1
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
2
|
Brekker MA, Sartawi T, Sawatzky TM, Causey CP, Rehman FK, Knuckley B. A peptoid-based inhibitor of protein arginine methyltransferase 1 (PRMT1) induces apoptosis and autophagy in cancer cells. J Biol Chem 2022; 298:102205. [PMID: 35764172 PMCID: PMC9307946 DOI: 10.1016/j.jbc.2022.102205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are S-adenosylmethionine-dependent enzymes that transfer a methyl group to arginine residues within proteins, most notably histones. The nine characterized PRMT family members are divided into three types depending on the resulting methylated product: asymmetric dimethylarginine (Type I PRMT), symmetric dimethylarginine (Type II PRMT), or monomethylated arginine (Type III PRMT). In some cancers, the resulting product can lead to either increased or decreased transcription of cancer-related genes, suggesting PRMT family members may be valid therapeutic targets. Traditionally, peptide-based compounds have been employed to target this family of enzymes, which has resulted in multiple tool and lead compounds being developed. However, peptide-based therapeutics suffer from poor stability and short half-lives, as proteases can render them useless by hydrolytic degradation. Conversely, peptoids, which are peptide-mimetics composed of N-substituted glycine monomers, are less susceptible to hydrolysis, resulting in improved stability and longer half-lives. Herein, we report the development of a bioavailable, peptoid-based PRMT1 inhibitor that induces cell death in MDA468 and HCT116 cancer cell lines while not exhibiting any significant impact on nontumorigenic HepaRG or normal human mammary epithelial cells. Furthermore, the inhibitor described herein appears to induce both apoptosis and autophagy, suggesting it may be a less toxic cytostatic agent. In conclusion, we propose this peptoid-based inhibitor has significant anticancer and therapeutic potential by reducing cell viability, growth, and size in breast and colon cancer. Further experimentation will help determine the mechanism of action and downstream effects of this compound.
Collapse
Affiliation(s)
- Mollie A. Brekker
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Tala Sartawi
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Tina M. Sawatzky
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Corey P. Causey
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | | | - Bryan Knuckley
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA.
| |
Collapse
|
3
|
Price OM, Hevel JM. Toward Understanding Molecular Recognition between PRMTs and their Substrates. Curr Protein Pept Sci 2021; 21:713-724. [PMID: 31976831 DOI: 10.2174/1389203721666200124143145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein arginine methyltransferases (PRMTs) recognize their respective protein targets is not well understood. This review summarizes the progress that has been made over the last decade or more to resolve this significant biochemical question. A multipronged approach involving structural biology, substrate profiling, bioorthogonal chemistry and proteomics is discussed.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
4
|
Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochem J 2021; 477:2971-2980. [PMID: 32716034 DOI: 10.1042/bcj20200534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes.
Collapse
|
5
|
Mann SA, Salsburg A, Causey CP, Knuckley B. The development and characterization of a chemical probe targeting PRMT1 over PRMT5. Bioorg Med Chem 2018; 27:224-229. [PMID: 30529151 DOI: 10.1016/j.bmc.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 01/27/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of mammalian enzymes catalyzing the symmetric dimethylation (Type I), asymmetric dimethylation (Type II), or monomethylation (Type III) of arginine residues within proteins. This family is composed of 11 isozymes, however the vast majority of asymmetric and symmetric dimethylation in mammals is completed by either PRMT1 or PRMT5, respectively. In recent years, a number of chemical probes targeting this family of enzymes have been developed, but the majority of these probes lack isozyme specificity. Herein, we report the development of a chemical probe, based on a non-natural peptide sequence, which specifically labels PRMT1 over PRMT5 with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Sarah A Mann
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Andrew Salsburg
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Corey P Causey
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Bryan Knuckley
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States.
| |
Collapse
|
6
|
Protein arginine methyltransferase 1 is a novel regulator of MYCN in neuroblastoma. Oncotarget 2018; 7:63629-63639. [PMID: 27571165 PMCID: PMC5325390 DOI: 10.18632/oncotarget.11556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/13/2016] [Indexed: 11/28/2022] Open
Abstract
Amplification or overexpression of MYCN is associated with poor prognosis of human neuroblastoma. We have recently defined a MYCN-dependent transcriptional signature, including protein arginine methyltransferase 1 (PRMT1), which identifies a subgroup of patients with high-risk disease. Here we provide several lines of evidence demonstrating PRMT1 as a novel regulator of MYCN and implicating PRMT1 as a potential therapeutic target in neuroblastoma pathogenesis. First, we observed a strong correlation between MYCN and PRMT1 protein levels in primary neuroblastoma tumors. Second, MYCN physically associates with PRMT1 by direct protein-protein interaction. Third, depletion of PRMT1 through siRNA knockdown reduced neuroblastoma cell viability and MYCN expression. Fourth, we showed that PRMT1 regulates MYCN stability and identified MYCN as a novel substrate of PRMT1. Finally, we demonstrated that mutation of putatively methylated arginine R65 to alanine decreased MYCN stability by altering phosphorylation at residues serine 62 and threonine 58. These results provide mechanistic insights into the modulation of MYCN oncoprotein by PRMT1, and suggest that targeting PRMT1 may have a therapeutic impact on MYCN-driven oncogenesis.
Collapse
|
7
|
Li X, Eberhardt A, Hansen JN, Bohmann D, Li H, Schor NF. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31:2327-2339. [PMID: 28213359 DOI: 10.1096/fj.201601050rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| | - Allison Eberhardt
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne N Hansen
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Haitao Li
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, and.,School of Medicine, Tsinghua University, Beijing, China
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| |
Collapse
|
8
|
Horning BD, Suciu RM, Ghadiri DA, Ulanovskaya OA, Matthews ML, Lum KM, Backus KM, Brown SJ, Rosen H, Cravatt BF. Chemical Proteomic Profiling of Human Methyltransferases. J Am Chem Soc 2016; 138:13335-13343. [PMID: 27689866 DOI: 10.1021/jacs.6b07830] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.
Collapse
Affiliation(s)
- Benjamin D Horning
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Radu M Suciu
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Darian A Ghadiri
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Olesya A Ulanovskaya
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Megan L Matthews
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Kenneth M Lum
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Keriann M Backus
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Steven J Brown
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Hugh Rosen
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Benjamin F Cravatt
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| |
Collapse
|
9
|
Liu X, Li H, Liu L, Lu Y, Gao Y, Geng P, Li X, Huang B, Zhang Y, Lu J. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2093-103. [PMID: 27183873 DOI: 10.1016/j.bbamcr.2016.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/02/2023]
Abstract
The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress.
Collapse
Affiliation(s)
- Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yang Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Yanyan Gao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Pengyu Geng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
10
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
11
|
Nguyen HC, Wang M, Salsburg A, Knuckley B. Development of a Plate-Based Screening Assay to Investigate the Substrate Specificity of the PRMT Family of Enzymes. ACS COMBINATORIAL SCIENCE 2015; 17:500-5. [PMID: 26252756 DOI: 10.1021/acscombsci.5b00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There are nine protein arginine methyltransferases (PRMTs 1-9) expressed in humans that vary in both subcellular localization and substrate specificity. The variation in substrate specificity between isozymes leads to competing effects that result in either activation or repression of tumor suppressor genes. Current methods used to study substrate specificity for these enzymes utilize radioisotopic labeling of substrates, mass spectrometry analysis of complex samples, or coupled assays that monitor cofactor degradation. Herein, we report the development of a rapid, nonradioactive, and sensitive method for screening multiple peptides in parallel to gain insight into the substrate specificity of PRMT enzymes. Our assay provides a major advantage over other high-throughput screening assays (e.g., ELISA, AlphaScreen chemiluminescence) by eliminating the need for purification of individual peptides and provides a timesaving, cost-effective alternative to the traditional PRMT assays. A one-bead one-compound (OBOC) peptide library was synthesized and subsequently screened against PRMT1 in a 96-well plate. This screen resulted in identification of a novel PRMT1 substrate with kinetic parameters similar to histone H4-21 (e.g., the best-known PRMT1 peptide substrate).
Collapse
Affiliation(s)
- Hao C. Nguyen
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| | - Min Wang
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01655, United States
| | - Andrew Salsburg
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| | - Bryan Knuckley
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| |
Collapse
|
12
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
13
|
Xie Y, Zhou R, Lian F, Liu Y, Chen L, Shi Z, Zhang N, Zheng M, Shen B, Jiang H, Liang Z, Luo C. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem 2014; 12:9665-73. [PMID: 25348815 DOI: 10.1039/c4ob01591f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein arginine methylation is a common post-translational modification which is crucial for a variety of biological processes. Dysregulation of protein arginine methyltransferases (PRMTs) activity has been implicated in cancer and other serious diseases. Thus, small molecule inhibitors against PRMT have great potential for therapeutic development. Herein, through the combination of virtual screening and bioassays, six small molecular compounds were identified as PRMT1 inhibitors. Amongst them, the binding affinity of compounds DCLX069 and DCLX078 with PRMT1 was further validated by T1ρ and saturation transfer difference (STD) NMR experiments. Most important of all, both compounds effectively blocked cell proliferation in breast cancer, liver cancer and acute myeloid leukemia cell lines. The binding mode analysis from molecular docking simulations theoretically indicated that both inhibitors occupied the SAM binding pocket to exert the inhibitory effect. Taken together, our compounds enriched the structural scaffolds as PRMT1 inhibitors and afforded clues for further optimization.
Collapse
Affiliation(s)
- Yiqian Xie
- Center for Systems Biology, Soochow University, Jiangsu 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Targeting protein arginine N-methyltransferases with peptide-based inhibitors: opportunities and challenges. Future Med Chem 2013; 5:2199-206. [DOI: 10.4155/fmc.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently peptide-based inhibitors have been used to selectively inhibit a family of epigenetic enzymes called protein arginine N-methyltransferases (PRMTs), which has been implicated in different physiological processes and human diseases, such as heart disease and cancer. The diverse efforts to tease out subtle structural differences among PRMT enzymes in order to generate selective inhibitors as well as existing challenges in the field will be examined. The acquisition of PRMT substrate sequence preferences and structural information obtained from small-molecule inhibitors have helped in developing different peptide-based inhibitors that show great promise not only as inhibitors, but also as molecular probes to characterize PRMTs.
Collapse
|
15
|
Dillon MBC, Rust HL, Thompson PR, Mowen KA. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 2013; 288:27872-80. [PMID: 23946480 DOI: 10.1074/jbc.m113.491092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.
Collapse
Affiliation(s)
- Myles B C Dillon
- From the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | |
Collapse
|
16
|
Xu J, Wang AH, Oses-Prieto J, Makhijani K, Katsuno Y, Pei M, Yan L, Zheng YG, Burlingame A, Brückner K, Derynck R. Arginine Methylation Initiates BMP-Induced Smad Signaling. Mol Cell 2013; 51:5-19. [PMID: 23747011 PMCID: PMC3951972 DOI: 10.1016/j.molcel.2013.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/12/2012] [Accepted: 05/02/2013] [Indexed: 11/15/2022]
Abstract
Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways.
Collapse
Affiliation(s)
- Jian Xu
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - A. Hongjun Wang
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Kalpana Makhijani
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Yoko Katsuno
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Ming Pei
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Leilei Yan
- Department of Chemistry, Georgia State University, Atlanta, GA30302-4098
| | - Y. George Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA30302-4098
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Katja Brückner
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143-0512. USA
| |
Collapse
|
17
|
Hobley G, McKelvie JC, Harmer JE, Howe J, Oyston PC, Roach PL. Development of rationally designed DNA N6 adenine methyltransferase inhibitors. Bioorg Med Chem Lett 2012; 22:3079-82. [DOI: 10.1016/j.bmcl.2012.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/12/2023]
|
18
|
Willnow S, Martin M, Lüscher B, Weinhold E. A Selenium-Based Click AdoMet Analogue for Versatile Substrate Labeling with Wild-Type Protein Methyltransferases. Chembiochem 2012; 13:1167-73. [DOI: 10.1002/cbic.201100781] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Indexed: 11/12/2022]
|
19
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|
20
|
Dowden J, Pike RA, Parry RV, Hong W, Muhsen UA, Ward SG. Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1. Org Biomol Chem 2011; 9:7814-21. [PMID: 21952734 DOI: 10.1039/c1ob06100c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein arginine N-methyltransferases (PRMTs) selectively replace N-H for N-CH(3) at substrate protein guanidines, a post-translational modification important for a range of biological processes, such as epigenetic regulation, signal transduction and cancer progression. Selective chemical probes are required to establish the dynamic function of individual PRMTs. Herein, model inhibitors designed to occupy PRMT binding sites for an arginine substrate and S-adenosylmethionine (AdoMet) co-factor are described. Expedient access to such compounds by modular synthesis is detailed. Remarkably, biological evaluation revealed some compounds to be potent inhibitors of PRMT1, but inactive against CARM1. Docking studies show how prototype compounds may occupy the binding sites for a co-factor and arginine substrate. Overlay of PRMT1 and CARM1 binding sites suggest a difference in a single amino acid that may be responsible for the observed selectivity.
Collapse
Affiliation(s)
- James Dowden
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD.
| | | | | | | | | | | |
Collapse
|
21
|
't Hart P, Lakowski TM, Thomas D, Frankel A, Martin NI. Peptidic partial bisubstrates as inhibitors of the protein arginine N-methyltransferases. Chembiochem 2011; 12:1427-32. [PMID: 21560220 DOI: 10.1002/cbic.201100074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Peter 't Hart
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Rust HL, Zurita-Lopez CI, Clarke S, Thompson PR. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1. Biochemistry 2011; 50:3332-45. [PMID: 21417440 PMCID: PMC3582369 DOI: 10.1021/bi102022e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.
Collapse
Affiliation(s)
- Heather L. Rust
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
- Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208
| | - Cecilia I. Zurita-Lopez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095
| | - Steven Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095
| | - Paul R. Thompson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
- Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208
| |
Collapse
|