1
|
Lukose V, Walvoort MTC, Imperiali B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology 2018; 27:820-833. [PMID: 28810664 DOI: 10.1093/glycob/cwx064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphoglycosyl transferases (PGTs) initiate the biosynthesis of both essential and virulence-associated bacterial glycoconjugates including lipopolysaccharide, peptidoglycan and glycoproteins. PGTs catalyze the transfer of a phosphosugar moiety from a nucleoside diphosphate sugar to a polyprenol phosphate, to form a membrane-bound polyprenol diphosphosugar product. PGTs are integral membrane proteins, which include between 1 and 11 predicted transmembrane domains. Despite this variation, common motifs have been identified in PGT families through bioinformatics and mutagenesis studies. Bacterial PGTs represent important antibacterial and virulence targets due to their significant role in initiating the biosynthesis of key bacterial glycoconjugates. Considerable effort has gone into mechanistic and inhibition studies for this class of enzymes, both of which depend on reliable, high-throughput assays for easy quantification of activity. This review summarizes recent advances made in the characterization of this challenging but important class of enzymes.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Imperiali
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Pardeshi P, Rao KK, Balaji PV. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities. PLoS One 2017; 12:e0175193. [PMID: 28403215 PMCID: PMC5389812 DOI: 10.1371/journal.pone.0175193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb) contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c.
Collapse
Affiliation(s)
- Peehu Pardeshi
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
| | - K. Krishnamurthy Rao
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| |
Collapse
|
3
|
Lukose V, Whitworth G, Guan Z, Imperiali B. Chemoenzymatic Assembly of Bacterial Glycoconjugates for Site-Specific Orthogonal Labeling. J Am Chem Soc 2015; 137:12446-9. [PMID: 26352466 PMCID: PMC4599313 DOI: 10.1021/jacs.5b07146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
cell surfaces of bacteria are replete with diverse glycoconjugates
that play pivotal roles in determining how bacteria interact with
the environment and the hosts that they colonize. Studies to advance
our understanding of these interactions rely on the availability of
chemically defined glycoconjugates that can be selectively modified
under orthogonal reaction conditions to serve as discrete ligands
to probe biological interactions, in displayed arrays and as imaging
agents. Herein, enzymes in the N-linked protein glycosylation
(Pgl) pathway of Campylobacter jejuni are evaluated
for their tolerance for azide-modified UDP-sugar substrates, including
derivatives of 2,4-diacetamidobacillosamine and N-acetylgalactosamine. In vitro analyses reveal that
chemoenzymatic approaches are useful for the preparation of undecaprenol
diphosphate-linked glycans and glycopeptides with site-specific introduction
of azide functionality for orthogonal labeling at three specific sites
in the heptasaccharide glycan. The uniquely modified glycoconjugates
represent valuable tools for investigating the roles of C.
jejuni cell surface glycoconjugates in host pathogen interactions.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Garrett Whitworth
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Weingartl HM, Zhang S, Marszal P, McGreevy A, Burton L, Wilson WC. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells. PLoS One 2014; 9:e87385. [PMID: 24489907 PMCID: PMC3905018 DOI: 10.1371/journal.pone.0087385] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/20/2013] [Indexed: 12/04/2022] Open
Abstract
Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells.
Collapse
Affiliation(s)
- Hana M. Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Shunzhen Zhang
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Alan McGreevy
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lynn Burton
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - William C. Wilson
- Arthropod-Borne Animal Disease Research Unit, United States Department of Agriculture, Manhattan, Kansas, United States of America
| |
Collapse
|
5
|
Bickford JS, Nick HS. Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP. MICROBIOLOGY-SGM 2013; 159:2444-2455. [PMID: 24068241 DOI: 10.1099/mic.0.070474-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Baker JL, Çelik E, DeLisa MP. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 2013; 31:313-23. [PMID: 23582719 DOI: 10.1016/j.tibtech.2013.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 01/05/2023]
Abstract
Glycosylation is the most prevalent post-translational modification found on proteins, occurring in all domains of life. Ever since the discovery of asparagine-linked (N-linked) protein glycosylation pathways in bacteria, major efforts have been made to harness these systems for the creation of novel therapeutics, vaccines, and diagnostics. Recent advances such as the ability to produce designer glycans in bacteria, some containing unnatural sugars, and techniques for evolving glycosylation enzymes have spawned an entirely new discipline known as bacterial glycoengineering. In addition to their biotechnological and therapeutic potential, bacteria equipped with recombinant N-linked glycosylation pathways are improving our understanding of the N-glycosylation process. This review discusses the key role played by microorganisms in glycosciences, particularly in the context of N-linked glycosylation.
Collapse
Affiliation(s)
- Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
7
|
Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 2012; 8:599. [PMID: 22806145 PMCID: PMC3421446 DOI: 10.1038/msb.2012.31] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022] Open
Abstract
This study is the first large-scale comparative analysis of multiple types of post-translational modifications in different eukaryotic species. The resulting network of co-evolving and functionally associated modifications reveals the global landscape of post-translational regulation. ![]()
In all, 115 149 non-redundant post-translational modifications (PTMs) of 13 different types were collected from 8 eukaryotes. Comparison of evolution speed reveals that carboxylation is the most conserved while SUMOylation is the fastest evolving PTM type. Co-evolution of PTM pairs that co-occur within proteins reveals a vastly interconnected global network of functionally associated PTM types in eukaryotes. Central to the network of functionally associated PTM types appear phosphorylation, acetylation, ubiquitination and O-linked glycosylation that control both temporal events and processes that govern protein localization.
Various post-translational modifications (PTMs) fine-tune the functions of almost all eukaryotic proteins, and co-regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co-evolution within proteins based on the co-occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co-evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane-associated proteins and in the context of particular protein domains and short-linear motifs. The global network of co-evolving PTM types implies a complex and intertwined post-translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.
Collapse
|
8
|
Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 2012; 517:83-97. [PMID: 22093697 PMCID: PMC3253937 DOI: 10.1016/j.abb.2011.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/20/2022]
Abstract
Long-chain polyprenols and polyprenyl-phosphates are ubiquitous and essential components of cellular membranes throughout all domains of life. Polyprenyl-phosphates, which include undecaprenyl-phosphate in bacteria and the dolichyl-phosphates in archaea and eukaryotes, serve as specific membrane-bound carriers in glycan biosynthetic pathways responsible for the production of cellular structures such as N-linked protein glycans and bacterial peptidoglycan. Polyprenyl-phosphates are the only form of polyprenols with a biochemically-defined role; however, unmodified or esterified polyprenols often comprise significant percentages of the cellular polyprenol pool. The strong evolutionary conservation of unmodified polyprenols as membrane constituents and polyprenyl-phosphates as preferred glycan carriers in biosynthetic pathways is poorly understood. This review surveys the available research to explore why unmodified polyprenols have been conserved in evolution and why polyprenyl-phosphates are universally and specifically utilized for membrane-bound glycan assembly.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|