1
|
Hawila S, Xu B, Massuyeau F, Gautier R, Guillou N, Fateeva A, Lebègue S, Oh I, Kim WJ, Ledoux G, Monge M, Mesbah A, Demessence A. Red Emissive 1D Copper(I) Thiolates and Green Emissive 2D Copper(I) Halide Thiolates Displaying Second Harmonic Generation and Two-Photon Absorption Processes. Chemistry 2025:e202501113. [PMID: 40145779 DOI: 10.1002/chem.202501113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
Copper(I), as a d10 metal, is a promising affordable noncritical raw material finding great interest for the development of photoluminescent materials. Halide and thiolate-based copper(I) compounds are known for their efficient emission and good stability. In order to rationalize the effect of these two anions in the structure and photoemission of Cu(I) compounds, two new families of coordination polymers have been synthesized: the copper(I)-thiolates: [Cu(p-SPhX)]n (X = F, Cl, Br), and the copper halide thiolates: [Cu3Cl(p-SPhX)2]n (X = F, Cl, Br). The two families display different structural dimensionalities: 1D [Cu(p-SPhX)]n versus 2D [Cu3Cl(p-SPhX)2]n and they exhibit distinct photophysical properties: [Cu(p-SPhX)]n shows usual solid-state red emission, while [Cu3Cl(p-SPhX)2]n hasintense solid-state green anti-Stokes emission, associated, for the noncentrosymmetric compounds, X = F and Br, to non-linear optical (NLO) response, pointing out the effect of the weak halogen interactions of the thiolate ligands on the symmetry and the properties.
Collapse
Affiliation(s)
- Saly Hawila
- Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, Villeurbanne, 69100, France
| | - Buqin Xu
- Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, Villeurbanne, 69100, France
| | | | - Romain Gautier
- Université de Nantes, CNRS, IMN UMR 6502, Nantes, 44000, France
| | - Nathalie Guillou
- Université Paris-Saclay, UVSQ, CNRS, ILV UMR 8180, Versailles, 78000, France
| | - Alexandra Fateeva
- Université Claude Bernard Lyon 1, CNRS, LMI UMR 5615, Villeurbanne, 69622, France
| | | | - Inhwan Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, Gyeongsangnam-do, 51140, South Korea
| | - Won June Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, Gyeongsangnam-do, 51140, South Korea
| | - Gilles Ledoux
- Université Claude Bernard Lyon 1, CNRS, ILM UMR 5306, Villeurbanne, 69622, France
| | - Miguel Monge
- Departamento de Química, IQUR, Complejo Científico Tecnológico, Universidad de La Rioja, Logroño, 26004, Spain
| | - Adel Mesbah
- Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, Villeurbanne, 69100, France
| | - Aude Demessence
- Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, Villeurbanne, 69100, France
| |
Collapse
|
2
|
Ishii R, Wada Y, Sunada Y. Silyl- and germyl-bridged neutral square-planar Ag 4 clusters with short Ag-Ag distances exhibiting red emission. Chem Commun (Camb) 2025; 61:4391-4394. [PMID: 39991831 DOI: 10.1039/d4cc06105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
We report silyl- and germyl-bridged neutral square-planar Ag4 clusters with very short Ag-Ag distances (2.695 and 2.704 Å), as revealed by single-crystal X-ray diffraction analysis. On the basis of the results of theoretical calculations, we attribute these short distances to attractive Ag-Ag interactions that reduce the optical energy gap, resulting in a red emission reaching wavelengths of up to 700 nm. These wavelengths are among the longest observed for emissions from Ag4 clusters.
Collapse
Affiliation(s)
- Reon Ishii
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Yoshimasa Wada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Yusuke Sunada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| |
Collapse
|
3
|
Li T, Liu J, Jiang F, He S, Liu J, Dong W, Zhang Y, Li Y, Wu Z. Doping Gd 16 nanoclusters for expanded optical properties and thermometry applications. NANOSCALE 2025; 17:5074-5080. [PMID: 39895354 DOI: 10.1039/d4nr04779f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lanthanide metal clusters are composed of rigid multinuclear metal cores encapsulated by organic ligands, which have become one of the most interesting research frontiers because of their fantastic architecture, intriguing physical and chemical properties, and potential applications. However, very little attention has been paid to exploring their potential as highly efficient optical materials. Gd16 clusters are a new cluster structure that has a rich and varied coordination environment, which is highly conducive to doping and thus controlling luminescence and luminescence color modulation. We achieved green emission by doping Tb3+ ions and red emission by doping Eu3+ ions in the Gd16 cluster structure. Meanwhile, we achieved red-orange-yellow color-tunable luminescence by controlling the composition of Tb3+ and Eu3+ ions. Studies on the PL properties show that Gd16 clusters as the host can be used for doping and efficiently photosensitizing Tb3+ ions and Eu3+ ions. The existence of energy transfer from the ligand to Tb3+ ions and Eu3+ ions in the co-doped Ln16 clusters was sufficiently demonstrated by time-resolved photoluminescence spectroscopy tests, and the energy transfer efficiency in the clusters was calculated. Furthermore, the temperature-dependent photoluminescence properties of these clusters were investigated to determine their potential as luminescent thermometers.
Collapse
Affiliation(s)
- Tingting Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Jinyu Liu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Shengrong He
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Jinzhe Liu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Ying Zhang
- Department of Paediatrics, Children's Medical Center, The First Hospital of Jilin University, Changchun 130021, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanan Li
- Department of Paediatrics, Children's Medical Center, The First Hospital of Jilin University, Changchun 130021, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Cesari C, Femoni C, Forti F, Iapalucci MC, Scorzoni G, Zacchini S. Surface decorated metal carbonyl clusters: bridging organometallic molecular clusters and atomically precise ligated nanoclusters. Dalton Trans 2025; 54:2224-2251. [PMID: 39807530 DOI: 10.1039/d4dt03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this Frontier Article, the work carried out within our research group in Bologna in the field of surface decorated metal carbonyl clusters will be outlined and put in a more general context. After a short Introduction, clusters composed of a metal carbonyl core decorated on the surface by metal-ligand fragments will be analyzed. Both metal-ligand fragments behaving as Lewis acids and Lewis bases will be considered. Then, the focus will be moved to clusters composed of a naked metal core decorated and stabilized on the surface by metal-carbonyl fragments. The structure and bonding (where theoretical studies are available) of such surface decorated metal carbonyl clusters will be presented, and compared to atomically precise ligated nanoclusters.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| | - Francesca Forti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| | - Giorgia Scorzoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
| |
Collapse
|
5
|
Koridon E, Sen S, Visscher L, Polla S. FragPT2: Multifragment Wave Function Embedding with Perturbative Interactions. J Chem Theory Comput 2025; 21:655-669. [PMID: 39792562 PMCID: PMC11780752 DOI: 10.1021/acs.jctc.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals. Each fragment is then solved with a multireference method, self-consistently embedded in the mean field from other fragments. Finally, interfragment correlations are reintroduced through multireference perturbation theory. Our framework provides an exhaustive classification of interfragment interaction terms, offering a tool to analyze the relative importance of various processes such as dispersion, charge transfer, and spin exchange. We benchmark FragPT2 on challenging test systems, including N2 dimers, multiple aromatic dimers, and butadiene. We demonstrate that our method can be successful even for fragments defined by cutting through a covalent bond.
Collapse
Affiliation(s)
- Emiel Koridon
- Instituut-Lorentz, Universiteit Leiden, Leiden 2300RA, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, Amsterdam 1081HV, The Netherlands
| | - Souloke Sen
- Instituut-Lorentz, Universiteit Leiden, Leiden 2300RA, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, Amsterdam 1081HV, The Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, Amsterdam 1081HV, The Netherlands
| | - Stefano Polla
- Instituut-Lorentz, Universiteit Leiden, Leiden 2300RA, The Netherlands
| |
Collapse
|
6
|
Kakavand M, Cheraghi M, Mahdavi A, Neshat A, Kozakiewicz-Piekarz A, Bazargani P, Balmohammadi Y. Ligand-Induced Intramolecular Cuprophilic and Argentophilic Interactions in Bimetallic Cu(I) and Ag(I) Phosphine Complexes and the Assessment of Their Antityrosinase and Antibacterial Effects. Inorg Chem 2025; 64:1272-1286. [PMID: 39792447 DOI: 10.1021/acs.inorgchem.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Binuclear silver(I) and copper(I) complexes, 1 and 5, with bridging diphenylphosphine ligands were prepared. In 1, the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions. The short Ag···Ag distance, as a result of small bite angles from bridging dppm ligands, was determined to be 2.9463(4) Å. In 5, the Cu···Cu distance is 2.915(6) Å, significantly shorter than that observed in comparable structures. Intramolecular hydrogen bonding interactions in these complexes, such as C-H···F, C-H···O, and O-H···F interactions and π···π interactions, played a significant role in the crystal packing and stability of these molecules in the solid state. Derivatization of 1 and 5 using selected sulfur donor dialkyldithiophosphates gave six novel heteroleptic binuclear complexes. Single crystal X-ray diffraction studies of five of these complexes revealed interesting structural features, including strong metallophilic interactions in 1 and 5 and multiple intramolecular and intermolecular hydrogen bonding interactions. The antibacterial activities of complexes 1, 2, 3, 7, and 8 were also screened against gram-positive (Staphylococcus aureus PTCC 1112) and gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined. Time-dependent density functional theory (TD-DFT), interaction region indicator (IRI), and fuzzy atom bond order (FBO) analyses of the selected complexes provided insights into the electronic and structural characteristics of the metal complexes.
Collapse
Affiliation(s)
- Meysam Kakavand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Anna Kozakiewicz-Piekarz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina, 7, 87-100 Toruń, Poland
| | - Parinaz Bazargani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Yaser Balmohammadi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Artem'ev AV, Davydova MP, Klyushova LS, Sadykov EH, Rakhmanova MI, Sukhikh TS. Coinage metal(I) clusters supported by a 1,10-phenanthroline-phosphine: orange-to-NIR phosphorescence, metallophilic interactions and enhanced cytotoxicity. Dalton Trans 2024; 53:18027-18036. [PMID: 39441054 DOI: 10.1039/d4dt02642j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A series of small coinage metal(I) clusters has been selectively synthesized using 2-(diphenylphosphino)-1,10-phenanthroline (L), a new promising dimetal-binding P,N,N'-ligand (L). Its reaction with CuI yields the complex [Cu2L2(μ2-I)]2[Cu2I4], while the treatment of L with Au(tht)Cl/Ag+ or Au(tht)Cl/Cu+ systems leads to the assembly of [Au2AgL2Cl2]+, [Au2CuL2Cl2]+, [CuAuL2]2+ and [AgAuL2]2+ clusters. Theoretical analysis revealed pronounced intermetallic close shell interactions in these di- and trinuclear ensembles. At 298 K, the title compounds exhibit an orange and near-infrared (NIR) phosphorescence with lifetimes of 0.344-38 μs and quantum efficiencies of 1-21%. Theoretical considerations suggest a 3(M+L)LCT type for the observed phosphorescence. In addition, the above clusters exhibit a strong dose-dependent cytotoxic effect on A549, HepG2, Hep2 and MRC5 human cells with IC50 values ranging from 1.26 to 11.1 μM.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Maria P Davydova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630060 Novosibirsk, Russia
| | - Evgeniy H Sadykov
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
8
|
Stal S, Cordier M, Massuyeau F, Hernandez O, Paris M, Mevellec JY, Latouche C, Perruchas S. Luminescence Thermochromism of a Noncluster Copper Iodide Complex. Inorg Chem 2024; 63:21687-21698. [PMID: 39480014 DOI: 10.1021/acs.inorgchem.4c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Hybrid copper(I) halide materials are currently attracting significant attention due to their exceptional luminescence properties, offering great potential for the development of multifunctional emissive materials with, in addition, eco-friendly features. A binuclear copper iodide complex, based on the [Cu2I2L4] motif with phosphite derivatives as ligands, has been synthesized and structurally characterized. Photophysical investigations indicate that this complex displays luminescence thermochromic properties, which are characterized by a temperature-dependent change in the relative intensity of two emission bands. The high-contrast luminescence thermochromism, with an important color variation from purple to cyan, is ascribed to the thermal equilibrium of two different excited states. While thermochromism is relatively known for multimetallic complexes, the perfectly controlled thermochromism of the studied compound is unprecedented for a binuclear complex. From theoretical investigations, this original feature is due to the coordination of phosphite ligands, which induces a specific energy layout of the complex, presenting vacant orbitals of varying nature. This single-component, dual-emissive binuclear complex, displaying relevant sensitivity temperature response, presents great potential for luminescence ratiometric thermometry applications. This study underlines the relevance of the ligand engineering strategy in developing original, emissive, and sustainable copper-based materials.
Collapse
Affiliation(s)
- Sandro Stal
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| | - Marie Cordier
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Univ. Rennes, UMR 6226, Rennes F-35000, France
| | - Florian Massuyeau
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| | - Olivier Hernandez
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| | - Michaël Paris
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| | - Jean-Yves Mevellec
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| | - Camille Latouche
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris F-75005, France
| | - Sandrine Perruchas
- CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes Université, Nantes F-44000, France
| |
Collapse
|
9
|
Meyer F, Puylaert P, Duvinage D, Hupf E, Beckmann J. Cationic dinuclear complexes [M 2(PCP) 2μ-Cl][GaCl 4] of the group 10 elements. metallophilic interactions and catalytic dehydrogenation of Me 2NHBH 3. Chem Commun (Camb) 2024; 60:12912-12915. [PMID: 39417281 DOI: 10.1039/d4cc04296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The facile synthesis of the cationic dinuclear group 10 complexes [M2(PCP)2μ-Cl]+ (M = Ni, Pd, Pt) by transmetallation from a simple Ga precursor is reported (PCP = 2,6-(Ph2P)C6H3). Their use for the catalysed dehydrogenation of Me2NHBH3 shows that Ni has a higher reactivity than Pt, whereas Pd is inactive.
Collapse
Affiliation(s)
- Fabio Meyer
- Institute für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Pim Puylaert
- Institute für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Daniel Duvinage
- Institute für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Emanuel Hupf
- Institute für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Jens Beckmann
- Institute für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| |
Collapse
|
10
|
Bühler R, Wolf RM, Gemel C, Stephan J, Deger SN, Kahlal S, Fischer RA, Saillard JY. Cuprophilic Interactions in Polymeric [Cu 10O 2(Mes) 6] n. Inorg Chem 2024. [PMID: 39253905 DOI: 10.1021/acs.inorgchem.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The properties of cuprophilic compounds and the underlying fundamental principles responsible for the Cu(I)···Cu(I) interactions have been the subject of intense research as their diverse structural and physical attributes are being explored. In this light, we performed a new study of the compound [Cu10O2(Mes)6] reported by Haakansson et al. using state of the art experimental and theoretical analysis techniques. Doing this, we found the compound to be a polymer in the solid state, best written as [Cu10O2(Mes)6]n, with unsupported Cu(I)···Cu(I) contacts linking the monomers (2.776 Å). The monomeric unit also exhibits various cuprophilic contacts bridged by mesityl and/or oxo ligands. The compound was analyzed in its solid state, revealing luminescent properties resulting from two distinct fluorescent emissions, as well as in solution, in which its polymeric structure reversibly decomposes. A quantum theory of atoms in molecules (QTAIM) analysis based on density functional theory (DFT) calculations allows to characterize the various Cu(I)···Cu(I) contacts, in which only a few, and not necessarily the shortest, are associated with a bond critical point. Additionally, an energy decomposition analysis of the bonding between monomers indicates that it is dominated by dispersion forces in which the ligands play a dominant role, resulting in bonding energies significantly larger than found in previous DFT investigations based on less bulky models.
Collapse
Affiliation(s)
- Raphael Bühler
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Robert M Wolf
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Christian Gemel
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Johannes Stephan
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Simon N Deger
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France
| | - Roland A Fischer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | | |
Collapse
|
11
|
Dietl MC, Maag M, Ber S, Rominger F, Rudolph M, Caligiuri I, Andele PK, Mkhalid IAI, Rizzolio F, Nogara PA, Orian L, Scattolin T, Hashmi ASK. Comparative study of the antiproliferative activity of heterometallic carbene gold(i)-platinum(ii) and gold(i)-palladium(ii) complexes in cancer cell lines. Chem Sci 2024:d4sc04585h. [PMID: 39246355 PMCID: PMC11376197 DOI: 10.1039/d4sc04585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
The stepwise, one-pot synthesis of heterobimetallic carbene gold(i) platinum(ii) complexes from readily available starting materials is presented. The protecting group free methodology is based on the graduated nucleophilicities of aliphatic and aromatic amines as linkers between both metal centers. This enables the selective, sequential installation of the metal fragments. In addition, the obtained complexes were tested as potential anticancer agents and directly compared to their gold(i) palladium(ii) counterparts.
Collapse
Affiliation(s)
- Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Melina Maag
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sophia Ber
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
| | - Pacome K Andele
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ibraheem A I Mkhalid
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Pablo A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul) Av. Leonel de Moura Brizola, 2501 96418-400 Bagé RS Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
12
|
Hassan N, Nagaraja S, Saha S, Tarafder K, Ballav N. Ultralow thermal conductivity and thermally-deactivated electrical transport in a 1D silver array with alternating δ-bonds. Chem Sci 2024:d4sc04165h. [PMID: 39282645 PMCID: PMC11391910 DOI: 10.1039/d4sc04165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
We report the synthesis of a (TMA)AgBr2 (TMA = tetramethylammonium) crystal, which comprises inorganic anionic chains of -(AgBr2)∝- stabilized by columnar stacks of organic TMA cations with a periodic arrangement of shorter and longer Ag(i)⋯Ag(i) bonds, even though all the Ag(i) ions are chemically equivalent. The presence of two chemically non-equivalent bridging Br ions is attributed to the primary cause of such an unusual arrangement, as clearly visualized in the charge density plot of (TMA)AgBr2 extracted from the theoretical calculations based on density functional theory. Remarkably, we identified from the orbital-projected density of states the existence of alternate δ-like bonding involving d xy orbitals of 4d10 Ag(i), which was attributed to the cause for ultralow thermal conductivity and thermally-deactivated electrical transport in (TMA)AgBr2. Barring the energetics, our observations on the existence of a δ-bond will shed new light in understanding the nature of metal-metal chemical bonding and its unprecedented implications.
Collapse
Affiliation(s)
- Nahid Hassan
- Department of Chemistry, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune - 411 008 India
| | - Suneetha Nagaraja
- Department of Physics, National Institute of Technology Karnataka Surathkal Mangalore - 575 025 India
| | - Sauvik Saha
- Department of Chemistry, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune - 411 008 India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka Surathkal Mangalore - 575 025 India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune - 411 008 India
| |
Collapse
|
13
|
Wu P, Yu X, Cheng L, Wang K. Lewis Acid-Base Pairs: The Bonding Rule of Closed-Shell M···M' Interactions (M = HgII/PdII; M' = AgI/AuI). J Phys Chem A 2024; 128:6362-6372. [PMID: 38984404 DOI: 10.1021/acs.jpca.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metallophilic interactions are the widespread interactions in multimetal clusters to orientate closed-shell metal self-assembly form linear, facet, or block clusters. The closed-shell metal cation does not have empty valence orbitals, but is able to attract each other. It is still a conundrum to understand the resource in balancing the strong Coulomb repulsion between two cations. Most traditional descriptions attribute the counterintuitive attractions to London dispersion, Pauli repulsions, and ambiguous orbital interactions. However, neither the dispersion nor the unsourced donor-acceptor interaction can be applied to explain the saturability and directionality in multimetal clusters, where the M···M' structure is the basic molecular unit. Here, we clarify the origination of the covalency in closed-shell metallophilic interactions based on the study of heterobimetallic compounds composed of d10-d8 species (AgI/AuI-PdII) and d10-d10 species (AgI/AuI-HgII) obtained from experiments. The inner d electrons not only participate in the metallophilic interactions but also show different Lewis acidity and basicity in the formation of M···M' structures. The present work not only provides us a novel covalent perspective to visualize the closed-shell M···M' interactions but also unveils the truth of metallophilic interactions.
Collapse
Affiliation(s)
- Panpan Wu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xinlei Yu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, P. R. China
| | - Kun Wang
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
14
|
El-Bendary MM, Akhdhar A, Al-Bogami AS, Domyati D, Kalantan AA, Alzahrani FA, Alamoudi SM, Sheikh RA, Ali EMM. Palladium and platinum complexes based on pyridine bases induced anticancer effectiveness via apoptosis protein signaling in cancer cells. Biometals 2024; 37:905-921. [PMID: 38361146 DOI: 10.1007/s10534-023-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Palladium and platinum complexes, especially those that include cisplatin, can be useful chemotherapeutic drugs. Alternatives that have less adverse effects and require lower dosages of treatment could be provided by complexes containing pyridine bases. The complexes [Pd(SCN)2(4-Acpy)2] (1), [Pd(N3)2(4-Acpy)2] (2) [Pd(paOH)2].2Cl (3) and [Pt(SCN)2(paO)2] (4) were prepared by self-assembly method at ambient temperature; (4-Acpy = 4-acetylpyridine and paOH = pyridine-2-carbaldehyde-oxime). The structure of complexes 1-4 was confirmed using spectroscopic and X-ray crystallography methods. Complexes 1-4 have similar features in isomerism that include the trans coordination geometry of pyridine ligands with Pd or Pt ion. The 3D network structure of complexes 1-4 was constructed by an infinite number of discrete mononuclear molecules extending via H-bonds. The Pd and Pt complexes 1-4 with pyridine ligands were assessed on MCF-7, T47D breast cancer cells and HCT116 colon cancer cells. The study evaluated cell death through apoptosis and cell cycle phases in MCF-7 cells treated with palladium or platinum conjugated with pyridine base. Upon treatment of MCF-7 with these complexes, the expression of apoptotic signals (Bcl2, p53, Bax and c-Myc) and cell cycle signals (p16, CDK1A, CDK1B) were evaluated. Compared to other complexes and cisplatin, IC50 of complex 1 was lowest in MCF-7 cells and complex 2 in T47D cells. Complex 4 has the highest effectiveness on HCT116. The selective index (SI) of complexes 1-4 has a value of more than two for all cancer cell lines, indicating that the complexes were less toxic to normal cells when given the same dose. MCF-7 cells treated with complex 2 and platinum complex 4 exhibited the highest level of early apoptosis. p16 may be signal arrest cells in Sub G, which was observed in cells treated with palladium complexes that suppress excessive cell proliferation. High c-Myc expression of treated cells with four complexes 1-4 and cisplatin could induce p53. All complexes 1-4 elevated the expression of Bax and triggered by the tumor suppressor gene p53. p53 was downregulating the expression of Bcl2.
Collapse
Affiliation(s)
- Mohamed M El-Bendary
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Doaa Domyati
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Samer M Alamoudi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
15
|
Alhimidi SRH, Al-Ibadi MAM, Jabbar ML. QTAIM analysis of the bonding in anionic group 6 carbonyl selenide clusters: [Se 2M 3(CO) 10] 2- (M=Cr, Mo, W). J Mol Model 2024; 30:230. [PMID: 38922351 DOI: 10.1007/s00894-024-06031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
CONTEXT This research aims to offer a deeper understanding of the bonding interactions between M-Se and M-CO and how these interactions change across the group 6 transition metal series: [Se2M3(CO)10]2- (M = Cr, Mo, W). It also seeks to explore the impact of carbonyl groups on M-M interactions within the clusters. Seven criteria, which are based on QTAIM properties, have been considered and compared with the corresponding criteria in other transition metal clusters. The results confirm that no such bond critical points or bond baths occur between transition metals, which instead have 5c-7e bonding interactions delocalized over their five-membered M3(μ-Se)2 ring, as evidenced by the non-negligible nonbonding delocalization indices. The topological properties of three bond clusters, Cr-Se, Mo-Se, and W-Se, resemble those of "intermediate closed shell characters," which combine covalent and electrostatic properties. Source function calculations indicated that the bonded Se atom contributed the most to each Cr-Se and Mo-Se bcp. The OCO atoms and nonbonded Se atoms also contributed to some extent. However, metal atoms act as sinks rather than as sources of electron density. In contrast, the majority of the metal atoms, both bonded and nonbonded, contribute to Cr-W bcps. Analysis of the delocalization indices δ(M…O) in the three clusters indicates that CO significantly contributes to Cr π-back donation in cluster 1. In contrast, no π-back donation occurs from CO to Mo or W in clusters 2 or 3, respectively. METHODS The B3P86 hybrid functional was used for computations in the Gaussian 09 software. The LanL2DZ basis set was employed for Cr, Mo, and W, while the 6-31G (d, p) basis set was used for C, O, and Se atoms. We performed QTAIM analysis using the AIM2000 and Multiwfn packages, incorporating B3P86/WTBS for Cr, Mo, and W atoms. The 6-311++G(3df,3pd) basis set was used for C, O, and Se atoms. Additionally, we utilized the ELF and SF.
Collapse
Affiliation(s)
| | - Muhsen Abood Muhsen Al-Ibadi
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq.
- Department of Medical Techniques Analysis, College of Medical Techniques, The Islamic University, Najaf, Iraq.
| | - Mohammed L Jabbar
- Department of Physics, College of Science, Thi-Qar University, Nasiriyah, Iraq
- Medical physics Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
16
|
Takahashi S, Kazama Y, Nakata N, Baceiredo A, Hashizume D, Saffon-Merceron N, Branchadell V, Kato T. Silyliumylidene Ion Stabilized by Two σ-Donating Ni(0)- and Pd(0)-Fragments. Chemistry 2024; 30:e202400054. [PMID: 38779843 DOI: 10.1002/chem.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 05/25/2024]
Abstract
A silyliumylidene ion 2 stabilized by two σ-donating Ni(0)- and Pd(0)-fragments was successfully synthesized. Due to the σ-donation of M→Si interactions, 2 presents a pyramidalized cationic silicon center with a localized lone pair. The additional coordination of basic Pd(0) fragment to the mono-Ni(0)-stabilized silyliumylidene 1 results in a higher HOMO level and an unchanged HOMO-LUMO gap and thus, 2 remains highly reactive. Interestingly, the coordination mode at the Si center is closely related to the nature of M-ligands. Indeed, the donor/donor-stabilized silyliumylidene ion 2 has been transformed into a donor/acceptor-stabilized ion 13, featuring a trigonal planar Si center with a vacant orbital, just via a ligand exchange reaction from PCy3/NHC toward PMe3.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Yugo Kazama
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse, UAR 2599), UPS, CNRS, ICT UAR2599 118 route de Narbonne, F-31062, Toulouse, France
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| |
Collapse
|
17
|
Burguera S, Bauzá A, Frontera A. A novel approach for estimating the strength of argentophilic and aurophilic interactions using QTAIM parameters. Phys Chem Chem Phys 2024; 26:16550-16560. [PMID: 38829286 DOI: 10.1039/d4cp00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metallophilic interactions, specifically argentophilic (Ag⋯Ag) and aurophilic (Au⋯Au) interactions, play a crucial role in stabilizing various molecular and solid-state structures. In this manuscript, we present a convenient method to estimate the strength of argentophilic and aurophilic interactions based on quantum theory of atoms in molecules (QTAIM) parameters evaluated at the bond critical points connecting the metal centres. We employ density functional theory (DFT) calculations and the QTAIM parameters to develop this energy predictor. To validate the reliability and applicability of our method, we test it using a selection of X-ray crystal structures extracted from the cambridge structural database (CSD), where argentophilic and aurophilic interactions are known to be significant in their solid-state arrangements. This method offers a distinct advantage in systems where multiple interactions, beyond metallophilic interactions, contribute to the overall stability of the structure. By employing our approach, researchers can distinctly quantify the strength of argentophilic and aurophilic interactions, facilitating a deeper understanding of their impact on molecular and solid-state properties. This method fills a critical gap in the existing literature, offering a valuable tool to researchers seeking to unravel the intricate interactions in metal-containing compounds.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| |
Collapse
|
18
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
19
|
Huang L, Li XN, Shen Y, Hua Y, Song RH, Cui WB, Li ZY, Zhang H. Tunable photo/thermochromic properties of Cd(II)-viologen coordination polymers modulated by coordination modes for flexible imaging films and anti-counterfeiting. Dalton Trans 2024; 53:8803-8811. [PMID: 38716557 DOI: 10.1039/d4dt00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two photochromic Cd(II)-CPs were obtained based on the viologen ligand using different synthetic routes, named {[Cd4(p-BDC)4(CPB)2(H2O)2]·2H2O·EtOH}n (1) and {[Cd(p-BDC)(CPB)(H2O)]·(L)·DMF}n (2) (p-H2BDC = 1,4-benzene-dicarboxylate, HCPB·Cl = 1-(4-carboxyphenyl)-4,4'-bipyridinium·Cl, L = 2,4-dinitrochlorobenzene, and DMF = N,N-dimethylformamide), respectively. Due to different coordination modes, the two Cd(II)-CPs show different structures. Compound 1 exhibits a three-dimensional (3D) framework with bimetallic nodes, while compound 2 displays a 2-fold interpenetrated (4,4) net topology. Notably, the two Cd(II)-CPs exhibit substantial disparities in photo/thermochromism, which can be attributed to variations in donor-acceptor (D-A) distances arising from structural differences. Compound 1 showed visually sensitive photo- and thermochromic behavior due to multi-pathway electron transfer and short D-A distances, which is relatively rare in electron-transfer type photochromic systems. In contrast, 2 only demonstrates insensitive photochromic behavior, with a slight deepening of the color observed after 2 hours of UV light, which is due to the mono-pathway electron transfer and long D-A distance. Moreover, we first combined Cd(II)-viologen CPs with polydimethylsiloxane (PDMS) to prepare a 1@PDMS flexible UV imaging film. 1@PDMS exhibits excellent bendability and stretchability and maintains good photochromic properties after 100 bending cycles. To demonstrate the rapid color response and distinct color contrast of 1, its application in anti-counterfeiting is also demonstrated.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Zi-Yi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
20
|
Li H, Lv Y, Tan Y, Yang J, Liu W, Ouyang G. Ultrastable Copper Iodide Hybrid with Intrinsic Greenish White-Light Emission by Incorporating an Anionic Inorganic Functional Unit into an Extended Structure. Inorg Chem 2024; 63:9326-9331. [PMID: 38703124 DOI: 10.1021/acs.inorgchem.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Incorporating a functional unit into the multidimensional coordination polymer skeleton is an efficient way to improve the stability of materials and expand their application. In this paper, anionic copper iodide inorganic functional modules are incorporated into one-dimensional extended chains by using a unique bidentate cationic organic ligand. Benefiting from the ionic extended structure, the resulting hybrid possesses a remarkable stability with a decomposition temperature as high as 300 °C. Meanwhile, the hybrid material exhibits intrinsic greenish white-light emission with a high photoluminescent quantum yield of 70%. The emission was investigated by temperature-dependent emission spectra, which proved to be the result of the synergistic effect of two energy states. The novel synthetic strategy provides an efficient route for the development of functional organic metal halides.
Collapse
Affiliation(s)
- Haibo Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| | - Yi Lv
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| | - Yanbi Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| | - Jing Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, P. R. China
| |
Collapse
|
21
|
Delafoulhouze J, Cordier M, Mevellec JY, Massuyeau F, Hernandez O, Latouche C, Perruchas S. Mechanoresponsive luminescence triggered by phase transition of a supercooled copper(I) complex. Chem Commun (Camb) 2024; 60:5278-5281. [PMID: 38654619 DOI: 10.1039/d4cc00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Under mechanical stimulation, a copper(I) complex in its supercooled liquid state transforms into a crystalline phase, showing a dramatic emission color change from red to green that is accompanied by a 20-fold increase in the photoluminescence quantum yield up to 87%. This reversible phase transition relies on the intriguing ability of this copper complex to form a supercooled metastable state.
Collapse
Affiliation(s)
- Jérémy Delafoulhouze
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Jean-Yves Mevellec
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
| | - Florian Massuyeau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
| | - Olivier Hernandez
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
- Institut Universitaire de France (IUF), Paris F-75005, France
| | - Sandrine Perruchas
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes, France.
| |
Collapse
|
22
|
Sheng W, Rajeshkumar T, Zhao Y, Maron L, Zhu C. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds. J Am Chem Soc 2024; 146:12790-12798. [PMID: 38684067 DOI: 10.1021/jacs.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.
Collapse
Affiliation(s)
- Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Ladder-like heteropolynuclear assemblies via cyanido bridges and platinum(II)-thallium(I) bonds: structural and photophysical properties. Dalton Trans 2024; 53:7788-7800. [PMID: 38623699 DOI: 10.1039/d4dt00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We describe the mononuclear anionic cyanido-pentafluorophenyl complexes, (NBu4)[Pt(C^N)(C6F5)(CN)] [C^N = 7,8-benzoquinolate (bzq) 1, 2-(2,4-difluorophenyl)pyridinate (dfppy) 2] and the heteropolynuclear derivatives [{Pt(C^N)(C6F5)(CN)}Tl] (C^N = bzq 3, dfppy 4). These complexes were synthesized via a two-step modular synthesis by reaction of the corresponding potassium salts K[Pt(C^N)(C6F5)(CN)], prepared in situ from [Pt(C^N)(C6F5)(DMSO)] and KCN in acetone/H2O, with TlPF6. The structures of {[Pt(bzq)(C6F5)(CN)Tl]·THF}n (3·THF)n and [{Pt(dfppy)(C6F5)(CN)}Tl]4·dioxane [4]4·dioxane, determined by X-ray crystallography, confirm the presence of Pt(II)-Tl(I) bonds [2.9795(6)-3.0736(3) Å], but in the dfppy complex, the incorporation of dioxane, causes a significant structural change. Thus, whereas [3·THF]n achieves a bent-ladder shape extended double chain Tl⋯[Pt⋯Tl]n⋯Pt supported by lateral bridging [Pt](μ-CN)[Tl] ligands, [4]4·dioxane is formed by discrete Pt4Tl4 rectangular aggregates stabilized by [Pt](μ-CN)[Tl] and Pt⋯Tl bonds, which are connected by dioxane bridging molecules through Tl⋯O(dioxane) additional contacts. Solid state emissions are redshifted compared with the mononuclear derivatives 1 and 2 and have been assigned, with the support of theoretical calculations on Pt4Tl4 models, to metal-metal'-to-ligand charge transfer (3MM'LCT [d/s σ*(Pt, Tl) → π*(C^N)]) for 3 and mixed 3MM'LCT/3IL for 4. In fluid THF solution, the complexes are not emissive. At 77 K, 3 and 4 exhibit bright emissions attributed to the formation of bimetallic [{Pt(C^N)(C6F5)(CN)}Tl(THF)x], and anionic [Pt(C^N)(C6F5)(CN)]- fragments. Furthermore, both 3 and 4 exhibit a reversible mechanochromism with a red shift of the emissions upon crushing, suggesting some degree of shortening of metal-metal separation. Finally, complex 3 shows solvatochromic behavior with color/luminescence changes by treatment with a drop of MeOH, CH2Cl2, THF or Et2O, with shifts from 583 in 3-MeOH to 639 nm in 3-THF. However, 4 only demonstrates a bathochromic response to MeOH.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.
- Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Universidad de La Rioja, 26006 Logroño, Spain.
| | - David Gómez de Segura
- Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Universidad de La Rioja, 26006 Logroño, Spain.
| | | | - Nasser Safari
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.
| | - Elena Lalinde
- Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Universidad de La Rioja, 26006 Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Universidad de La Rioja, 26006 Logroño, Spain.
| |
Collapse
|
24
|
Vaidya S, Hawila S, Zeyu F, Khan T, Fateeva A, Toche F, Chiriac R, Bonhommé A, Ledoux G, Lebègue S, Park J, Kim WJ, Liu J, Guo X, Mesbah A, Horike S, Demessence A. Gold(I)-Thiolate Coordination Polymers as Multifunctional Materials: The Case of Au(I)- p-Fluorothiophenolate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22512-22521. [PMID: 38651627 DOI: 10.1021/acsami.4c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Gold-sulfur interaction has vital importance in nanotechnologies and material chemistry to design functional nanoparticles, self-assembled monolayers, or molecular complexes. In this paper, a mixture of only two basic precursors, such as the chloroauric acid (HAu(III)Cl4) and a thiol molecule (p-fluorothiophenol (p-HSPhF)), are used for the synthesis of gold(I)-thiolate coordination polymers. Under different conditions of synthesis and external stimuli, five different functional materials with different states of [Au(I)(p-SPhF)]n can be afforded. These gold-thiolate compounds are (i) red emissive, flexible, and crystalline fibers; (ii) composite materials made of these red emissive fibers and gold nanoparticles; (iii) amorphous phase; (iv) transparent glass; and (v) amorphous-to-crystalline phase-change material associated with an ON/OFF switch of luminescence. The different functionalities of these materials highlight the great versatility of the gold(I) thiolate coordination polymers with easy synthesis and diverse shaping that may have great potential as sustainable phosphors, smart textiles, sensors, and phase change memories.
Collapse
Affiliation(s)
- Shefali Vaidya
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Saly Hawila
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Fan Zeyu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tuhin Khan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 162 00, Czech Republic
| | - Alexandra Fateeva
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - François Toche
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - Rodica Chiriac
- University Claude Bernard Lyon 1, CNRS, LMI - UMR 5615, Villeurbanne 69622, France
| | - Anne Bonhommé
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Gilles Ledoux
- University Claude Bernard Lyon 1, CNRS, ILM - UMR 5306, Villeurbanne 69622, France
| | - Sébastien Lebègue
- University of Lorraine, CNRS, LPCT - UMR 7019, Vandœuvre-lès-Nancy 54506, France
| | - Jeongmin Park
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnam-do 51140, South Korea
| | - Won June Kim
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnam-do 51140, South Korea
| | - Juejing Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Adel Mesbah
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Aude Demessence
- University Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, Villeurbanne 69100, France
| |
Collapse
|
25
|
Xu S, Liu X, Hou Y, Kou M, Xu X, Veljković F, Veličković S, Kong X. Structures and growth pathways of Au nCl n+3- (n ≤ 7) cluster anions. Front Chem 2024; 12:1382443. [PMID: 38645774 PMCID: PMC11027128 DOI: 10.3389/fchem.2024.1382443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/23/2024] Open
Abstract
Gold chloride clusters play an important role in catalysis and materials chemistry. Due to the diversity of their species and isomers, there is still a dearth of structural studies at the molecular level. In this work, anions of AunCln+3 - and AunCln+5 - (n = 2-4) clusters were obtained by laser desorption/ionization mass spectrometry (LDI MS), and the most stable isomers of AunCln+3 - were determined after a thorough search and optimization at the TPSSh/aug-cc-pVTZ/ECP60MDF level. The results indicate that all isomers with the lowest energy have a planar zigzag skeleton. In each species, there is one Au(III) atom at the edge connected with four Cl atoms, which sets it from the other Au(I) atoms. Four growth pathways for AunCln+3 - (n = 2-7) clusters are proposed (labelled R1, R2, R3 and R4). They are all associated with an aurophilic contact and are exothermic. The binding energies tend to stabilize at ∼ -41 kcal/mol when the size of the cluster increases in all pathways. The pathway R1, which connects all the most stable isomers of the respective clusters, is characterized by cluster growth due to aurophilic interactions at the terminal atom of Au(I) in the zigzag chains. In the pathway of R4 involving Au-Au bonding in its initial structures (n ≤ 3), the distance between intermediate gold atoms grows with cluster size, ultimately resulting in the transfer of the intermediate Au-Au bonding into aurophilic interaction. The size effect on the structure and aurophilic interactions of these clusters will be better understood based on these discoveries, potentially providing new insights into the active but elusive chemical species involved in the corresponding catalytic reactions or nanoparticle synthesis processes.
Collapse
Affiliation(s)
- Shiyin Xu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xinhe Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yameng Hou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xinshi Xu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Filip Veljković
- ‘‘VINCA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Suzana Veličković
- ‘‘VINCA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Cesari C, Bortoluzzi M, Femoni C, Forti F, Iapalucci MC, Zacchini S. Peraurated ruthenium hydride carbonyl clusters: aurophilicity, isolobal analogy, structural isomerism, and fluxionality. Dalton Trans 2024; 53:3865-3879. [PMID: 38311969 DOI: 10.1039/d3dt04282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The stepwise addition of increasing amounts of Au(PPh3)Cl to [HRu4(CO)12]3- (1) results in the sequential formation of [HRu4(CO)12(AuPPh3)]2- (2), [HRu4(CO)12(AuPPh3)2]- (3), and HRu4(CO)12(AuPPh3)3 (4). Alternatively, 4 can be obtained upon addition of HBF4·Et2O (two mole equivalents) to 3. Further addition of acid to 3 (three mole equivalents) results in the formation of the tetra-aurated cluster Ru4(CO)12(AuPPh3)4 (5). Compounds 2-5 have been characterized by IR, 1H and 31P{1H} NMR spectroscopies. Moreover, the molecular structures of 3-5 have been determined by single crystal X-ray diffraction as [NEt4][3]·2CH2Cl2, 4-b·2CH2Cl2, 4-a, 5·0.5CH2Cl2·solv, and 5·solv crystalline solids. Two different isomers of 4, that is 4-a and 4-b, have been crystallographically characterized and their rapid interconversion in solution was studied by variable temperature 1H and 31P{1H} NMR spectroscopies. Weak aurophilic Au⋯Au contacts have been detected in the solid state structures of 3-5. Computational studies have been performed in order to elucidate bonding and isomerism, as well as to predict the possible structure of the elusive species 2.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre, Ve, Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesca Forti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
27
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
28
|
Wang LX, Cheng SC, Liu Y, Leung CF, Liu JY, Ko CC, Lau TC, Xiang J. Synthesis, structure and photoluminescence of Cu(I) complexes containing new functionalized 1,2,3-triazole ligands. Dalton Trans 2023; 52:16032-16042. [PMID: 37850402 DOI: 10.1039/d3dt02242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
29
|
Xie WX, Xue CH, Liu M, Zhou K, Gu HH, Ji JY, Chen BK, Liu N, Bi YF. Thiacalix[4]arene-protected alkynyl Ag n ( n = 9, 18) nanoclusters: syntheses, structural characterizations, photocurrent responses and fluorescence properties. Dalton Trans 2023; 52:13405-13412. [PMID: 37691584 DOI: 10.1039/d3dt02285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Two thiacalix[4]arene-protected silver(I) alkynyl nanoclusters, [Na2(H2O)2][Ag9(TC4A)(tBuCC)4(CH3OH)2(SbF6)0.5(OH)2.5]·3.5H2O·CH3OH (1, abbreviated as Ag9) and [Ag9(TC4A)(tBuCC)4(CF3COO)]2·4CH3OH (2, abbreviated as Ag18), were synthesized by the reaction of [tBuCCAg]n, p-tert-butylthiacalix[4]arene (H4TC4A), NaBH4, and AgSbF6 or CF3COOAg in the mixed solvent of methanol-trichloromethane-toluene under solvothermal conditions, respectively. Driven by SbF6- and CF3COO- with different coordination properties, the structural unit [Ag9(TC4A)(tBuCC)4]+ in both the compounds migrated in different modes, accompanied by distinct Ag⋯Ag distances. Ag9 and Ag18 exhibit similar UV-Vis absorption and diffuse reflection spectra along with contrary tendency between photocurrent responses and solid-state fluorescence. The solution stability of Ag9 and Ag18 was demonstrated by 1H NMR and MALDI-TOF mass spectrometry. The fluorescence responses of Ag9 and Ag18 towards different organic molecules were also investigated, which indicated that the polarity of solvent has a certain effect on the emission intensities of Ag9 and Ag18. This study provides a positive guide for the controlled synthesis and further study of the structure-activity relationship of thiacalix[4]arene-protected silver alkynyl nanoclusters.
Collapse
Affiliation(s)
- Wen-Xuan Xie
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Chun-Hui Xue
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Meng Liu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Kun Zhou
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Hui-Hao Gu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jiu-Yu Ji
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Bao-Kuan Chen
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Na Liu
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| | - Yan-Feng Bi
- School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
30
|
Raju S, Singh HB, Kumar S, Butcher RJ. Coordination Behavior of the Tellurium Incorporated Mercuraazametallamacrocycle and Investigation of d 10 ⋅⋅⋅d 10 Interactions between Closed Shell (Ag + Hg 2+ ) Metal Ions. Chemistry 2023; 29:e202301322. [PMID: 37317647 DOI: 10.1002/chem.202301322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023]
Abstract
Herein, a new tellurium and mercury containing mercuraazametallamacrocycle has been prepared via (2+2) condensation of bis(o-aminophenyl)telluride and bis(o-formylphenyl)mercury(II). The isolated bright yellow solid of mercuraazametallamacrocycle has adopted unsymmetrical figure-of-eight conformation in the crystal structure. To study the metallophilic interactions between closed shell metal ions, the macrocyclic ligand has been treated with two equiv. of AgOTf (OTf=trifluoromethansulfonate) and AgBF4 , which afforded greenish-yellow bimetallic silver complexes. The isolated silver complexes displayed intramolecular Hg⋅⋅⋅Ag, Te⋅⋅⋅Ag interactions as well as intermolecular Hg⋅⋅⋅Hg interactions and formed an extended 1D molecular chain by directing six atoms to interact as TeII ⋅⋅⋅AgI ⋅⋅⋅HgII ⋅⋅⋅HgII ⋅⋅⋅AgI ⋅⋅⋅TeII in a non linear fashion. The Hg⋅⋅⋅Ag, Te⋅⋅⋅Ag interactions have also been studied in solution by 199 Hg, 125 Te NMR spectroscopy, absorption, and emission spectroscopy. In DFT calculations, the Atom in Molecule (AIM) analysis, non-covalent interactions (NCI), natural bonding orbital (NBO) analysis strongly supported for experimental evidences and revealed that the intermolecular Hg⋅⋅⋅Hg interaction is stronger than the intramolecular Hg⋅⋅⋅Ag interactions.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, D.C., 20059, USA
| |
Collapse
|
31
|
Li Y, Zhang X, Man Y, Xu S, Zhang J, Zhang G, Chen S, Duan C, Han C, Xu H. Interfacial Passivation Enormously Enhances Electroluminescence of Triphenylphosphine Cu 4 I 4 Cube. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302984. [PMID: 37267437 DOI: 10.1002/adma.202302984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Defect is one of the key factors limiting optoelectronic performances of organic-inorganic hybrid systems. Although high-efficiency bidentate ligands based electroluminescent (EL) clusters reported, until present, only few EL clusters based on monodentate ligands are realized since their structural instability induces more surface/interface defects. Herein, this bottleneck is first overcome in virtue of interfacial passivation by electron transporting layers (ETL). Through using TmPyPB with meta-linked pyridines as ETL, photoluminescent (PL) and EL quantum efficiencies of the simplest monophosphine Cu4 I4 cube [TPP]4 Cu4 I4 are greatly improved by ≈2 and 23 folds, respectively, as well as ≈200 folds increased luminance, corresponding to a huge leap from nearly unlighted (<20 nits) to highly bright (>3000 nits). The passivation effect of TmPyPB on surface defects of cluster layer is embodied as preventing interfacial charge trapping and suppressing exciton nonradiation.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shiwei Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Guangming Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
32
|
Lamprecht A, Lindl F, Endres L, Krummenacher I, Braunschweig H. Coinage metal complexes of BN analogues of m-terphenyl ligands. Chem Commun (Camb) 2023; 59:10149-10152. [PMID: 37530102 DOI: 10.1039/d3cc03467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We report the synthesis of a series of group 11 metal complexes with sterically demanding anionic nitrogen ligands based on the 1,2-azaborinine motif. The ligands, which share structural similarities with m-terphenyls, have been used to stabilize two-coordinate phosphine complexes and dimeric complexes with close contacts between the metal centers. Spectroscopic, crystallographic, and theoretical investigations reveal close parallels to the related m-terphenyl complexes, including metallophilic interactions in the dimers.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Felix Lindl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
33
|
Schmitt MJP, Kruppa SV, Walg SP, Thiel WR, Klopper W, Riehn C. Electronic spectroscopy of homo- and heterometallic binuclear coinage metal phosphine complexes in isolation. Phys Chem Chem Phys 2023; 25:20880-20891. [PMID: 37525899 DOI: 10.1039/d3cp03058j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Binuclear coinage metal phosphine complexes are examined under ion trap isolation in order to elucidate their noncovalent binding, structural properties and intrinsic electronic spectra. Our survey shows an intriguing order of electronic transitions obtained by in situ synthesis and mass-spectrometrically supported UV photodissociation spectroscopy on a series of six isolated homo- and heterobinuclear complexes of type [MM'(dcpm)2]2+ (M, M' = CuI, AgI, AuI; dcpm = bis(dicyclohexyl-phosphino)methane). This approach provides the unique opportunity to study all possible coinage metal interactions within a fixed ligand framework. A successive blue-shift (33 700-38 500 cm-1; 297-260 nm) of the lowest-energy bright electronic transition energy in gas phase was observed in the order of Cu2 < CuAu < CuAg < Au2 < AgAu < Ag2. This order was reproduced by quantum chemical calculations using a scalar-relativistic GW-Bethe-Salpeter-equation (GW-BSE) approach. Theory ascribes the electronic bands of all complexes to metal-centered 1MC(dσ*-pσ) transitions revealing a strengthening of metal-metal' (M-M') binding upon excitation, in agreement to mass spetrometric results. A test of the correlation of transition energies with M-M' distance by quantum chemical calculations of single point energies as a function of intermetallic distance indicates qualitative agreement with experimental results. However, the experimentally observed high sensitivity of spectroscopic shifts towards metal composition cannot be accounted for solely by M-M' distance variation. The differences in electronic transitions are qualitatively rationalized by the varying (n + 1)s (n = 3, 4, 5) orbital contributions (increase from Cu2via CuAu/CuAg to Au2/AgAu/Ag2) within the nd(n + 1)s/p-hybridization for the ground electronic state of the different complexes, whereas the excited state (of (n + 1)p orbital character) shows significantly less variation in energy. In particular, the observed spectroscopic and mass spectrometric sequence for the Ag/Au complexes is traced back to the interplay of Pauli repulsion and variation in metal-ligand bond strength within the orbital hybridization model.
Collapse
Affiliation(s)
- Marcel J P Schmitt
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger Str. 53, 67663 Kaiserslautern, Germany.
| | - Sebastian V Kruppa
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger Str. 53, 67663 Kaiserslautern, Germany.
| | - Simon P Walg
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger Str. 53, 67663 Kaiserslautern, Germany.
| | - Werner R Thiel
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger Str. 53, 67663 Kaiserslautern, Germany.
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Christoph Riehn
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger Str. 53, 67663 Kaiserslautern, Germany.
- Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
34
|
Abstract
Solid "[AuL]" (HL = 3-[pyrid-2-yl]-5-tertbutyl-1H-pyrazole) can be crystallized as cyclic [Au3(μ-L)3] and [Au4(μ-L)4] clusters from different solvents. The crystalline tetramer contains a square Au4 core with an HT:TH:TH:HT arrangement of ligand substituents, which preorganizes the cluster to chelate to additional metal ions via its pendant pyridyl groups. The addition of 0.5 equiv of AgBF4 to [AuL] yields [Ag2Au4(μ3-L)4][BF4]2, where two edges of the Au4 square are spanned by Ag+ ions via metallophilic Ag···Au contacts. Treatment of [AuL] with [Cu(NCMe)4]PF6 affords the metalloligand helicate [Cu2Au2(μ-L)4][PF6]2, via oxidation of the copper and partial fragmentation of the cluster.
Collapse
Affiliation(s)
- Ryan A Smith
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
35
|
Zheng HW, Yang DD, Shi YS, Xiao T, Tan HW, Zheng XJ. Conformation- and Coordination Mode-Dependent Stimuli-Responsive Salicylaldehyde Hydrazone Zn(II) Complexes. Inorg Chem 2023; 62:6323-6331. [PMID: 37043704 DOI: 10.1021/acs.inorgchem.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Luminescent Zn(II) complexes that respond to external stimuli are of wide interest due to their potential applications. Schiff base with O,N,O-hydrazone shows excellent luminescence properties with multi-coordination sites for different coordination modes. In this work, three salicylaldehyde hydrazone Zn(II) complexes (1, 2a, 2b) were synthesized and their stimuli-responsive behaviors in different states were explored. Only complex 1 exhibits reversible and self-recoverable photochromic and photoluminescence properties in solution. This may be due to the configuration eversion and the excited-state intramolecular proton transfer (ESIPT) process. In the solid state, 2a has obvious mechanochromic luminescence property, which is caused by the destruction of intermolecular interactions and the transformation from crystalline state to amorphous state. 2a and 2b have delayed fluorescence properties due to effective halogen bond interactions in structures. 2a could undergo crystal-phase transformation into its polymorphous 2b by force/vapor stimulation. Interestingly, 2b shows photochromic property, which can be attributed to the electron transfer and generation of radicals induced by UV irradiation. Due to different conformations and coordination modes, the three Zn(II) complexes show different stimuli-responsive properties. This work presents the multi-stimuli-responsive behaviors of salicylaldehyde hydrazone Zn(II) complexes in different states and discusses the response mechanism in detail, which may provide new insights into the design of multi-stimuli-responsive materials.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong-Wei Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Walters DT, Aristov MM, Babadi Aghakhanpour R, SantaLucia DJ, Costa S, Olmstead MM, Berry JF, Balch AL. Self-Assembled Encapsulation of CuX 2- (X = Br, Cl) in a Gold Phosphine Box-like Cavity with Metallophilic Au-Cu Interactions. Inorg Chem 2023; 62:4467-4475. [PMID: 36897254 DOI: 10.1021/acs.inorgchem.2c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Synthetic routes to the crystallization of two new box-like complexes, [Au6(Triphos)4(CuBr2)](OTf)5·(CH2Cl2)3·(CH3OH)3·(H2O)4 (1) and [Au6(Triphos)4 (CuCl2)](PF6)5·(CH2Cl2)4 (2) (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine), have been developed. The two centrosymmetric cationic complexes have been structurally characterized through single-crystal X-ray diffraction and shown to contain a CuX2- (X = Br or Cl) unit suspended between two Au(I) centers without the involvement of bridging ligands. These colorless crystals display green luminescence (λem = 527 nm) for (1) and teal luminescence (λem = 464 nm) for (2). Computational results document the metallophilic interactions that are involved in positioning the Cu(I) center between the two Au(I) ions and in the luminescence.
Collapse
Affiliation(s)
- Daniel T Walters
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 05616, United States
| | - Michael M Aristov
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Reza Babadi Aghakhanpour
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 05616, United States
| | - Daniel J SantaLucia
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sarah Costa
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 05616, United States
| | - Marilyn M Olmstead
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 05616, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alan L Balch
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 05616, United States
| |
Collapse
|
37
|
Liu Y, Cui T, Li D. Emerging d- d orbital coupling between non- d-block main-group elements Mg and I at high pressure. iScience 2023; 26:106113. [PMID: 36879798 PMCID: PMC9984552 DOI: 10.1016/j.isci.2023.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
d-d orbital coupling, which increases anisotropic and directional bonding, commonly occurs between d-block transition metals. Here, we report an unexpected d-d orbital coupling in the non-d-block main-group element compound Mg2I based on first-principles calculations. The unfilled d orbitals of Mg and I atoms under ambient conditions become part of the valence orbitals and couple with each other under high pressures, resulting in the formation of highly symmetric I-Mg-I covalent bonding in Mg2I, which forces the valence electrons of Mg atoms into the lattice voids to form interstitial quasi-atoms (ISQs). In turn, the ISQs highly interact with the crystal lattice, contributing to lattice stability. This study greatly enriches the fundamental understanding of chemical bonding between non-d-block main-group elements at high pressures.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Da Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
38
|
Osawa M, Soma S, Kobayashi H, Tanaka Y, Hoshino M. Near-white light emission from single crystals of cationic dinuclear gold(I) complexes with bridged diphosphine ligands. Dalton Trans 2023; 52:2956-2965. [PMID: 36648762 DOI: 10.1039/d2dt03785h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cationic dinuclear Au(I) complexes containing acetonitrile (AN) as an ancillary ligand were synthesized: [μ-LMe(AuAN)2]·2BF4 (1), [μ-LEt(AuAN)2]·2BF4 (2), and [μ-LiPr(AuAN)2]·2BF4 (3) (LMe = {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt = {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr = {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene}). The unique structures of complexes 1-3 with two P-Au(I)-AN rods bridged by rigid diphosphine ligands were determined through X-ray analysis. The Au(I)-Au(I) distances observed for complexes 1-3 were as short as 2.9804-3.0457 Å, indicating an aurophilic interaction between two Au(I) atoms. Unlike complexes 2 and 3, complex 1 incorporated CH2Cl2 into the crystals as crystalline solvent molecules. Luminescence studies in the crystalline state revealed that complexes 1 and 2 mainly exhibited bluish-purple phosphorescence (PH) at 293 K: the former had a PH peak wavelength at 415 nm with the photoluminescence quantum yield ΦPL = 0.12, and the latter at 430 nm with ΦPL = 0.13. Meanwhile, complex 3 displayed near-white PH, that is dual PH with two PH bands centered at 425 and 580 nm with ΦPL = 0.44. The PH spectra and lifetimes of complexes 2 and 3 were measured in the temperature range of 77-293 K. The two PH bands observed for complex 3 were suggested to originate from the two emissive excited triplet states, which were in thermal equilibrium. From theoretical calculations, the dual PH observed for complex 3 is explained to occur from the two excited triplet states, T1H and T1L: the former exhibits a high-energy PH band (bluish-purple) and the latter exhibits a low-energy PH band (orange). The T1H state is considered 3ILCT with a structure similar to that of the S0-optimized structure. Conversely, the T1L state is assumed to be a 3MLCT with a T1-optimized structure, which has a short Au(I)-Au(I) bond and two bent rods (Au-AN). The thermal equilibrium between the two excited states is discussed based on computational calculations and photophysical data in the temperature range of 77-293 K. With regard to the crystal of complex 1, we were unable to precisely measure the temperature-dependent emission spectra and lifetimes, particularly at low temperatures, because the cooled crystals became irreversibly turbid over time.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Sakie Soma
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Hiroyuki Kobayashi
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
39
|
Li J, Liu MH, Shen HY, Liu MZ, Wu JT, Zhang B. A semiconductive copper iodobismuthate hybrid: structure, optical properties and photocurrent response. Dalton Trans 2023; 52:2999-3005. [PMID: 36790336 DOI: 10.1039/d2dt03998b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pursuits of new types of Pb-free heterometallic halides adequate for photovoltaic applications are still urgent but challenging. In this study, by using in situ-produced [(Me)2-(DABCO)]2+ (DABCO = 1,4-diazabicyclo[2.2.2]octane; Me = methyl) cations as structure-directing agents, we successfully constructed a non-perovskite copper iodobismuthate hybrid, namely [(Me)2-(DABCO)]2Cu2Bi2I12 (1), which features discrete [Cu2Bi2I12]4- anionic moieties formed by the building units of [CuI4] tetrahedra and [BiI6] octahedra. UV-Vis diffuse reflectance analyses showed that compound 1 possesses semiconductive behaviors with a narrow optical bandgap of 1.80 eV. More importantly, it exhibits excellent photoelectric switching abilities, and its photocurrent density (2.30 μA cm-2) far exceeds those of some high-performance halide-based counterparts. Different from many heterometallic analogues, noteworthily, it also has dispersive band structure and strong electronic coupling near the Fermi level, resulting in a material with small effective masses that may be responsible for the good photoelectricity. This study may offer new guidance for the design and synthesis of eco-friendly heterometallic halides with unique structures and desirable properties.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ming-Hui Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Hong-Yao Shen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Meng-Zhen Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jin-Ting Wu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bo Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
40
|
Relativistic effects on the chemical bonding properties of the heavier elements and their compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Sobrerroca C, Angurell I, de Aquino A, Romo G, Jubert C, Rodríguez L. Mono- and Dinuclear Gold(I) Coumarin Complexes: Luminescence Studies and Singlet Oxygen Production. Chempluschem 2023; 88:e202300020. [PMID: 36800440 DOI: 10.1002/cplu.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
The 4-(thiolmethyl)-7-(diethylamino)-2H-chromen-2-one ligand has been synthesized and used as chromophore in several mono- and dinuclear gold(I) compounds that contain a phosphane at the second coordination position. Four final products were able to obtain in pure form containing one coumarin and one phosphane ligand in the case of PTA (1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane) and PPh3 (triphenylphosphine); one coumarin and two gold(I)-phosphane groups in the case of phosphane=DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) and two coumarin and two gold(I) atoms in the case of phosphane=DPEphos (bis[(2-diphenylphosphino)phenyl]ether), when it was used a diphosphane. Other diphosphane ligands used were not able to give the desired products in pure form. The luminescent properties of the compounds are governed by the fluorescence of the coumarin moiety in all compounds both for measurements carried out in solution and also immobilized in PMMA organic matrix. Phosphorescence emission can be detected in all cases at 77 K both for the uncoordinated coumarin ligand and the gold(I) derivatives, being more favoured in the presence of the gold(I) heavy atom. The compounds have been used as photosensitizers to generate 1 O2 with moderate quantum yields values.
Collapse
Affiliation(s)
- Carlota Sobrerroca
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Inmaculada Angurell
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Araceli de Aquino
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Guillermo Romo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Camille Jubert
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
42
|
Makino Y, Yoshida M, Hayashi S, Sasaki T, Takamizawa S, Kobayashi A, Kato M. Elastic and bright assembly-induced luminescent crystals of platinum(II) complexes with near-unity emission quantum yield. Dalton Trans 2023. [PMID: 36847788 DOI: 10.1039/d3dt00192j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Molecular crystals of Pt(II) complexes with metallophilic interactions can provide bright assembly-induced luminescence with colour tunability. However, the brittleness of many of these crystals makes their application in flexible optical materials difficult. Herein, we have achieved the elastic deformation of crystals of polyhalogenated Pt(II) complexes exhibiting bright assembly-induced luminescence. A crystal of [Pt(bpic)(dFppy)] (Hbpic = 5-bromopicolinic acid, HdFppy = 2-(2,4-difluorophenyl)pyridine) and a co-crystal of [Pt(bpic)(dFppy)] and [Pt(bpic)(ppy)] (Hppy = 2-phenylpyridine) were found to exhibit significant elastic deformation due to their highly anisotropic interaction topologies. While the crystal of [Pt(bpic)(dFppy)] exhibited monomer-based ligand-centred 3ππ* emission with an emission quantum yield of 0.40, the co-crystal exhibited bright, triplet metal-metal-to-ligand charge transfer (3MMLCT) emission owing to Pt⋯Pt interactions, thereby achieving a significantly higher emission quantum yield of 0.94.
Collapse
Affiliation(s)
- Yusuke Makino
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Shotaro Hayashi
- School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Toshiyuki Sasaki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
43
|
Prakasham AP, Patil SK, Nettem C, Dey S, Rajaraman G, Ghosh P. Discrete Singular Metallophilic Interaction in Stable Large 12-Membered Binuclear Silver and Gold Metallamacrocycles of Amido-Functionalized Imidazole and 1,2,4-Triazole-Derived N-Heterocyclic Carbenes. ACS OMEGA 2023; 8:6439-6454. [PMID: 36844527 PMCID: PMC9947987 DOI: 10.1021/acsomega.2c06729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metallophilic interactions were observed in four pairs of 12-membered metallamacrocyclic silver and gold complexes of imidazole-derived N-heterocyclic carbenes (NHCs), [1-(R1)-3-N-(2,6-di-(R2)-phenylacetamido)-imidazol-2-ylidene]2M2 [R1 = p-MeC6H4, R2 = Me, M = Ag (1b) and Au (1c); R1 = Me, R2 = i-Pr, M = Ag (2b) and Au (2c); R1 = Et, R2 = i-Pr, M = Ag (3b) and Au (3c)], and a 1,2,4-triazole-derived N-heterocyclic carbene (NHC), [1-(i-Pr)-4-N-(2,6-di-(i-Pr)-phenylacetamido)-1,2,4-triazol-2-ylidene]2M2 [M = Ag (4b) and Au (4c)]. The X-ray diffraction, photoluminescence, and computational studies indicate the presence of metallophilic interactions in these complexes, which are significantly influenced by the sterics and the electronics of the N-amido substituents of the NHC ligands. The argentophilic interaction in the silver 1b-4b complexes was stronger than the aurophilic interaction in the gold 1c-4c complexes, with the metallophilic interaction decreasing in the order 4b > 1b > 1c > 4c > 3b > 3c > 2b > 2c. The 1b-4b complexes were synthesized from the corresponding amido-functionalized imidazolium chloride 1a-3a and the 1,2,4-triazolium chloride 4a salts upon treatment with Ag2O. The reaction of 1b-4b complexes with (Me2S)AuCl gave the gold 1c-4c complexes.
Collapse
|
44
|
Uhlmann C, Feuerstein TJ, Gamer MT, Roesky PW. Coinage Metal Bis(amidinate) Complexes as Building Blocks for Self-Assembled One-Dimensional Coordination Polymers. Chemistry 2023; 29:e202300289. [PMID: 36762591 DOI: 10.1002/chem.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The pyridyl functionalized amidinate [{PyC≡CC(NDipp)2 }Li(thf)2 ]n was used to synthesize a series of bis-amidinate complexes [{PyC≡CC(NDipp)2 }2 M2 ] (M=Cu, Ag, Au) with fully supported metallophilic interactions. These metalloligands were then used as building blocks for the synthesis of one-dimensional heterobimetallic coordination polymers using Zn(hfac)2 (hfac=hexaflouroacetylacetonate) for self-assembly. Interestingly, the three coordination polymers [{PyC≡CC(NDipp)2 }2 M2 ][Zn(hfac)2 ] (M=Cu, Ag, Au), exhibit a zig zag shape in the solid state. To achieve linear coordination geometry other connectors such as M'(acac) (M'=Ni, Co) (acac=acetylacetonate) were investigated. The thus obtained compounds [{PyC≡CC(NDipp)2 }2 Cu2 ][M'(acac)2 ] (M'=Ni, Co) are indeed linear heterobimetallic coordination polymers featuring a metalloligand backbone with fully supported metallophilic interactions.
Collapse
Affiliation(s)
- Cedric Uhlmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Thomas J Feuerstein
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
45
|
Lin Z, Zhang T, Fang C, Jin S, Xu C, Hu D, Zhu M. A bimetallic Ag 15Cu 12(S- c-C 6H 11) 18(CH 3COO) 3 nanocluster featuring an irregular Ag 12 kernel. Dalton Trans 2023; 52:971-976. [PMID: 36598410 DOI: 10.1039/d2dt03423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report the synthesis and atomic structure of a Ag15Cu12(SR)18(CH3COO)3·(C6H14) nanocluster (Ag15Cu12 for short, SR denotes cyclohexanethiol), confirmed by single-crystal X-ray diffraction (SC-XRD), electrospray ionization mass spectrometry (ESI-MS), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). X-ray crystallographic analysis revealed that Ag15Cu12 consisted of an irregular Ag12 core, stabilized by the Ag3Cu12(SR)18(CH3COO)3 shell. The shell consisted of two nearly planar Cu3(SR)6 moieties, three monomeric [-SR-Ag-SR-] units and three Cu2(CH3COO) staples. Furthermore, time-dependent density functional theory (TD-DFT) simulation was performed to interpret the optical absorption features of Ag15Cu12. Overall, this work will broaden and deepen the understanding of Ag-Cu alloy nanoclusters.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ting Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Cao Fang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Chang Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
46
|
Tanabe M, Nakamura Y, Niwa TA, Sakai M, Kaneko A, Toi H, Okuma K, Tsuchido Y, Koizumi TA, Osakada K, Ide T. Di- and Trinuclear Complexes of Pd(0) and Pt(0) with Bridging Silylene Ligands: Structures with a Coordinatively Unsaturated Metal Center and Their Reactions with Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makoto Tanabe
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Integrated Center for Science and Humanities, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| | - Yu Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Taka-aki Niwa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaru Sakai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Akira Kaneko
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyuki Toi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazuki Okuma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjukuku, Tokyo 162-8601, Japan
| | - Take-aki Koizumi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Advanced Instrumental Analysis Center, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tomohito Ide
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0097, Japan
| |
Collapse
|
47
|
Mercurophilic Interactions in Heterometallic Ru-Hg carbonyl clusters. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Kong YJ, Hu JH, Dong XY, Si Y, Wang ZY, Luo XM, Li HR, Chen Z, Zang SQ, Mak TCW. Achiral-Core-Metal Change in Isomorphic Enantiomeric Ag 12Ag 32 and Au 12Ag 32 Clusters Triggers Circularly Polarized Phosphorescence. J Am Chem Soc 2022; 144:19739-19747. [DOI: 10.1021/jacs.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Jin Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hua Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Ren Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C. W. Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
49
|
Khairbek AA, Badawi MAAH. Mechanism of Ag(I)-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Ward JS, Martõnova J, Wilson LME, Kramer E, Aav R, Rissanen K. Carbonyl hypoiodites from pivalic and trimesic acid and their silver(I) intermediates. Dalton Trans 2022; 51:14646-14653. [PMID: 36093683 DOI: 10.1039/d2dt01988d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first tris(O-I-N) carbonyl hypoiodites have been synthesised based on trimesic acid and pyridine or 4-methylpyridine, with their structures definitively confirmed by single crystal X-ray diffraction (SCXRD). The more soluble carbonyl hypoiodites based on pivalic acid have also been studied via NMR, SCXRD, and computational analyses, enabling the study of the direct silver(I) precursor and intermediates of the resulting carbonyl hypoiodites generated using a range of substituted pyridines.
Collapse
Affiliation(s)
- Jas S Ward
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| | - Jevgenija Martõnova
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Laura M E Wilson
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| | - Eric Kramer
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| | - Riina Aav
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| |
Collapse
|