1
|
Abo-Elfadl MT, Radacki K, Shehab OR, Mostafa GAE, Ali EA, Mansour AM. Insights into the cytotoxicity of photoactivatable Ru(II) carbonyl complexes towards human liver carcinoma cells. Bioorg Chem 2025; 157:108213. [PMID: 39919327 DOI: 10.1016/j.bioorg.2025.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
Metal carbonyl complexes have recently been extensively studied as carbon monoxide releasing molecules (CORMs) with the potential to positively affect the biological targets by transferring trace amounts of CO. CORMs have advantageous anti-inflammatory, anti-coagulative, anti-apoptotic, and anti-proliferative properties. In this contribution, three photoactivatable ruthenium(II) carbon monoxide releasing molecules of the general formula [RuCl2(CO)2LR] (LR = (2-phenyliminomethyl)quinoline derivative), R = OH, OCH3, and Cl) were synthesized and structurally characterized. Their aerated solutions in DMSO or DMSO-water mixture were stable under the dark conditions. A clear isosbestic point was observed upon the illumination of the complexes at 468 nm due to the release of CO. The position of the isosbestic point in the two media differs, indicating the presence of two distinct forms of the CO depleted species (iCORM). Under the dark conditions, the three complexes exhibited no cytotoxicity against human epithelial-like hepatocellular carcinoma (HepG2) cells. After being exposed to light, the complex, decorated with Cl, demonstrated weak potency. The acquired photocytotoxicity is most likely caused by iCORM, particularly as the cytotoxicity varies according to the diluent used to produce it. Under the dark conditions, the images of fluorescence microscopy showed that the complexes were visible outside the cells. However, the complexes were clearly able to enter the cytoplasmic membrane and maintain their autofluorescence when they were illuminated while the malignant cells were present.
Collapse
Affiliation(s)
- Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt; Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
2
|
Berrino E, Guglielmi P, Carta F, Carradori S, Campestre C, Angeli A, Arrighi F, Pontecorvi V, Chimenti P, Secci D, Supuran CT, Gallorini M. In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H 2O 2-Stimulated Human Achilles Tendon-Derived Cell Model. Molecules 2025; 30:593. [PMID: 39942697 PMCID: PMC11819963 DOI: 10.3390/molecules30030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Tendinopathy is often described as a complex and multifactorial condition which affects tendons. Tendon disorders are marked by a reduction in mechanical function, accompanied by pain and swelling. At the molecular level, tendinopathy leads to oxidative stress-driven inflammation, increased cell death, disruption of extracellular matrix balance, abnormal growth of capillaries and arteries, and degeneration of collagen formation. Here, we report an innovative approach to modulate oxidative stress during tendinopathy based on sulfonamide-based Carbonic Anhydrase Inhibitors-carbon monoxide releasing molecules (CAI-CORMs) hybrids endowed with dual carbon monoxide (CO) releasing activity and carbonic anhydrase (CA) inhibition. The synthesised compounds have been studied in a model of human Achilles tendon-derived cells stimulated by H2O2. Among the library, compound 1c and, to a greater extent, compound 1a, showed to be extremely effective in terms of restoration of cell metabolic activity and cell proliferation due to their capacity to release CO and inhibit the CA isoforms involved in inflammatory processes in the nanomolar range. Moreover, 1a can restore collagen type 1 secretion under pro-oxidant conditions.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 44, 00165 Rome, Italy;
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Francesca Arrighi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Virginia Pontecorvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| |
Collapse
|
3
|
Monteiro RP, Calhau IB, Gomes AC, Lopes AD, Da Silva JP, Gonçalves IS, Pillinger M. β-Cyclodextrin and cucurbit[7]uril as protective encapsulation agents of the CO-releasing molecule [CpMo(CO) 3Me]. Dalton Trans 2024; 54:166-180. [PMID: 39526807 DOI: 10.1039/d4dt01863j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The CO releasing ability of the complex [CpMo(CO)3Me] (1) (Cp = η5-C5H5) has been assessed using a deoxymyoglobin-carbonmonoxymyoglobin assay. In the dark, CO release was shown to be promoted by the reducing agent sodium dithionite in a concentration-dependent manner. At lower dithionite concentrations, where dithionite-induced CO release was minimised, irradiation at 365 nm with a low-power UV lamp resulted in a strongly enhanced release of CO (half-life (t1/2) = 6.3 min), thus establishing complex 1 as a photochemically activated CO-releasing molecule. To modify the CO release behaviour of the tricarbonyl complex, the possibility of obtaining inclusion complexes between 1 and β-cyclodextrin (βCD) or cucurbit[7]uril (CB7) by liquid-liquid interfacial precipitation (1@βCD(IP)), liquid antisolvent precipitation (1@CB7), and mechanochemical ball-milling (1@βCD(BM)) was evaluated. All these methods led to the isolation of a true inclusion compound (albeit mixed with nonincluded 1 for 1@βCD(BM)), as evidenced by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} magic angle spinning (MAS) NMR. PXRD showed that 1@βCD(IP) was microcrystalline with a channel-type crystal packing structure. High resolution mass spectrometry studies revealed the formation of aqueous phase 1 : 1 complexes between 1 and CB7. For 1@βCD(IP) and 1@CB7, the protective effects of the hosts led to a decrease in the CO release rates with respect to nonincluded 1. βCD had the strongest effect, with a ca. 10-fold increase in t1/4 for dithionite-induced CO release, and a ca. 2-fold increase in t1/2 for photoinduced CO release.
Collapse
Affiliation(s)
- Rodrigo P Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - André D Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - José P Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Mansour AM, Khaled RM, Shehab OR. A comprehensive survey of Mn(I) carbonyls as CO-releasing molecules reported over the last two decades. Dalton Trans 2024; 53:19022-19057. [PMID: 39543968 DOI: 10.1039/d4dt02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the last two decades, manganese(I) carbonyl complexes have been widely investigated as carbon monoxide releasing molecules (CORMs) to transfer small quantities of CO to biological targets to have beneficial impacts such as preventing ischemia reperfusion injury and reducing organ transplant rejection. Furthermore, these complexes exhibit beneficial anti-coagulative, anti-apoptotic, anti-inflammatory, and anti-proliferative properties. Owing to their highly controlled substitution chemistry and oxidative durability, Mn(I) carbonyl moieties were combined with a wide range of auxiliary ligands, including biomolecules. This review focused on tri- and tetracarbonyl Mn(I) complexes that were exposed to light, changed the redox status, or underwent thermal activation to release carbon monoxide. Kinetic parameters, stability in the dark, number of CO release equivalents, CO detection tools, and the nature of solvents used in the studies are reported and tabulated. An overview of all the previously published Mn(I) CORMs is specifically provided to define the method of action of these promising biologically active compounds and discuss their possible therapeutic applications in relation to their CO-releasing and biocompatibility characteristics.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
5
|
Khaled RM, Hegazy YS, Arafa MM, Sadek MS, Radacki K, A E Mostafa G, Ali EA, Shehab OR, Mansour AM. Insights into the photoactivatable CO releasing properties of dicarbonyl Ru(II) complex with 8-amino quinoline ligand: Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124644. [PMID: 38901235 DOI: 10.1016/j.saa.2024.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Reaction between the polymeric [RuCl2(CO)2]n and the N,N-bidentate ligand, 8-amino-quinoline (Quin), in methanol, afforded the photoactivated CO releasing molecule with the formula of trans-(Cl,Cl)-[RuCl2(CO)2Quin]. In the presence of biomolecules or in solvents with varying polarity and coordinating abilities, the solvatochromic characteristics and dark stability were investigated. A new board band emerged in the visible spectrum during the illumination, and its position varies according to the type of solvent used, indicating the role of the solvent in controlling the nature of the CO-depleted species. Spectral methods were used in combination with density functional theory simulations to get insight into the local minimum structure and the electronic properties of the Ru(II) complex. The results of the myoglobin assay showed that within the first two hours of illumination, one of the two CO molecules was released. The cytotoxic properties of the Ru(II)-based complex were investigated against normal mice bone marrow stromal cells and malignant human acute monocytic leukaemia cells.
Collapse
Affiliation(s)
- Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Yara S Hegazy
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Mohamed M Arafa
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Muhammed S Sadek
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Krzysztof Radacki
- institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
6
|
Pan C, Zuo C, Chen J, Zhang Q, Deng L, Liu Y, Ding P. Constructing sodium alginate/carboxymethyl chitosan coating capable of catalytically releasing NO or CO for improving the hemocompatibility and endothelialization of magnesium alloys. Int J Biol Macromol 2024; 279:135166. [PMID: 39214216 DOI: 10.1016/j.ijbiomac.2024.135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Although significant progress in developing biodegradable magnesium alloy materials in cardiovascular stents has been achieved recently, they still face challenges such as rapid in vivo corrosion degradation, inferior blood compatibility, and limited re-endothelialization after the implantation. Hydrogel coating that can catalyze the liberation of gas signal molecules offers a good solution to alleviate the corrosion rate and enhance the biocompatibility of magnesium and its alloys. In this study, based on alkaline heat treatment and construction of polydopamine coating on the surface of magnesium alloy, sodium alginate/carboxymethyl chitosan (SA/CMCS) gel was simultaneously covalently grafted onto the surface to build a natural polymer hydrogel coating, and selenocystamine (SeCA) and CO release molecules (CORM-401) were respectively immobilized on the surface of the hydrogel coating to ameliorate the anticoagulant performance and accelerate endothelial cells (ECs) growth by catalyzing the release of endogenous gas signal molecules (NO or CO). The findings verified that the as-prepared hydrogel coating can catalyze the liberation of CO or NO and significantly improve the corrosion resistance of magnesium alloy. At the same time, owing to the excellent hydrophilicity of the hydrogel coating, the good anticoagulant property of sodium alginate, and the ability of CMCS to promote the ECs growth, the modified magnesium alloy could significantly improve the albumin adsorption while preventing the adsorption of fibrinogen, hence significantly augmenting the anticoagulant properties and promoting the ECs growth. Under the catalytic release of NO or CO, the released gas molecules further enhanced hemocompatibility and promoted endothelial cell (EC) growth and the expression of vascular endothelial growth factor (VEGF) and NO of ECs. Therefore, the bioactive coatings that can catalyze the release of NO or CO have potential applications in constructing surface bioactive coatings for magnesium alloy materials used for intravascular stents.
Collapse
Affiliation(s)
- Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Changpeng Zuo
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linghong Deng
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Yang Liu
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Pingyun Ding
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Yu W, Fu J, Jia F, Jin Q, Wang Y, Ji J. Removable Photocatalysis Microneedle Reactor for Carbon Monoxide Delivery to Enhance Chemosensitization. NANO LETTERS 2024; 24:10024-10031. [PMID: 39115188 DOI: 10.1021/acs.nanolett.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carbon monoxide (CO) has emerged as a promising therapeutic agent, yet ensuring safe and precise CO delivery remains challenging. Here, we report a removable hydrogel-forming microneedle (MN) reactor for CO delivery via photocatalysis, with an emphasis on chemosensitization. Upon application, body fluids absorbed by the MNs dissolve the effervescent agents, leading to the generation of carbon dioxide (CO2) and triggering the release of the chemotherapeutics cisplatin. Meanwhile, the photocatalysts (PCs) trapped within MNs convert CO2 to CO under 660 nm light irradiation. These PCs can be removed by hydrogel-forming MNs, thereby mitigating potential biological risks associated with residual PCs. Both in vitro and in vivo experiments showed that MN-mediated CO delivery significantly improved tumor sensitivity to cisplatin by suppressing DNA repair, using an A375/CDDP melanoma model. This removable photocatalysis MN reactor offers safe and precise local delivery of CO, potentially creating new opportunities for CO or its combination therapies.
Collapse
Affiliation(s)
- Weijiang Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Junzhe Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| |
Collapse
|
8
|
Calhau IB, Gomes AC, Mendes RF, Almeida Paz FA, Gonçalves IS, Pillinger M. An organic-organometallic CO-releasing material comprising 4,4'-bipyridine and molybdenum subcarbonyl building blocks. Dalton Trans 2024; 53:12783-12796. [PMID: 39023244 DOI: 10.1039/d4dt01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Over the past two decades, following the discovery of the important biological roles of carbon monoxide (CO), metal carbonyl complexes have been intensively studied as CO-releasing molecules (CORMs) for therapeutic applications. To improve the properties of "bare" low molecular weight CORMs, attention has been drawn to conjugating CORMs with macromolecular and inorganic scaffolds to produce CO-releasing materials (CORMAs) capable of storing and delivering large payloads of the gasotransmitter. A significant obstacle is to obtain CORMAs that retain the beneficial features of the parent CORMs. In the present work, a crystalline metal-organic framework (MOF) formulated as Mo(CO)3(4,4'-bipyridine)3/2 (Mobpy), with a structure based on Mo(CO)3 metallic nodes and bipyridine linkers, has been prepared in near quantitative yield by a straightforward reflux method, and found to exhibit CO-release properties that mimic those typically observed for molybdenum carbonyl CORMs. Mobpy was characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR, FT-Raman and diffuse reflectance (DR) UV-vis spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR. The release of CO from Mobpy was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mobpy liberates CO upon contact with a physiological buffer in the dark, leading to a maximum released amount of 1.3-1.5 mmol g-1, after 1.5 h at 37 °C, with half-lives of 0.5-1.0 h (time to transfer 0.5 equiv. of CO to Mb). In the solid-state and under open air, Mobpy undergoes complete decarbonylation over a period of 42 days, corresponding to a theoretical CO-release of 7.25 mmol g-1.
Collapse
Affiliation(s)
- Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
10
|
Pan C, Xu R, Chen J, Zhang Q, Deng L, Hong Q. A CO-releasing coating based on carboxymethyl chitosan-functionalized graphene oxide for improving the anticorrosion and biocompatibility of magnesium alloy stent materials. Int J Biol Macromol 2024; 271:132487. [PMID: 38768910 DOI: 10.1016/j.ijbiomac.2024.132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Due to its biofunctions similar to NO, the CO gas signaling molecule has gradually shown great potential in cardiovascular biomaterials for regulating the in vivo performances after the implantation and has received increasing attention. To construct a bioactive surface with CO-releasing properties on the surface of magnesium-based alloy to augment the anticorrosion and biocompatibility, graphene oxide (GO) was firstly modified using carboxymethyl chitosan (CS), and then CO-releasing molecules (CORM401) were introduced to synthesize a novel biocompatible nanomaterial (GOCS-CO) that can release CO in the physiological environments. The GOCS-CO was further immobilized on the magnesium alloy surface modified by polydopamine coating with Zn2+ (PDA/Zn) to create a bioactive surface capable of releasing CO in the physiological environment. The outcomes showed that the CO-releasing coating can not only significantly enhance the anticorrosion and abate the corrosion degradation rate of the magnesium alloy in a simulated physiological environment, but also endow it with good hydrophilicity and a certain ability to adsorb albumin selectively. Owing to the significant enhancement of anticorrosion and hydrophilicity, coupled with the bioactivity of GOCS, the modified sample not only showed excellent ability to prevent platelet adhesion and activation and reduce hemolysis rate but also can promote endothelial cell (EC) adhesion, proliferation as well as the expression of nitric oxide (NO) and vascular endothelial growth factor (VEGF). In the case of CO release, the hemocompatibility and EC growth behaviors were further significantly improved, suggesting that CO molecules released from the surface can significantly improve the hemocompatibility and EC growth. Consequently, the present study provides a novel surface modification method that can simultaneously augment the anticorrosion and biocompatibility of magnesium-based alloys, which will strongly promote the research and application of CO-releasing bioactive coatings for surface functionalization of cardiovascular biomaterials and devices.
Collapse
Affiliation(s)
- Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linhong Deng
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
11
|
Palominos F, Mella P, Guajardo K, Günther G, Vega A, Pizarro N. Photoinduced behaviour of N,N-bidentate manganese(I) and rhenium(I) tricarbonyl complexes for singlet oxygen generation and CO release. Photochem Photobiol Sci 2024; 23:119-132. [PMID: 38082202 DOI: 10.1007/s43630-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The combined action of singlet oxygen (1O2) and photoinduced carbon monoxide (CO) released by tricarbonyl metal complexes is a promising synergic treatment against multi-resistant bacterial infections. In this work, we explore the use of a polydentate ligand (bpm = 2,2-bipyrimidine) that offers the opportunity to accommodate two metal centers exhibiting both singlet oxygen generation and carbon monoxide releasing properties in a single molecule. A series of monometallic ([(bpm)M(CO)3Br]; M = Mn, Re) and homo or hetero bimetallic ([Br(CO)3M(bpm)M'(CO)3Br]; M = Mn, Re) compounds were synthesized in moderate to good yields by modulating the metal precursor or the stoichiometry, also the syn:anti isomers ratio for the bimetallic complexes was dependent on the experimental conditions used. DFT modelling shows the anti-isomer is more stable than the syn-isomer by less than 8 kJ mol-1, which is consistent with those experimentally observed in terms of majority product and the effect of experimental conditions over the anti-syn ratio. The HOMO-LUMO gap is lower for the mono and bimetallic rhenium(I) compounds compared to the values for the manganese(I) analogues, while the heterometallic complex shows intermediate values for the anti-isomer. The photophysical characterization shows typical absorption and emission bands with MLCT character. In addition, CO-release and 1O2 generation quantum yields were evaluated for the monometallic Mnbpm and Rebpm homologues and compared with values obtained for the homo- and hetero-bimetallic complexes. Interestingly the replacement of a Mn(CO)3Br moiety in MnbpmMn by a Re(CO)3Br one makes the heterometallic MnbpmRe molecule a molecular oxygen sensitizer and partially retaining its carbon monoxide releasing ability.
Collapse
Affiliation(s)
- Franco Palominos
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Programa de Doctorado en Fisicoquímica Molecular, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Mella
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
| | - Kevin Guajardo
- Facultad de Ciencias de la Vida, Carrera de Ingeniería en Biotecnología, Universidad Andres Bello, Viña del Mar, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile.
| |
Collapse
|
12
|
Chuang WH, Chou YT, Chen YH, Kuo TH, Liaw WF, Lu TT, Kao CF, Wang YM. Neuroprotective Effect of NO-Delivery Dinitrosyl Iron Complexes (DNICs) on Amyloid Pathology in the Alzheimer's Disease Cell Model. ACS Chem Neurosci 2023; 14:2922-2934. [PMID: 37533298 DOI: 10.1021/acschemneuro.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid1-42 (Aβ1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aβ1-42. This study found that DNIC-COOH protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ1-42 degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.
Collapse
Affiliation(s)
- Wen-Han Chuang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Han Kuo
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Department of Dentistry, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Mansour AM, Khaled RM, Radacki K, Younes Z, Gamal M, Guirguis B, Mostafa GAE, Ali EA, Shehab OR. In vitro cytotoxicity of Mn(I) and Ru(II) carbonyls with a diphenyl pyridyl phosphine coligand towards leukaemia. Dalton Trans 2023. [PMID: 37466155 DOI: 10.1039/d3dt01798b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Human acute monocytic leukaemia cells were tested under both dark and light conditions for their susceptibility to Mn(I) and Ru(II) carbonyl complexes with a diphenyl pyridyl phosphine coligand. The Ru(II) complex (IC50 = 7.13 ± 0.8 μM) displayed higher outstanding potency against leukaemia than the Mn(I) analogue (54.58 ± 4.1 μM) in the dark and both complexes were completely harmless to healthy mouse bone marrow cells.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Zeina Younes
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Mariam Gamal
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Beatrice Guirguis
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
14
|
Ma W, Liu X, Yang M, Hong Q, Meng L, Zhang Q, Chen J, Pan C. Fabrication of CO-releasing surface to enhance the blood compatibility and endothelialization of TiO 2 nanotubes on titanium surface. BIOMATERIALS ADVANCES 2023; 149:213393. [PMID: 36966654 DOI: 10.1016/j.bioadv.2023.213393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Although the construction of nanotube arrays with the micro-nano structures on the titanium surfaces has demonstrated a great promise in the field of blood-contacting materials and devices, the limited surface hemocompatibility and delayed endothelial healing should be further improved. Carbon monoxide (CO) gas signaling molecule within the physiological concentrations has excellent anticoagulation and the ability to promote endothelial growth, exhibiting the great potential for the blood-contact biomaterials, especially the cardiovascular devices. In this study, the regular titanium dioxide nanotube arrays were firstly prepared in situ on the titanium surface by anodic oxidation, followed by the immobilization of the complex of sodium alginate/carboxymethyl chitosan (SA/CS) on the self-assembled modified nanotube surface, the CO-releasing molecule (CORM-401) was finally grafted onto the surface to create a CO-releasing bioactive surface to enhance the biocompatibility. The results of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that the CO-releasing molecules were successfully immobilized on the surface. The modified nanotube arrays not only exhibited excellent hydrophilicity but also could slowly release CO gas molecules, and the amount of CO release increased when cysteine was added. Furthermore, the nanotube array can promote albumin adsorption while inhibit fibrinogen adsorption to some extent, demonstrating its selective albumin adsorption; although this effect was somewhat reduced by the introduction of CORM-401, it can be significantly enhanced by the catalytic release of CO. The results of hemocompatibility and endothelial cell growth behaviors showed that, as compared with the CORM-401 modified sample, although the SA/CS-modified sample had better biocompatibility, in the case of cysteine-catalyzed CO release, the released CO could not only reduce the platelet adhesion and activation as well as hemolysis rate, but also promote endothelial cell adhesion and proliferation as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression. As a result, the research of the present study demonstrated that the releasing CO from TiO2 nanotubes can simultaneously enhance the surface hemocompatibility and endothelialization, which could open a new route to enhance the biocompatibility of the blood-contacting materials and devices, such as the artificial heart valve and cardiovascular stents.
Collapse
Affiliation(s)
- Wenfu Ma
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xuhui Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
15
|
Paqui MSS, Glitz VA, Durigon DC, Amorim AL, Caramori GF, Parreira RLT, Bortoluzzi AJ, Xavier FR, Peralta RA. Spectroscopical and Molecular Studies of Four Manganese(I) PhotoCORMs with Bioinspired Ligands Containing Non-Coordinated Phenol Groups. Molecules 2023; 28:molecules28083439. [PMID: 37110673 PMCID: PMC10144837 DOI: 10.3390/molecules28083439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Carbonyl compounds are widely explored in medicinal inorganic chemistry and have drawn attention due to their signaling functions in homeostasis. Carbon-monoxide-releasing molecules (CORMs) were developed with the purpose of keeping the CO inactive until its release in the intracellular environment, considering its biological relevance. However, for therapeutic applications, the mechanisms of photorelease and which electronic and structural variations influence its rates must be fully understood. In this work, four ligands containing a pyridine, a secondary amine, and a phenolic group with different substituents were used to prepare new Mn(I) carbonyl compounds. Structural and physicochemical characterization of these complexes was carried out and confirmed the proposed structures. X-ray diffractometry structures obtained for the four organometallic compounds revealed that the substituents in the phenolic ring promote only negligible distortions in their geometry. Furthermore, UV-Vis and IR kinetics showed the direct dependence of the electron-withdrawing or donating ability of the substituent group, indicating an influence of the phenol ring on the CO release mechanism. These differences in properties were also supported by theoretical studies at the DFT, TD-DFT, and bonding situation analyses (EDA-NOCV). Two methods were used to determine the CO release constants (kCO,old and kCO,new), where Mn-HbpaBr (1) had the greatest kCO by both methods (Kco,old = 2.36 × 10-3 s-1 and kCO,new = 2.37 × 10-3 s-1). Carbon monoxide release was also evaluated using the myoglobin assay, indicating the release of 1.248 to 1.827 carbon monoxides upon light irradiation.
Collapse
Affiliation(s)
- Matheus S S Paqui
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Vinícius A Glitz
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Daniele C Durigon
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - André L Amorim
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca 14404-600, SP, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Fernando R Xavier
- Departamento de Quimica CCT, Universidade do Estado de Santa Catarina (UDESC), Campus Joinville, Joinville 89219-710, SC, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
16
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. Tricarbonyl-Pyrazine-Molybdenum(0) Metal-Organic Frameworks for the Storage and Delivery of Biologically Active Carbon Monoxide. ACS Biomater Sci Eng 2023; 9:1909-1918. [PMID: 36996427 PMCID: PMC10091354 DOI: 10.1021/acsbiomaterials.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Hu M, Zhou H, Wang Z, Du Y, Wang Y, Eerdun C, Zhu B. Synthesis, structure, CO releasing, and biological activities of new 1-D chain Mn(I)/Mn(II) visible light activated CO-releasing molecules (CORMs). J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2165070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mixia Hu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Haofei Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Zhexu Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Yanqing Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuewu Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chaolu Eerdun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baohua Zhu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| |
Collapse
|
18
|
Costa AL, Monteiro RP, Nunes Barradas PD, Ferreira SCR, Cunha C, Gomes AC, Gonçalves IS, Seixas de Melo JS, Pillinger M. Enhanced thermal and photo-stability of a para-substituted dicumyl ketone intercalated in a layered double hydroxide. Front Chem 2022; 10:1004586. [DOI: 10.3389/fchem.2022.1004586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
A ketodiacid, 4,4′-dicarboxylate-dicumyl ketone (3), has been intercalated into a Zn, Al layered double hydroxide (LDH) by a coprecipitation synthesis strategy. The structure and chemical composition of the resultant hybrid material (LDH-KDA3) were characterized by powder X-ray diffraction (PXRD), FT-IR, FT-Raman and solid-state 13C{1H} NMR spectroscopies, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and elemental analysis (CHN). PXRD showed that the dicarboxylate guest molecules assembled into a monolayer to give a basal spacing of 18.0 Å. TGA revealed that the organic guest starts to decompose at a significantly higher temperature (ca. 330°C) than that determined for the free ketodiacid (ca. 230°C). Photochemical experiments were performed to probe the photoreactivity of the ketoacid in the crystalline state, in solution, and as a guest embedded within the photochemically-inert LDH host. Irradiation of the bulk crystalline ketoacid results in photodecarbonylation and the exclusive formation of the radical-radical combination product. Solution studies employing the standard myoglobin (Mb) assay for quantification of released CO showed that the ketoacid behaved as a photoactivatable CO-releasing molecule for transfer of CO to heme proteins, although the photoreactivity was low. No photoinduced release of CO was found for the LDH system, indicating that molecular confinement enhanced the photo-stability of the hexasubstituted ketone. To better understand the behavior of 3 under irradiation, a more comprehensive study, involving excitation of this compound in DMSO-d6 followed by 1H NMR, UV-Vis and fluorescence spectroscopy, was undertaken and further rationalized with the help of time-dependent density functional theory (TDDFT) electronic quantum calculations. The photophysical study showed the formation of a less emissive compound (or compounds). New signals in the 1H NMR spectra were attributed to photoproducts obtained via Norrish type I α-cleavage decarbonylation and Norrish type II (followed by CH3 migration) pathways. TDDFT calculations predicted that the formation of a keto-enol system (via a CH3 migration step in the type II pathway) was highly favorable and consistent with the observed spectral data.
Collapse
|
19
|
Photoactivatable properties of water-soluble fac-Mn(CO)3 bearing N∧O bidentate pyridine ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Habashy DA, Khaled RM, Ahmed AY, Radacki K, Ahmed SK, Tharwat EK, Magdy H, Zeinhom A, Mansour AM. Cytotoxicity of fac-Mn(CO) 3 complexes with a bidentate quinoline ligand towards triple negative breast cancer. Dalton Trans 2022; 51:14041-14048. [PMID: 36106589 DOI: 10.1039/d2dt01938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytotoxicity of two tricarbonyl Mn(I) complexes of the general formula fac-[MnBr(CO)3L] (L = quinoline-2-carboxaldehyde (A) and 8-amino quinoline (B)) towards triple negative breast cancer (MDA-MB-231) was reported. Complexes A and B released CO when exposed to 468 nm light. Compound B has a dose-dependent cytotoxicity, with half maximal inhibitory concentration values of 19.62 μM and 11.43 μM before and after illumination, respectively. Co-treatment of MDA-MB-231 with paclitaxel (30 nM) and complex B (10 μM) resulted in a 50% reduction in cell viability.
Collapse
Affiliation(s)
- Danira A Habashy
- Department of Pharmacology, Toxicology and Clinical Pharmacy, German University in Cairo, New Cairo, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Amr Y Ahmed
- Department of Pharmacology, Toxicology and Clinical Pharmacy, German University in Cairo, New Cairo, Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Salma K Ahmed
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Engy K Tharwat
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Hana Magdy
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Alaa Zeinhom
- Department of Biotechnology, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
21
|
Lee SX, Tan CH, Mah WL, Wong RCS, Manan NSA, Cheow YL, Sim KS, Tan KW. Group 6 photo-activable carbon monoxide-releasing molecules (PhotoCORMs) with 1’10-phenanthroline based ligand as potential anti-proliferative and anti-microbial agents. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
23
|
Mansoldo FRP, Berrino E, Guglielmi P, Carradori S, Carta F, Secci D, Supuran CT, Vermelho AB. An innovative spectroscopic approach for qualitative and quantitative evaluation of Mb-CO from myoglobin carbonylation reaction through chemometrics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120602. [PMID: 34801390 DOI: 10.1016/j.saa.2021.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, an innovative approach using K-means and multivariate curve resolution-purity based algorithm (MCR-Purity) for the evaluation and quantification of carboxymyoglobin (Mb-CO) formation from Deoxy-Myoglobin (Deoxy-Mb) was presented. Through a multilevel multifactor experimental design, samples with different concentrations of Mb-CO were created. The UV-Vis spectra of these samples were submitted to K-means analysis, finding 3 clusters. The mean spectra of the clusters were extracted and it was possible to detect 2 totally differentiable groups through peaks 423 and 434 nm, which are wavelengths related to the Mb-CO and Deoxy-Mb components, respectively. The spectral data were subjected to MCR-Purity analysis. The MCR-Purity result successfully described the analyzed reaction, explaining more than 99.9% of the variance (R2) with a LOF of 1.43%. Then, a predictive model of MbCO was created through the linear relationship between MCR-Purity contributions and known concentrations of MbCO. The performance parameters of the created predictive model were R2CV = 0.98, RMSECV = 0.58 and RPDcv = 7.8 for the training set, and R2P = 0.98, RMSEP = 0.7 and RPDp = 6.8 for the test set. Thus, the predictive model presented an excellent performance considering that the Mb-CO variation is comprised between 0 and 21 µM. Therefore, these results demonstrate that the application of the proposed strategy to the analysis of spectral data presenting overlapping bands is feasible and robust.
Collapse
Affiliation(s)
- Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Emanuela Berrino
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Alane B Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Hau Gan C, Wai Tan K, Lee Ooi M, Wee Kent Liew J, Ling Ng Y, Ling Lau Y, Zhuang Ng Y, Hee Ng C, Hoe Tan C, C. S. Wong R. Synthesis, anticancer and antimalarial activities of organosulfur and organoselenium derivatives of cyclopentadienyliron dicarbonyl as photoCORMs. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Synthesis of phenanthroline-based ligand and its UV activable tetracarbonyl photoCORMs based on chromium, molybdenum, and tungsten as cytotoxic and antimicrobial agents. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Appetecchia F, Consalvi S, Berrino E, Gallorini M, Granese A, Campestre C, Carradori S, Biava M, Poce G. A Novel Class of Dual-Acting DCH-CORMs Counteracts Oxidative Stress-Induced Inflammation in Human Primary Tenocytes. Antioxidants (Basel) 2021; 10:antiox10111828. [PMID: 34829699 PMCID: PMC8614895 DOI: 10.3390/antiox10111828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon monoxide (CO) can prevent cell and tissue damage by restoring redox homeostasis and counteracting inflammation. CO-releasing molecules (CORMs) can release a controlled amount of CO to cells and are emerging as a safer therapeutic alternative to delivery of CO in vivo. Sustained oxidative stress and inflammation can cause chronic pain and disability in tendon-related diseases, whose therapeutic management is still a challenge. In this light, we developed three small subsets of 1,5-diarylpyrrole and pyrazole dicobalt(0)hexacarbonyl (DCH)-CORMs to assess their potential use in musculoskeletal diseases. A myoglobin-based spectrophotometric assay showed that these CORMs act as slow and efficient CO-releasers. Five selected compounds were then tested on human primary-derived tenocytes before and after hydrogen peroxide stimulation to assess their efficacy in restoring cell redox homeostasis and counteracting inflammation in terms of PGE2 secretion. The obtained results showed an improvement in tendon homeostasis and a cytoprotective effect, reflecting their activity as CO-releasers, and a reduction of PGE2 secretion. As these compounds contain structural fragments of COX-2 selective inhibitors, we hypothesized that such a composite mechanism of action results from the combination of CO-release and COX-2 inhibition and that these compounds might have a potential role as dual-acting therapeutic agents in tendon-derived diseases.
Collapse
Affiliation(s)
- Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Emanuela Berrino
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Arianna Granese
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| |
Collapse
|
28
|
Marchi RC, Aguiar I, Camilo MR, Braga AH, Do Nascimento ESP, Santana VT, Nascimento OR, Carlos RM. Photochemical Properties of a Mononuclear Mn(I) Triscarbonyl Complex in Water: An Insight into Different Oxidation States. ChemistrySelect 2021. [DOI: 10.1002/slct.202102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rafael C. Marchi
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Inara Aguiar
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Mariana R. Camilo
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Adriano H. Braga
- Chemical Engineering Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Eduardo S. P. Do Nascimento
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Vinicius T. Santana
- Physics Institute Universidade de São Paulo-EECC Av. Trabalhador São Carlense São Carlos-SP 13560-970 Brazil
| | - Otaciro R. Nascimento
- Physics Institute Universidade de São Paulo-EECC Av. Trabalhador São Carlense São Carlos-SP 13560-970 Brazil
| | - Rose M. Carlos
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| |
Collapse
|
29
|
Lee SX, Tan CH, Mah WL, Wong RCS, Cheow YL, Sim KS, Tan KW. Synthesis of group 6 (chromium, molybdenum, and tungsten) photoCORMs as potential antimicrobial and anticancer agents. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
31
|
Mbenza NM, Nasarudin N, Vadakkedath PG, Patel K, Ismail AZ, Hanif M, Wright LJ, Sarojini V, Hartinger CG, Leung IKH. Carbon Monoxide is an Inhibitor of HIF Prolyl Hydroxylase Domain 2. Chembiochem 2021; 22:2521-2525. [PMID: 34137488 DOI: 10.1002/cbic.202100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Nawal Nasarudin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Kamal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - A Z Ismail
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Department of Chemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Hanif
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - L James Wright
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
32
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112053. [PMID: 33947547 DOI: 10.1016/j.msec.2021.112053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Zhou Y, Chen Y, He C. Solid-phase synthesis of peptide Mn(i)-carbonyl bioconjugates and their CO release upon visible light activation. Dalton Trans 2021; 50:4231-4236. [PMID: 33687425 DOI: 10.1039/d1dt00395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A one-pot synthetic route has been developed for the assembly of peptide Mn(i)-carbonyl bioconjugates. It allows the installation of a variety of chelating agents at the late stage, and after just one purification step the TAT-MnCO complexes can be obtained. The resulting bioconjugates showed different and tunable CO releasing kinetics upon visible light activation.
Collapse
Affiliation(s)
- Yi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | |
Collapse
|
34
|
Toscani A, Hind C, Clifford M, Kim SH, Gucic A, Woolley C, Saeed N, Rahman KM, Sutton JM, Castagnolo D. Development of photoactivable phenanthroline-based manganese(I) CO-Releasing molecules (PhotoCORMs) active against ESKAPE bacteria and bacterial biofilms. Eur J Med Chem 2021; 213:113172. [PMID: 33516984 DOI: 10.1016/j.ejmech.2021.113172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The synthesis and biological evaluation of a series of phenanthroline-based visible-light-activated manganese(I) carbon-monoxide-releasing molecules (PhotoCORMs) against ESKAPE bacteria and bacterial biofilms is reported. Four carbonyl compounds of general formula fac-[Mn(N∧N)(CO)3(L)] have been synthesized and characterized. Despite being thermally stable in the absence of light, these PhotoCORMs readily release CO upon blue (435-450 nm) LED light irradiation as confirmed by spectrophotometric CO releasing experiments (Mb Assay). The antibacterial activity of the four PhotoCORMs has been investigated against a panel of ESKAPE bacteria. The compounds 1-3 were found to be effective antibacterials at low concentrations against multidrug-resistant Klebsiella pneumoniae and Acinetobacter baumannii when photoactivated with blue-light. In addition, the PhotoCORMs 1-2 were found to inhibit the formation of Klebsiella pneumoniae and Acinetobacter baumannii bacterial biofilms at low concentrations (MIC = 4-8 μg/mL), turning out to be promising candidates to combat antimicrobial resistance. The antibacterial and biofilm inhibitory effect of the PhotoCORMs is plausibly due to the release of CO as well as the formation of phenanthroline photo-by-products as revealed by spectroscopy and microbiology experiments.
Collapse
Affiliation(s)
- Anita Toscani
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Hind
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Melanie Clifford
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Seong-Heun Kim
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Antonia Gucic
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Woolley
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Naima Saeed
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - J Mark Sutton
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom.
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
35
|
Sakla R, Amilan Jose D. New fluorinated manganese carbonyl complexes for light controlled carbon monoxide (CO) release and the use of benchtop 19F-NMR spectroscopy. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Dual Carbonic Anhydrase IX/XII Inhibitors and Carbon Monoxide Releasing Molecules Modulate LPS-Mediated Inflammation in Mouse Macrophages. Antioxidants (Basel) 2021; 10:antiox10010056. [PMID: 33466457 PMCID: PMC7824903 DOI: 10.3390/antiox10010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Low concentrations of carbon monoxide (CO) were reported to exhibit anti-inflammatory effects when administered in cells by suitable chemotypes such as CO releasing molecules (CO-RMs). In addition, the pH-modulating abilities of specific carbonic anhydrase isoforms played a crucial role in different models of inflammation and neuropathic pain. Herein, we report a series of chemical hybrids consisting of a Carbonic Anhydrase (CA) inhibitor linked to a CO-RM tail (CAI/CO-RMs). All compounds and their precursors were first tested in vitro for their inhibition activity against the human CA I, II, IX, and XII isoforms as well their CO releasing properties, aiming at corroborating the data by means of molecular modelling techniques. Then, their impact on metabolic activity modulation of RAW 264.7 mouse macrophages for 24 and 48 h was assessed with or without lipopolysaccharide (LPS) stimulation. The compounds were shown to counteract the inflammatory stimulus as also indicated by the reduced tumor necrosis factor alpha (TNF-α) release after treatment. All the biological results were compared to those of N-acetylcysteine (NAC) as a reference antioxidant compound. Within the series, two CAI/CO-RM hybrids (1 and 2), bearing both the well-known scaffold able to inhibit CAs (acesulfame) and the cobalt-based CO releasing portion, induced a higher anti-inflammatory effect up to 48 h at concentrations lower than NAC.
Collapse
|
37
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
38
|
Ishmail FZ, Melis DR, Mbaba M, Smith GS. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2020; 215:111328. [PMID: 33340802 DOI: 10.1016/j.jinorgbio.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A discrete series of tricarbonyl manganese and rhenium complexes conjugated to a quinoline-triazole hybrid scaffold were synthesised and their inhibitory activities evaluated against Plasmodium falciparum. In general, the complexes show moderate activity with improved inhibitory activities for the photoactivatable manganese(I) tricarbonyl complexes in the malaria parasite. All complexes are active in the dark against the NF54 CQS (chloroquine-sensitive) and K1 MDR (multidrug-resistant) strains of Plasmodium falciparum, with IC50 values in the low micromolar range. Of significance, the complexes retain their activity in the MDR strain with resistance indices ranging between 1.1 and 2.1. The Mn(I) analogues display photodissociation of all three CO ligands upon irradiation at 365 nm. More importantly, the complexes show increased antimalarial activity in vitro upon photoactivation, something not observed by the clinically used reference drug, chloroquine. As a purported mechanism of action, the compounds were evaluated as β-haematin inhibitors. To further understand the interactions of the complexes, in silico hemozoin docking simulations were performed, attesting to the fact that CO-release could be vital for blocking the hemozoin formation pathway. These results show that this strategy may be a valuable, novel route to design antimalarial agents with higher efficacy.
Collapse
Affiliation(s)
- Fatima-Zahra Ishmail
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
39
|
Stucki D, Stahl W. Carbon monoxide – beyond toxicity? Toxicol Lett 2020; 333:251-260. [DOI: 10.1016/j.toxlet.2020.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
|
40
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Cercola R, Fischer KC, Sherman SL, Garand E, Wong NGK, Hammerback LA, Lynam JM, Fairlamb IJS, Dessent CEH. Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM. Chemistry 2020; 26:10297-10306. [PMID: 32275091 PMCID: PMC7496620 DOI: 10.1002/chem.202001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/08/2020] [Indexed: 11/22/2022]
Abstract
PhotoCORMs are light-triggered compounds that release CO for medical applications. Here, we apply laser spectroscopy in the gas phase to TryptoCORM, a known photoCORM that has been shown to destroy Escherichia coli upon visible-light activation. Our experiments allow us to map TryptoCORM's photochemistry across a wide wavelength range by using novel laser-interfaced mass spectrometry (LIMS). LIMS provides the intrinsic absorption spectrum of the photoCORM along with the production spectra of all of its ionic photoproducts for the first time. Importantly, the photoproduct spectra directly reveal the optimum wavelengths for maximizing CO ejection, and the extent to which CO ejection is compromised at redder wavelengths. A series of comparative studies were performed on TryptoCORM-CH3 CN which exists in dynamic equilibrium with TryptoCORM in solution. Our measurements allow us to conclude that the presence of the labile CH3 CN facilitates CO release over a wider wavelength range. This work demonstrates the potential of LIMS as a new methodology for assessing active agent release (e.g. CO, NO, H2 S) from light-activated prodrugs.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Summer L. Sherman
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | - Etienne Garand
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | | | | | - Jason M. Lynam
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | | |
Collapse
|
42
|
Calhau IB, Gomes AC, Bruno SM, Coelho AC, Magalhães CIR, Romão CC, Valente AA, Gonçalves IS, Pillinger M. One‐Pot Intercalation Strategy for the Encapsulation of a CO‐Releasing Organometallic Molecule in a Layered Double Hydroxide. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabel B. Calhau
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Gomes
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Sofia M. Bruno
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Clara I. R. Magalhães
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Carlos C. Romão
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Anabela A. Valente
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Isabel S. Gonçalves
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Martyn Pillinger
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| |
Collapse
|
43
|
Khaled RM, Friedrich A, Ragheb MA, Abdel-Ghani NT, Mansour AM. Cytotoxicity of photoactivatable bromo tricarbonyl manganese(i) compounds against human liver carcinoma cells. Dalton Trans 2020; 49:9294-9305. [PMID: 32578643 DOI: 10.1039/d0dt01539c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two series of photoinduced tricarbonyl manganese(i) compounds were prepared from the reaction of [MnBr(CO)3(2-C(H)[double bond, length as m-dash]O)] (2-C(H)[double bond, length as m-dash]O: quinoline-2-carboxaldehyde and pyridine-2-carboxaldehyde) and para-substituted aniline derivatives (X = OH, OCH3, Cl and NO2). Different electron-donating and electron-withdrawing substituents were introduced in the para-position of the phenyl ring to investigate their influence on the stability of the compounds in the dark and the photophysical properties upon illumination at 525 nm. When kept in the dark, the aerated solutions of the complexes in dimethyl sulfoxide (DMSO) and CH2Cl2 were stable. In the solution, the complexes bearing electron-withdrawing substituents, exchange their bromo ligands with DMSO solvent molecules, as evidenced from infrared and UV/Vis studies as well as time-dependent density functional theory (TDDFT) calculations. The complexes were assessed for their cytotoxicity, both in the dark and upon exposure to a 525 nm LED, against the human hepatocarcinoma cell line (HepG2). A marked reduction in the viability of HepG2 cells treated with the complex functionalized with quinoline and methoxy substituent was observed after illumination in a dose-dependent manner, with an IC50 value of 7.1 μM, making it the most phototoxic compound in our study.
Collapse
Affiliation(s)
- Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Mohamed A Ragheb
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Nour T Abdel-Ghani
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
44
|
Delasoie J, Schiel P, Vojnovic S, Nikodinovic-Runic J, Zobi F. Photoactivatable Surface-Functionalized Diatom Microalgae for Colorectal Cancer Targeted Delivery and Enhanced Cytotoxicity of Anticancer Complexes. Pharmaceutics 2020; 12:E480. [PMID: 32466116 PMCID: PMC7285135 DOI: 10.3390/pharmaceutics12050480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic toxicity and severe side effects are commonly associated with anticancer chemotherapies. New strategies based on enhanced drug selectivity and targeted delivery to cancer cells while leaving healthy tissue undamaged can reduce the global patient burden. Herein, we report the design, synthesis and characterization of a bio-inspired hybrid multifunctional drug delivery system based on diatom microalgae. The microalgae's surface was chemically functionalized with hybrid vitamin B12-photoactivatable molecules and the materials further loaded with highly active rhenium(I) tricarbonyl anticancer complexes. The constructs showed enhanced adherence to colorectal cancer (CRC) cells and slow release of the chemotherapeutic drugs. The overall toxicity of the hybrid multifunctional drug delivery system was further enhanced by photoactivation of the microalgae surface. Depending on the construct and anticancer drug, a 2-fold increase in the cytotoxic efficacy of the drug was observed upon light irradiation. The use of this targeted drug delivery strategy, together with selective spatial-temporal light activation, may lead to lower effective concentration of anticancer drugs, thereby reducing medication doses, possible side effects and overall burden for the patient.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Philippe Schiel
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| |
Collapse
|
45
|
Popova M, Soboleva T, Benninghoff AD, Berreau LM. CO Sense and Release Flavonols: Progress toward the Development of an Analyte Replacement PhotoCORM for Use in Living Cells. ACS OMEGA 2020; 5:10021-10033. [PMID: 32391490 PMCID: PMC7203955 DOI: 10.1021/acsomega.0c00409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 05/08/2023]
Abstract
Carbon monoxide (CO) is a signaling molecule in humans. Prior research suggests that therapeutic levels of CO can have beneficial effects in treating a variety of physiological and pathological conditions. To facilitate understanding of the role of CO in biology, molecules that enable fluorescence detection of CO in living systems have emerged as an important class of chemical tools. A key unmet challenge in this field is the development of fluorescent analyte replacement probes that replenish the CO that is consumed during detection. Herein, we report the first examples of CO sense and release molecules that involve combining a common CO-sensing motif with a light-triggered CO-releasing flavonol scaffold. A notable advantage of the flavonol-based CO sense and release motif is that it is trackable via fluorescence in both its pre- and postsensing (pre-CO release) forms. In vitro studies revealed that the PdCl2 and Ru(II)-containing CORM-2 used in the CO sensing step can result in metal coordination to the flavonol, which minimizes the subsequent CO release reactivity. However, CO detection followed by CO release is demonstrated in living cells, indicating that a cellular environment mitigates the flavonol/metal interactions.
Collapse
Affiliation(s)
- Marina Popova
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Tatiana Soboleva
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Abby D. Benninghoff
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Lisa M. Berreau
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
46
|
Stucki D, Krahl H, Walter M, Steinhausen J, Hommel K, Brenneisen P, Stahl W. Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems - A comparative in vitro study. Arch Biochem Biophys 2020; 687:108383. [PMID: 32335048 DOI: 10.1016/j.abb.2020.108383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Intracellular carbon monoxide (CO) is a gaseous signaling molecule and is generated enzymatically by heme oxygenases upon degradation of heme to billiverdin. Target structures for intracellular produced CO are heme proteins including cytochrome c oxidase of the respiratory chain, cytochrome P450-dependent monooxygenases, or myoglobin. For studies on CO signaling, CO-releasing molecules (CORMs) of different structure are available. Here, three frequently used CORMs (CORM-2, CORM-3 and CORM-401) were studied for their properties to provide CO in biological test systems and address susceptible heme proteins. CO release was investigated in the myoglobin binding assay and found to be rapid (<5 min) with CORM-2- and CORM-3, whereas CORM-401 continuously provided CO (>50 min). Storage stability of CORM stock solutions was also assessed with the myoglobin assay. Only CORM-401 stock solutions were stable over a period of 7 days. Incubation of CORMs with recombinant cytochrome P450 led to an inhibition of enzyme activity. However, only CORM-3 and CORM-401 proved to be suitable in this test system because controls with the inactivated CORM-2 (iCORM-2) also led to a loss of enzyme activity. The impact of CORMs on the respiratory chain was investigated with high resolution respirometry and extracellular flux technology. In the first approach interferences of CORM-2 and CORM-3 with oxygen measurement occurred, since a rapid depletion of oxygen was detected in the medium even when no cells were present. However, CORM-401 did not interfere with oxygen measurement and the expected inhibition of cellular respiration was observed. CORM-2 was not suitable for use in oxygen measurements with the extracellular flux technology and CORM-3 application did not show any effect in this system. However, CO-dependent inhibition of cellular respiration was observed with CORM-401. Based on the present experiments it is concluded, that CORM-401 produced most reliable CO-specific results for the modulation of typical CO targets. For studies on CO-dependent biological effects on intracellular heme groups, CORM-2 and CORM-3 were less suitable. Depending on the experimental setting, data achieved with these compounds should be evaluated with caution.
Collapse
Affiliation(s)
- David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Heide Krahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Moritz Walter
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Julia Steinhausen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Katrin Hommel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Postfach 10 10 07, D-40001, Düsseldorf, Germany.
| |
Collapse
|
47
|
Wright MA, Wooldridge T, O’Connell MA, Wright JA. Ferracyclic carbonyl complexes as anti-inflammatory agents. Chem Commun (Camb) 2020; 56:4300-4303. [DOI: 10.1039/d0cc01449d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reaction of Fe(CO)4Br2 with 2-aminopyridine and 2-aminonapthalene yields ferracyclic iron(ii) complexes bearing two CO ligands. These release CO in the light, but suppress inflammation only in the dark.
Collapse
Affiliation(s)
- Mark A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | - Tyler Wooldridge
- School of Pharmacy
- University of East Anglia
- Norwich Research Park
- Norwich
- UK
| | - Maria A. O’Connell
- School of Pharmacy
- University of East Anglia
- Norwich Research Park
- Norwich
- UK
| | - Joseph A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| |
Collapse
|
48
|
Carné-Sánchez A, Carmona FJ, Kim C, Furukawa S. Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chem Commun (Camb) 2020; 56:9750-9766. [DOI: 10.1039/d0cc03740k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the strategies employed to load and release gasotransmitters such as NO, CO and H2S from different kinds of porous materials, including zeolites, mesoporous silica, metal–organic frameworks and protein assemblies.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
| | - Francisco J. Carmona
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
| | - Chiwon Kim
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| |
Collapse
|
49
|
Synthesis, characterization and CO-releasing property of palladium(II) bipyridine flavonolate complexes. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00373-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Design and Synthesis of New Protease‐Triggered CO‐Releasing Peptide–Metal‐Complex Conjugates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|