1
|
Ahmadianyazdi A, Miller IJ, Folch A. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators. LAB ON A CHIP 2023; 23:4019-4032. [PMID: 37584639 PMCID: PMC10849085 DOI: 10.1039/d3lc00529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Stereolithographic 3D-printing (SLA) permits facile fabrication of high-precision microfluidic and lab-on-a-chip devices. SLA photopolymers often yield parts with low mechanical compliancy in sharp contrast to elastomers such as poly(dimethyl siloxane) (PDMS). On the other hand, SLA-printable elastomers with soft mechanical properties do not fulfill the distinct requirements for a highly manufacturable resin in microfluidics (e.g., high-resolution printability, transparency, low-viscosity). These limitations restrict our ability to print microfluidic actuators containing dynamic, movable elements. Here we introduce low-viscous photopolymers based on a tunable blend of the monomers poly(ethylene glycol) diacrylate (PEGDA, Mw ∼ 258) and the monoacrylate poly(ethylene glycol methyl ether) methacrylate (PEGMEMA, Mw ∼ 300). In these blends, which we term PEGDA-co-PEGMEMA, tuning the PEGMEMA content from 0% to 40% (v/v) alters the elastic modulus of the printed plastics by ∼400-fold, reaching that of PDMS. Through the addition of PEGMEMA, moreover, PEGDA-co-PEGMEMA retains desirable properties of highly manufacturable PEGDA such as low viscosity, solvent compatibility, cytocompatibility and low drug absorptivity. With PEGDA-co-PEGMEMA, we SLA-printed drastically enhanced fluidic actuators including microvalves, micropumps, and microregulators with a hybrid structure containing a flexible PEGDA-co-PEGMEMA membrane within a rigid PEGDA housing. These components were built using a custom "Print-Pause-Print" protocol, referred to as "3P-printing", that allows for fabricating high-resolution multimaterial parts with a desktop SLA printer without the need for post-assembly. SLA-printing of multimaterial microfluidic actuators addresses the unmet need of high-performance on-chip controls in 3D-printed microfluidic and lab-on-a-chip devices.
Collapse
Affiliation(s)
| | - Isaac J Miller
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
2
|
Mair DB, Williams MAC, Chen JF, Goldstein A, Wu A, Lee PHU, Sniadecki NJ, Kim DH. PDMS-PEG Block Copolymer and Pretreatment for Arresting Drug Absorption in Microphysiological Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38541-38549. [PMID: 35984038 DOI: 10.1021/acsami.2c10669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is a commonly used polymer in organ-on-a-chip devices and microphysiological systems. However, due to its hydrophobicity and permeability, it absorbs drug compounds, preventing accurate drug screening applications. Here, we developed an effective and facile method to prevent the absorption of drugs by utilizing a PDMS-PEG block copolymer additive and drug pretreatment. First, we incorporated a PDMS-PEG block copolymer into PDMS to address its inherent hydrophobicity. Next, we addressed the permeability of PDMS by eliminating the concentration gradient via pretreatment of the PDMS with the drug prior to experimentally testing drug absorption. The combined use of a PDMS-PEG block copolymer with drug pretreatment resulted in a mean reduction of drug absorption by 91.6% in the optimal condition. Finally, we demonstrated that the proposed method can be applied to prevent drug absorption in a PDMS-based cardiac microphysiological system, enabling more accurate drug studies.
Collapse
Affiliation(s)
- Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Marcus Alonso Cee Williams
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeffrey Fanzhi Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Alex Goldstein
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
- Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Peter H U Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Tian S, Zhang W, Shi J, Guo Z, Li M. A Performance-enhanced Electroosmotic Pump with Track-etched Polycarbonate Membrane by Allylhydridopolycarbosilane Coating. ANAL SCI 2020; 36:953-957. [PMID: 32037348 DOI: 10.2116/analsci.19p452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/27/2020] [Indexed: 08/09/2023]
Abstract
Nanochannel plastic membranes are excellent materials for electroosmotic pump (EOP) elements owing to their surface charge properties, flexibility and cost-effectiveness. However, the surface charge properties of plastics are inferior to those of silicate-based materials. This paper reports a performance-enhanced EOP equipped with a glassified track-etch polycarbonate membrane (PC), which has a nanochannel surface covered by allylhydridopolycarbosilane (AHPCS). The effects of applied voltage, pH and membrane pore size on the electroosmotic flow velocity, along with a comparative study of the EOP with coated and pure membranes were investigated. It was found that when low DC voltage (10 - 40 V) was applied to both ends of the pump, the magnitude of the electroosmotic flow was linearly proportional to the voltage when the pore size of the membrane was less than 600 nm. A higher flow rate was obtained with larger pore size membranes. Compared with the uncoated film, the coated one showed faster electroosmosis velocity, with higher stability under the same conditions. For pH 10.0 buffer solution, a flow rate of 89.13 μL/min was obtained in the modified membrane-based EOP with excellent repeatability and durability, while the flow rate was only 37.89 μL/min in the bare PC membrane under 20 V. In order to demonstrate the performance of the developed EOP, the EOP was used for microcomplexometric titration to determine actual tap water hardness. The measured results were highly consistent with the results of a conventional complexometric titration methed. The EOP with an AHPCS-coated plastic membrane expanded the application range to harsh condition solutions, such as high-concentration acids or bases.
Collapse
Affiliation(s)
- Shumei Tian
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wenli Zhang
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jinwei Shi
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zixian Guo
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ming Li
- Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
4
|
Oyama TG, Oyama K, Taguchi M. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips. LAB ON A CHIP 2020; 20:2354-2363. [PMID: 32495806 DOI: 10.1039/d0lc00316f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polydimethylsiloxane (PDMS) has many desirable features for microfluidics applications, particularly in diagnostics and pharmaceuticals, but its hydrophobicity and the lack of a practical method for bonding PDMS layers limit its use. Moreover, the flexibility of PDMS causes unwanted deformation during use in some applications. Here, we report a simple method for solving these problems simultaneously using an electron beam (EB) or γ-rays, which are commonly used for sterilizing medical products. Simply by applying EB or γ-ray irradiation to stacked PDMS layers, we can not only bond the interfaces between the layers by forming Si-O-Si covalent bonds but also achieve long-lasting hydrophilization and sterilization of the internal microchannels and chambers, prevent nonspecific adsorption and absorption of hydrophobic small molecules, and enhance the mechanical strength of the material by converting bulk PDMS into a Si-Ox-rich (where x is 3 or 4) structure though crosslinking. Unlike the one-at-a-time plasma process, EBs and γ-rays can penetrate through many stacked layers of PDMS sealed in their final package, enabling batch modification and bonding. The method requires no chemical crosslinkers, adhesive agents, or fillers; hence, it does not undermine the advantages of PDMS such as ease of molding in soft lithography, biocompatibility, and optical transparency. Furthermore, bonding is achieved with high-throughput yield because it occurs after re-adjustable alignment. We demonstrate that this method is applicable in the mass production of 3D integrated PDMS microfluidic chips with some glass-like properties as well as for 3D structures with complex shapes that are difficult to fabricate with plastic or glass.
Collapse
Affiliation(s)
- Tomoko Gowa Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan.
| | | | | |
Collapse
|
5
|
Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:86-134. [PMID: 31779887 DOI: 10.1016/j.pnmrs.2019.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, photochemical and photocatalytic applications have developed into one of the dominant research fields in chemistry. However, mechanistic investigations to sustain this enormous progress are still relatively sparse and in high demand by the photochemistry community. UV/Vis spectroscopy and EPR spectroscopy have been the main spectroscopic tools to study the mechanisms of photoreactions due to their higher time resolution and sensitivity. On the other hand, application of NMR in photosystems has been mainly restricted to photo-CIDNP, since the initial photoexcitation was thought to be the single key to understand photoinduced reactions. In 2015 the Gschwind group showcased the possibility that different reaction pathways could occur from the same photoexcited state depending on the reaction conditions by using in situ LED illumination NMR. This was the starting point to push the active participation of NMR in photosystems to its full potential, including reaction profiling, structure determination of intermediates, downstream mechanistic studies, dark pathways, intermediate sequencing with CEST etc. Following this, multiple studies using in situ illumination NMR have been reported focusing on mechanistic investigations in photocatalysis, photoswitches, and polymerizations. The recent increased popularity of this technique can be attributed to the simplicity of the experimental setup and the availability of low cost, high power LEDs. Here, we review the development of experimental design, applications and new concepts of illuminated NMR. In the first part, we describe the development of different designs of NMR illumination apparatus, illuminating from the bottom/side/top/inside, and discuss their pros and cons for specific applications. Furthermore, we address LASERs and LEDs as different light sources as well as special cases such as UVNMR(-illumination), FlowNMR, NMR on a Chip etc. To complete the discussion on experimental apparatus, the advantages and disadvantages of in situ LED illumination NMR versus ex situ illumination NMR are described. The second part of this review discusses different facets of applications of inside illumination experiments. It highlights newly revealed mechanistic and structural information and ideas in the fields of photocatalyis, photoswitches and photopolymerization. Finally, we present new concepts and methods based on the combination of NMR and illumination such as sensitivity enhancement, chemical pump probes, experimental access to transition state combinations and NMR actinometry. Overall this review presents NMR spectroscopy as a complementary tool to UV/Vis spectroscopy in mechanistic and structural investigations of photochemical processes. The review is presented in a way that is intended to assist the photochemistry and photocatalysis community in adopting and understanding this astonishingly powerful in situ LED illumination NMR method for their investigations on a daily basis.
Collapse
Affiliation(s)
- Philipp Nitschke
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Ruth M Gschwind
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
6
|
Senzaki T, Fujikawa S. Design of Polymer Coating Materials for Long-term Hydrophilic Stability of Poly(dimethylsiloxane) Surfaces. CHEM LETT 2019. [DOI: 10.1246/cl.190453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahiro Senzaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Tokyo Ohka Kogyo Co. Ltd., 1590 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0114, Japan
| | - Shigenori Fujikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Jang S, Vidyacharan S, Ramanjaneyulu BT, Gyak KW, Kim DP. Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00239a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted direct arylation of 2H-indazoles using phenyldiazonium salt enabled a single-step and fast synthesis (<1 min) of C3 arylated products in high yields (>65%) in an eosin Y immobilized capillary microreactor.
Collapse
Affiliation(s)
- Seungwook Jang
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Bandaru T. Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Ki-Won Gyak
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- 37673 Korea
| |
Collapse
|
8
|
Dizon GV, Clarin MTR, Venault A, Tayo L, Chiang HC, Zheng J, Aimar P, Chang Y. A Nondestructive Surface Zwitterionization of Polydimethylsiloxane for the Improved Human Blood-inert Properties. ACS APPLIED BIO MATERIALS 2018; 2:39-48. [DOI: 10.1021/acsabm.8b00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gian Vincent Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Maria Thea Rane Clarin
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Lemmuel Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Heng-Chieh Chiang
- Division of Urology, Department of Surgery, Changhua Christian Hospital, 135 Nanxian Street, Changhua 500, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Pierre Aimar
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| |
Collapse
|
9
|
Kim JO, Lee JC, Kim MJ, Noh H, Yeom HI, Ko JB, Lee TH, Ko Park SH, Kim DP, Park S. Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800647. [PMID: 29806159 DOI: 10.1002/adma.201800647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Indexed: 06/08/2023]
Abstract
It is demonstrated that the crystal size of small-molecule organic semiconductors can be controlled during solution shearing by tuning the shape and dimensions of the micropillars on the blade. Increasing the size and spacing of the rectangular pillars increases the crystal size, resulting in higher thin-film mobility. This phenomenon is attributed as the microstructure changing the degree and density of the meniscus line curvature, thereby controlling the nucleation process. The use of allylhybridpolycarbosilane (AHPCS), an inorganic polymer, is also demonstrated as the microstructured blade for solution shearing, which has high resistance to organic solvents, can easily be microstructured via molding, and is flexible and durable. Finally, it is shown that solution shearing can be performed on a curved surface using a curved blade. These demonstrations bring solution shearing closer to industrial applications and expand its applicability to various printed flexible electronics.
Collapse
Affiliation(s)
- Jin-Oh Kim
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Chan Lee
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min-Ji Kim
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunwoo Noh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hye-In Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Beom Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Steve Park
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Mompeán M, Sánchez-Donoso RM, de la Hoz A, Saggiomo V, Velders AH, Gomez MV. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nat Commun 2018; 9:108. [PMID: 29317665 PMCID: PMC5760532 DOI: 10.1038/s41467-017-02575-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 12/03/2022] Open
Abstract
Among the methods to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy, small-diameter NMR coils (microcoils) are promising tools to tackle the study of mass-limited samples. Alternatively, hyperpolarization schemes based on dynamic nuclear polarization techniques provide strong signal enhancements of the NMR target samples. Here we present a method to effortlessly perform photo-chemically induced dynamic nuclear polarization in microcoil setups to boost NMR signal detection down to sub-picomole detection limits in a 9.4T system (400 MHz 1H Larmor frequency). This setup is unaffected by current major drawbacks such as the use of high-power light sources to attempt uniform irradiation of the sample, and accumulation of degraded photosensitizer in the detection region. The latter is overcome with flow conditions, which in turn open avenues for complex applications requiring rapid and efficient mixing that are not easily achievable on an NMR tube without resorting to complex hardware. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with an inherently low sensitivity. Here, the authors present a combination of microcoils with photo-chemically induced dynamic nuclear polarization to boost NMR sensitivity down to sub-picomole detection limits.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa M Sánchez-Donoso
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain. .,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands. .,MAGNEtic resonance research FacilitY-MAGNEFY, Wageningen University & Research, PO Box 8038, 6700, EK Wageningen, The Netherlands.
| | - M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
11
|
Li S, Liu B, Wei T, Hu C, Hang Y, Dong Y, Liu X, Chen H. Microfluidic channels with renewable and switchable biological functionalities based on host–guest interactions. J Mater Chem B 2018; 6:8055-8063. [DOI: 10.1039/c8tb02148a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microfluidic channels with renewable and switchable biological functionalities were prepared using host–guest interactions.
Collapse
Affiliation(s)
- Siyuan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Bing Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yingjie Hang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
12
|
Schmidt M, Durif C, Acosta ED, Salameh C, Plaisantin H, Miele P, Backov R, Machado R, Gervais C, Alauzun JG, Chollon G, Bernard S. Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures. Chemistry 2017; 23:17103-17117. [PMID: 28949424 DOI: 10.1002/chem.201703674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Indexed: 01/15/2023]
Abstract
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content.
Collapse
Affiliation(s)
- Marion Schmidt
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, 34095, Montpellier, France.,Laboratoire des Composites ThermoStructuraux, UMR 5801, CNRS- SAFRAN Ceramics - CEA -, University of Bordeaux, 3, Allée de La Boétie, 33600, Pessac, France
| | - Charlotte Durif
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, 34095, Montpellier, France
| | - Emanoelle Diz Acosta
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, 34095, Montpellier, France.,Materials Engineering, Federal University of Santa Catarina, 88010-970, Florianópolis, Brazil
| | - Chrystelle Salameh
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005, Paris, France
| | - Hervé Plaisantin
- Laboratoire des Composites ThermoStructuraux, UMR 5801, CNRS- SAFRAN Ceramics - CEA -, University of Bordeaux, 3, Allée de La Boétie, 33600, Pessac, France
| | - Philippe Miele
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, 34095, Montpellier, France
| | - Rénal Backov
- Centre de Recherche Paul Pascal, Université de Bordeaux, UPR 8641 CNRS-115-, Avenue Albert Schweitzer, 33600, Pessac, France
| | - Ricardo Machado
- Materials Engineering, Federal University of Santa Catarina, 88010-970, Florianópolis, Brazil
| | - Christel Gervais
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005, Paris, France
| | - Johan G Alauzun
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, CC1701, 34095, Montpellier, France
| | - Georges Chollon
- Laboratoire des Composites ThermoStructuraux, UMR 5801, CNRS- SAFRAN Ceramics - CEA -, University of Bordeaux, 3, Allée de La Boétie, 33600, Pessac, France
| | - Samuel Bernard
- IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, 34095, Montpellier, France.,Science des Procédés Céramiques et de Traitements de Surface (SPCTS), UMR CNRS 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068, Limoges Cedex, France
| |
Collapse
|
13
|
Integrated CO 2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow. Nat Commun 2017; 8:14676. [PMID: 28262667 PMCID: PMC5343516 DOI: 10.1038/ncomms14676] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. Microfluidics is an attractive route for synthesis, but can suffer from poor reactivity with gaseous reagents. Here the authors report a microfluidic system catalysing an interfacial reaction between CO2 and liquid phase reagents by modifying silicon nanowires with immobilized ionic liquid catalysts.
Collapse
|
14
|
Gokaltun A, Yarmush ML, Asatekin A, Usta OB. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. TECHNOLOGY 2017; 5:1-12. [PMID: 28695160 PMCID: PMC5501164 DOI: 10.1142/s2339547817300013] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly mature stage. These advances have encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. The popularity of this material is the result of its low cost, simple fabrication allowing rapid prototyping, high optical transparency, and gas permeability. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant nonspecific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. Accordingly, here, we focus on recent advances in surface molecular treatments to prevent fouling of PDMS surfaces towards improving its utility and expanding its use cases in biomedical applications.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02474, USA
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02474, USA
| | - O Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| |
Collapse
|
15
|
Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. LAB ON A CHIP 2016; 16:1720-42. [PMID: 27101171 PMCID: PMC4862901 DOI: 10.1039/c6lc00163g] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.
Collapse
|
16
|
Lin D, Zhao Q, Yan M. Surface modification of polydimethylsiloxane microfluidic chips by polyamidoamine dendrimers for amino acid separation. J Appl Polym Sci 2016. [DOI: 10.1002/app.43580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dong Lin
- School of Pharmacy; Binzhou Medical University; Yantai 264003 People's Republic of China
| | - Qin Zhao
- College of Food Engineering; Ludong University; Yantai 264025 People's Republic of China
| | - Miaomiao Yan
- School of Pharmacy; Binzhou Medical University; Yantai 264003 People's Republic of China
| |
Collapse
|
17
|
Abstract
The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.
Collapse
Affiliation(s)
- Anthony K Au
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, WA, 98195, USA.
| | - Wilson Huynh
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Lisa F Horowitz
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, WA, 98195, USA
| |
Collapse
|
18
|
Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem Rev 2016; 116:10276-341. [PMID: 26935706 DOI: 10.1021/acs.chemrev.5b00707] [Citation(s) in RCA: 927] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Collapse
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Cecilia Bottecchia
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Natan J W Straathof
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands.,Department of Organic Chemistry, Ghent University , Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|
19
|
Affiliation(s)
- Anthony K. Au
- Department of Bioengineering; University of Washington; 3720 15th Ave NE, Box 355061 Seattle WA 98195 USA
| | - Wilson Huynh
- Department of Bioengineering; University of Washington; 3720 15th Ave NE, Box 355061 Seattle WA 98195 USA
| | - Lisa F. Horowitz
- Department of Bioengineering; University of Washington; 3720 15th Ave NE, Box 355061 Seattle WA 98195 USA
| | - Albert Folch
- Department of Bioengineering; University of Washington; 3720 15th Ave NE, Box 355061 Seattle WA 98195 USA
| |
Collapse
|
20
|
Sun L, Luo Y, Gao Z, Zhao W, Lin B. Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability. Electrophoresis 2015; 36:889-92. [PMID: 25521081 DOI: 10.1002/elps.201400366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022]
Abstract
With the fast expansion of microfluidic applications, stable, and easy-to-fabricate PDMS surface coating with super hydrophilicity is highly desirable. In this study, we introduce a new kind of copolymer-based, single-layer thin-film coating for PDMS. The coating can exist in air at room temperature for at least 6 months without any noticeable deterioration in the super hydrophilicity (water contact angle ∼7°), resistance of protein adsorption, or inhibition of the EOF. In addition, this coating enables arbitrary patterning of cells on planar surfaces.
Collapse
Affiliation(s)
- Lijun Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | | | | | | | | |
Collapse
|
21
|
Basavaraju KC, Sharma S, Singh AK, Im DJ, Kim DP. Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics. CHEMSUSCHEM 2014; 7:1864-1869. [PMID: 24828446 DOI: 10.1002/cssc.201400012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Microreactors have been proven to be efficient tools for a variety of homogeneous organic transformations due to their mixing efficiency, which results in very fast reactions, better heat and mass transfer, and simple scale-up. However, in heterogeneous catalytic reactions each catalyst needs an individual substrate as support. Herein, a versatile approach to immobilize metal catalysts on chitosan as a common substrate is presented. Chitosan, accommodating many metal catalysts, is grafted onto the microchannel surface as nanobrush. The versatility, catalytic efficiency, and stability/durability of the microreactor are demonstrated for a number of organic transformations involving various metal compounds as catalysts.
Collapse
Affiliation(s)
- K C Basavaraju
- National Centre of Applied Microfluidic Chemistry, Dept. of Chem. Eng. POSTECH (Pohang Univ. of Sci.&Tech.), Pohang, 790-784 (South Korea), Fax: (+82)-54-279-2272 http://camc.postech.ac.kr/
| | | | | | | | | |
Collapse
|
22
|
Ren W, Perumal J, Wang J, Wang H, Sharma S, Kim DP. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses. LAB ON A CHIP 2014; 14:779-786. [PMID: 24356091 DOI: 10.1039/c3lc51191j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two types of whole ceramic-like microreactors were fabricated from inorganic polymers, polysilsesquioxane (POSS) and polyvinylsilazane (PVSZ), that were embedded with either perfluoroalkoxy (PFA) tube or polystyrene (PS) film templates, and subsequently the templates were removed by physical removal (PFA tube) or thermal decomposition (PS). A POSS derived ceramic-like microreactor with a 10 cm long serpentine channel was obtained by an additional "selective blocking of microchannel" step and subsequent annealing at 300 °C for 1 h, while a PVSZ derived ceramic-like microreactor with a 14 cm long channel was yielded by a co-firing process of the PVSZ-PS composite at 500 °C for 2 h that led to complete decomposition of the film template leaving a microchannel behind. The obtained whole ceramic-like microfluidic devices revealed excellent chemical and thermal stabilities in various solvents, and they were able to demonstrate unique chemical performance at high temperature or/and high pressure conditions such as Michaelis-Arbuzov rearrangement at 150-170 °C, Wolff-Kishner reduction at 200 °C, synthesis of super-paramagnetic Fe3O4 nanoparticles at 320 °C and isomerisation of allyloxybenzene to 2-allylphenol (250 °C and 400 psi). These economic ceramic-like microreactors fabricated by a facile non-lithographic method displayed excellent utility under challenging conditions that is superior to any plastic microreactors and comparable to glass and metal microreactors with high cost.
Collapse
Affiliation(s)
- Wurong Ren
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Li M, Quan H, Xu G, Kim DP. Polyvinylsilazane layer coating and its application in poly(dimethylsiloxane) microchip electrophoresis. Microchem J 2013. [DOI: 10.1016/j.microc.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Li M, Kim DP, Jeong GY, Seo DK, Park CP. Reductive surface synthesis of gold nanoparticles on silicate glass and their biochemical sensor applications. BIOMICROFLUIDICS 2012; 6:44111. [PMID: 24324531 PMCID: PMC3557795 DOI: 10.1063/1.4769780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/31/2012] [Indexed: 06/03/2023]
Abstract
Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip.
Collapse
Affiliation(s)
- M Li
- Environmental Science and Engineering, Yangzhou University, 225-009 Yangzhou, China
| | | | | | | | | |
Collapse
|
25
|
Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng 2012; 40:1862-73. [PMID: 22484830 DOI: 10.1007/s10439-012-0562-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/27/2012] [Indexed: 01/07/2023]
Abstract
Microfluidic devices fabricated using poly(dimethylsiloxane) (PDMS) polymer are routinely used for in vitro cell culture for a wide range of cellular assays. These assays typically involve the incubation of cultured cells with a drug molecule or a fluorescent marker while monitoring a cellular response. The accuracy of these assays depends on achieving a consistent and reproducible concentration of solute molecules in solution. However, hydrophobic therapeutic and fluorescent molecules tend to diffuse into the PDMS walls of the microfluidic devices, which reduce their concentration in solution and consequently affect the accuracy and reliability of these assays. In this paper, we quantitatively investigate the relationship between the partition coefficient (log P) of a series of markers routinely used in in vitro cellular assays including [3H]-dexamethasone, [3H]-diazepam, [14C]-mannitol, [3H]-phenytoin, and rhodamine 6G and their absorption into PDMS microfluidic channels. Our results show that the absorption of a given solute into PDMS depends on the hydrophilic/hydrophobic balance defined by its log P value. Specifically, results demonstrate that molecules with log P less than 2.47 exhibit minimal absorption (<10%) into PDMS channels whereas molecules with log P larger than 2.62 exhibit extensive absorption (>90%) into PDMS channels. Further investigations showed that TiO(2) and glass coatings of PDMS channels reduced the absorption of hydrophobic molecules (log P > 2.62) by 2- and 4.5-folds, respectively.
Collapse
|
26
|
KIHM ZD, VEEN EM, BERGEN-HARTIGAN JD, ZHANG Y, LIU Y. Modification of Electroosmotic Flow for a Polydimethylsiloxane Electrophoresis Microchip via Polyelectrolyte Coating. ANAL SCI 2012; 28:183-6. [DOI: 10.2116/analsci.28.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Erik M. VEEN
- Department of Chemistry, Northern Michigan University
| | | | - Yang ZHANG
- Institute of Electronic Devices and Applications, School of Electronic Information, Hangzhou Dianzi University
| | - Yan LIU
- Department of Chemistry, Northern Michigan University
| |
Collapse
|
27
|
Zhang Z, Zuo C, Cao Q, Ma Y, Chen S. Modulation of Electroosmotic Flow Using Polyelectrolyte Brushes: A Molecular Dynamics Study. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Surface modification for PDMS-based microfluidic devices. Electrophoresis 2011; 33:89-104. [DOI: 10.1002/elps.201100482] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 11/07/2022]
|
29
|
Maurya RA, Park CP, Lee JH, Kim DP. Continuous In Situ Generation, Separation, and Reaction of Diazomethane in a Dual-Channel Microreactor. Angew Chem Int Ed Engl 2011; 50:5952-5. [DOI: 10.1002/anie.201101977] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 11/06/2022]
|
30
|
Maurya RA, Park CP, Lee JH, Kim DP. Continuous In Situ Generation, Separation, and Reaction of Diazomethane in a Dual-Channel Microreactor. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|