2019.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
|
18
|
Zhu G, Qian C, Wang L. Tautomer‐Specific Resonant Photoelectron Imaging of Deprotonated Cytosine Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guo‐Zhu Zhu
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Chen‐Hui Qian
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Lai‐Sheng Wang
- Department of Chemistry Brown University Providence RI 02912 USA
| |
Collapse
|
19
|
Zhu G, Qian C, Wang L. Tautomer‐Specific Resonant Photoelectron Imaging of Deprotonated Cytosine Anions. Angew Chem Int Ed Engl 2019; 58:7856-7860. [DOI: 10.1002/anie.201903444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Guo‐Zhu Zhu
- Department of ChemistryBrown University Providence RI 02912 USA
| | - Chen‐Hui Qian
- Department of ChemistryBrown University Providence RI 02912 USA
| | - Lai‐Sheng Wang
- Department of ChemistryBrown University Providence RI 02912 USA
| |
Collapse
|
20
|
Wei SC, Ho JW, Yen HC, Shi HQ, Cheng LH, Weng CN, Chou WK, Chiu CC, Cheng PY. Ultrafast Excited-State Dynamics of Hydrogen-Bonded Cytosine Microsolvated Clusters with Protic and Aprotic Polar Solvents. J Phys Chem A 2018; 122:9412-9425. [PMID: 30452255 DOI: 10.1021/acs.jpca.8b09526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microsolvation effects on the ultrafast excited-state deactivation dynamics of cytosine (Cy) were studied in hydrogen-bonded Cy clusters with protic and aprotic solvents using mass-resolved femtosecond pump-probe ionization spectroscopy. Two protic solvents, water (H2O) and methanol (MeOH), and one aprotic solvent, tetrahydrofuran (THF), were investigated, and transients of Cy·(H2O)1-6, Cy·(MeOH)1-3, and Cy·THF microsolvated clusters produced in supersonic expansions were measured. With the aid of electronic structure calculations, we assigned the observed dynamics to the low-energy isomers of various Cy clusters and discussed the microsolvation effect on the excited-state deactivation dynamics. With the protic solvents only the microsolvated clusters of Cy keto tautomer were observed. The observed decay time constants of Cy·(H2O) n are 0.5 ps for n = 1 and ∼0.2-0.25 ps for n = 2-6. For Cy·(MeOH) n clusters, the decay time constant for n = 1 cluster is similar to that of the Cy monohydrate, but for n = 2 and 3 the decays are about a factor of 2 slower than the corresponding microhydrates. With the aprotic solvent, THF, hydrogen-bonded complexes of both keto and enol tautomers are present in the beam. The keto-Cy·THF shows a decay similar to that of the keto-Cy monomer, whereas the enol-Cy·THF exhibits a 2-fold slower decay than the enol-Cy monomer, suggesting an increase in the barrier to excited-state deactivation upon binding of one THF molecule to the enol form of Cy.
Collapse
Affiliation(s)
- Shih-Chun Wei
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Jr-Wei Ho
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Hung-Chien Yen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Hui-Qi Shi
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Li-Hao Cheng
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Chih-Nan Weng
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Wei-Kuang Chou
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Chih-Chung Chiu
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| | - Po-Yuan Cheng
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan 30043 , Republic of China
| |
Collapse
|
21
|
Liu Y, Martínez-Fernández L, Cerezo J, Prampolini G, Improta R, Santoro F. Multistate coupled quantum dynamics of photoexcited cytosine in gas-phase: Nonadiabatic absorption spectrum and ultrafast internal conversions. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Pan J, Cao DL, Ren FD, Wang JL, Yang L. Theoretical investigation into the cooperativity effect between the intermolecular π∙π and H-bonding interactions in the curcumin∙cytosine∙H2O system. J Mol Model 2018; 24:298. [DOI: 10.1007/s00894-018-3836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
|
23
|
Lapinski L, Reva I, Gerega A, Nowak MJ, Fausto R. UV-induced transformations of matrix-isolated 6-azacytosine. J Chem Phys 2018; 149:104301. [DOI: 10.1063/1.5045735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Leszek Lapinski
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Igor Reva
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Anna Gerega
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Maciej J. Nowak
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Rui Fausto
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
24
|
Matthews E, Cercola R, Mensa-Bonsu G, Neumark DM, Dessent CEH. Photoexcitation of iodide ion-pyrimidine clusters above the electron detachment threshold: Intracluster electron transfer versus nucleobase-centred excitations. J Chem Phys 2018; 148:084304. [PMID: 29495768 DOI: 10.1063/1.5018168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Laser photodissociation spectroscopy of the I-·thymine (I-·T) and I-·cytosine (I-·C) nucleobase clusters has been conducted for the first time across the regions above the electron detachment thresholds to explore the excited states and photodissociation channels. Although photodepletion is strong, only weak ionic photofragment signals are observed, indicating that the clusters decay predominantly by electron detachment. The photodepletion spectra of the I-·T and I-·C clusters display a prominent dipole-bound excited state (I) in the vicinity of the vertical detachment energy (∼4.0 eV). Like the previously studied I-·uracil (I-·U) cluster [W. L. Li et al., J. Chem. Phys. 145, 044319 (2016)], the I-·T cluster also displays a second excited state (II) centred at 4.8 eV, which we similarly assign to a π-π* nucleobase-localized transition. However, no distinct higher-energy absorption bands are evident in the spectra of the I-·C. Time-dependent density functional theory (TDDFT) calculations are presented, showing that while each of the I-·T and I-·U clusters displays a single dominant π-π* nucleobase-localized transition, the corresponding π-π* nucleobase transitions for I-·C are split across three separate weaker electronic excitations. I- and deprotonated nucleobase anion photofragments are observed upon photoexcitation of both I-·U and I-·T, with the action spectra showing bands (at 4.0 and 4.8 eV) for both the I- and deprotonated nucleobase anion production. The photofragmentation behaviour of the I-·C cluster is distinctive as its I- photofragment displays a relatively flat profile above the expected vertical detachment energy. We discuss the observed photofragmentation profiles of the I-·pyrimidine clusters, in the context of the previous time-resolved measurements, and conclude that the observed photoexcitations are primarily consistent with intracluster electron transfer dominating in the near-threshold region, while nucleobase-centred excitations dominate close to 4.8 eV. TDDFT calculations suggest that charge-transfer transitions [Iodide n (5p6) → Uracil σ*] may contribute to the cluster absorption profile across the scanned spectral region, and the possible role of these states is also discussed.
Collapse
Affiliation(s)
- Edward Matthews
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Rosaria Cercola
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Golda Mensa-Bonsu
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Caroline E H Dessent
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Marchetti B, Karsili TNV, Ashfold MNR, Domcke W. A 'bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Phys Chem Chem Phys 2018; 18:20007-27. [PMID: 26980149 DOI: 10.1039/c6cp00165c] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.
Collapse
Affiliation(s)
- Barbara Marchetti
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
26
|
Jawiczuk M. A theoretical study on the hydrogen bond and stability of cytosine and thymine dimers. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Jun J, Han SY. Theoretical exploration of gas-phase conformers of proton-bound non-covalent heterodimers of guanine and cytosine rare tautomers: structures and energies. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Zhen JP, Wei XC, Shi WJ, Huang ZY, Jin B, Zhou YK. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H 2O system. J Biomol Struct Dyn 2017; 36:3587-3606. [PMID: 29092677 DOI: 10.1080/07391102.2017.1400469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Collapse
Affiliation(s)
- Jun-Ping Zhen
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Xiao-Chun Wei
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Wen-Jing Shi
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Zhu-Yuan Huang
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Bo Jin
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Yu-Kun Zhou
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| |
Collapse
|
29
|
Centore R, Manfredi C, Capobianco A, Volino S, Ferrara MV, Carella A, Fusco S, Peluso A. Solid State Separation and Isolation of Tautomers of Fused-Ring Triazolotriazoles. J Org Chem 2017; 82:5155-5161. [PMID: 28452478 DOI: 10.1021/acs.joc.7b00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fine control of the tautomeric forms of [1,2,4]triazolo[3,2-c][1,2,4]triazole derivatives in acidic conditions has been achieved by acting on the electronic character of the substituent at position 7 of the heterobicycle and on the counterion. Strong electron releasing or electron withdrawing substituents lead almost exclusively to a single tautomeric form, the 1H-3H or the 2H-3H, respectively. In the case of the phenol substituent, both tautomeric forms are present in comparable amount in solution; the two tautomers can also be selectively precipitated in different crystalline salts using suitable counterions.
Collapse
Affiliation(s)
- Roberto Centore
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Carla Manfredi
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Amedeo Capobianco
- Department of Chemistry and Biology, University of Salerno , Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Sabato Volino
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Maria Vittoria Ferrara
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Antonio Carella
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Sandra Fusco
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Andrea Peluso
- Department of Chemistry and Biology, University of Salerno , Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
30
|
|
31
|
Ruckenbauer M, Mai S, Marquetand P, González L. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra. Sci Rep 2016; 6:35522. [PMID: 27762396 PMCID: PMC5071879 DOI: 10.1038/srep35522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light.
Collapse
Affiliation(s)
- Matthias Ruckenbauer
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
32
|
Martínez-Fernández L, Pepino AJ, Segarra-Martí J, Banyasz A, Garavelli M, Improta R. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models. J Chem Theory Comput 2016; 12:4430-9. [DOI: 10.1021/acs.jctc.6b00518] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- L. Martínez-Fernández
- Istituto di Biostrutture
e Bioimmagini, CNR, Via Mezzocannone
16, I-80134 Napoli, Italy
| | - A. J. Pepino
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Bologna, Italy
| | - J. Segarra-Martí
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Bologna, Italy
- École
Normale Supérieure de Lyon, CNRS, UMR 5182, Université de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France
| | - A. Banyasz
- LIDYL,
CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - M. Garavelli
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Bologna, Italy
- École
Normale Supérieure de Lyon, CNRS, UMR 5182, Université de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France
| | - R. Improta
- Istituto di Biostrutture
e Bioimmagini, CNR, Via Mezzocannone
16, I-80134 Napoli, Italy
| |
Collapse
|
33
|
Kancheva P, Tuna D, Delchev VB. Comparative study of radiationless deactivation mechanisms in cytosine and 2,4-diaminopyrimidine. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Khalili B. A quantum chemical insight to intermolecular hydrogen bonding interaction between cytosine and nitrosamine: Structural and energetic investigations. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
36
|
Hubert M, Jensen HJA, Hedegård ED. Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory. J Phys Chem A 2016; 120:36-43. [PMID: 26669578 DOI: 10.1021/acs.jpca.5b09662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases thymine, uracil, cytosine, and adenine, using a hybrid between complete active space self-consistent field (CASSCF) and DFT methods. The method is based on range separation, thereby avoiding all double-counting of electron correlation and is denoted long-range CASSCF short-range DFT (CAS-srDFT). Using a linear response extension of CAS-srDFT, we compare the first 7-8 excited states of the nucleobases with perturbative multireference approaches as well as coupled cluster based methods. Our results show that the CAS-srDFT method can provide accurate excitation energies in good correspondence with the computationally more expensive methods.
Collapse
Affiliation(s)
- Mickaël Hubert
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, Odense M, Denmark
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, Odense M, Denmark
| | - Erik D Hedegård
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
37
|
Kwon S, Oh HB, Han SY. Infrared Multiple Photon Depletion of the Gas-phase Proton-bound Cytosine Dimer. CHEM LETT 2015. [DOI: 10.1246/cl.150754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Han Bin Oh
- Department of Chemistry, Sogang University
| | | |
Collapse
|
38
|
Ho J, Yen H, Shi H, Cheng L, Weng C, Chou W, Chiu C, Cheng P. Microhydration Effects on the Ultrafast Photodynamics of Cytosine: Evidences for a Possible Hydration‐Site Dependence. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jr‐Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Hung‐Chien Yen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Hui‐Qi Shi
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Li‐Hao Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Chih‐Nan Weng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Wei‐Kuang Chou
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Chih‐Chung Chiu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Po‐Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| |
Collapse
|
39
|
Ho J, Yen H, Shi H, Cheng L, Weng C, Chou W, Chiu C, Cheng P. Microhydration Effects on the Ultrafast Photodynamics of Cytosine: Evidences for a Possible Hydration‐Site Dependence. Angew Chem Int Ed Engl 2015; 54:14772-6. [DOI: 10.1002/anie.201507524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jr‐Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Hung‐Chien Yen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Hui‐Qi Shi
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Li‐Hao Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Chih‐Nan Weng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Wei‐Kuang Chou
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Chih‐Chung Chiu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| | - Po‐Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (R.O.C.)
| |
Collapse
|
40
|
Zhang C, Xie L, Wang L, Kong H, Tan Q, Xu W. Atomic-Scale Insight into Tautomeric Recognition, Separation, and Interconversion of Guanine Molecular Networks on Au(111). J Am Chem Soc 2015; 137:11795-800. [DOI: 10.1021/jacs.5b07314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Lei Xie
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Likun Wang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Huihui Kong
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Qinggang Tan
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Wei Xu
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| |
Collapse
|
41
|
Fulfer KD, Hardy D, Aguilar AA, Poliakoff ED. High-resolution photoelectron spectra of the pyrimidine-type nucleobases. J Chem Phys 2015; 142:224310. [DOI: 10.1063/1.4922310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- K. D. Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - D. Hardy
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - A. A. Aguilar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - E. D. Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
42
|
Valadbeigi Y, Soleiman-Beigi M, Sahraei R. Catalysis effect of micro-hydration on the intramolecular proton transfer in cytosine. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Fahleson T, Kauczor J, Norman P, Santoro F, Improta R, Coriani S. TD-DFT Investigation of the Magnetic Circular Dichroism Spectra of Some Purine and Pyrimidine Bases of Nucleic Acids. J Phys Chem A 2015; 119:5476-89. [DOI: 10.1021/jp512468k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tobias Fahleson
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Joanna Kauczor
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM−CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| | - Sonia Coriani
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
44
|
Nakayama A, Yamazaki S, Taketsugu T. Quantum Chemical Investigations on the Nonradiative Deactivation Pathways of Cytosine Derivatives. J Phys Chem A 2014; 118:9429-37. [DOI: 10.1021/jp506740r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Nakayama
- Catalysis
Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Shohei Yamazaki
- Department
of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
45
|
Salpin JY, Haldys V, Guillaumont S, Tortajada J, Hurtado M, Lamsabhi AM. Gas-Phase Interactions between Lead(II) Ions and Cytosine: Tandem Mass Spectrometry and Infrared Multiple-Photon Dissociation Spectroscopy Study. Chemphyschem 2014; 15:2959-71. [DOI: 10.1002/cphc.201402369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 12/07/2022]
|
46
|
Das T, Ghosh D. Ionization-Induced Tautomerization in Cytosine and Effect of Solvation. J Phys Chem A 2014; 118:5323-32. [DOI: 10.1021/jp503947d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamal Das
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
47
|
Avila Ferrer FJ, Santoro F, Improta R. The excited state behavior of cytosine in the gas phase: A TD-DFT study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 2014; 114:6383-422. [PMID: 24779633 DOI: 10.1021/cr400252h] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadeusz M Krygowski
- Department of Chemistry, Warsaw University , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
49
|
Lapinski L, Reva I, Rostkowska H, Fausto R, Nowak MJ. Near-IR-Induced, UV-Induced, and Spontaneous Isomerizations in 5-Methylcytosine and 5-Fluorocytosine. J Phys Chem B 2014; 118:2831-41. [DOI: 10.1021/jp411423c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leszek Lapinski
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Igor Reva
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hanna Rostkowska
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Rui Fausto
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maciej J. Nowak
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
50
|
Paytakov G, Gorb L, Stepanyugin A, Samiylenko S, Hovorun D, Leszczynski J. Homodimers of Cytosine and 1-MethylCytosine. A DFT study of geometry, relative stability and H-NMR shifts in gas-phase and selected solvents. J Mol Model 2014; 20:2115. [DOI: 10.1007/s00894-014-2115-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/13/2013] [Indexed: 12/07/2022]
|