1
|
An B, Sun L, Sun T, Li Y. Radical Homopolymerization of Arylsulfonylated α-Olefins to Synthesize Polysulfones - a "SO 2-free" Approach. Angew Chem Int Ed Engl 2025; 64:e202421906. [PMID: 39875324 DOI: 10.1002/anie.202421906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Traditionally, α-olefins have been regarded as non-homopolymerizable substrates in textbook examples. However, they have the ability to copolymerize with sulfur dioxide, leading to the creation of alternating copolymers. These commodity poly(olefin sulfone)s exhibit a wide array of applications. Nevertheless, the synthesis process involving sulfur dioxide pose considerable hazards and practical difficulties. In this study, we report on the "SO2-free" radical homopolymerization of sulfonyl α-olefin monomers, resulting in the production of ABC sequence-controlled poly(vinylbenzothiazole-olefin-sulfone)s. This unique radical polymerization process is enhanced by 1,4/1,5-aryl migration, facilitated by the sulfonyl radicals involved in propagation. This demonstrated aryl group migration radical polymerization opens up new possibilities for synthesizing polysulfones with unprecedented main chain sequences and structures, which hold great promise as candidates for innovative polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lixing Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tingting Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Iwasaki T, Suehisa G, Mandai R, Nozaki K. Sequence-Controlled Copolymerization of Structurally Well-Defined Multinuclear Zinc Acrylate Complexes and Styrene. Macromol Rapid Commun 2025; 46:e2400742. [PMID: 39520319 PMCID: PMC11800057 DOI: 10.1002/marc.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The copolymerization of two or more monomers produces polymeric materials with unique properties that cannot be achieved with homopolymers. However, precise control over the polymer sequence remains challenging because the sequence is determined by the inherent reactivity of comonomers. Therefore, only limited methods using modified monomers or supramolecular interactions are reported. In this study, the sequence control of acrylate-styrene copolymerization using multinuclear zinc complexes is reported. The copolymerization of the zinc acrylate complex with a polymeric sheet-like structure and styrene in benzene affords a copolymer with a higher content of acrylate triad than calculated for the statistical random model, whereas tetranuclear zinc acrylate (TZA) affords a copolymer with fewer adjacent acrylate sequences. The copolymer with a higher content of acrylate triad exhibits a lower glass transition temperature because of the higher mobility of the longer polystyrene segments. These results highlight the promise of multinuclear zinc acrylate complexes as monomers for sequence-controlled copolymerization.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Gaito Suehisa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Ryo Mandai
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Kyoko Nozaki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| |
Collapse
|
3
|
An B, Zhou L, Liu S, Zheng Y, Li C, Cui F, Yue C, Liu H, Sui Y, Ji C, Yan J, Li Y. Radical Homopolymerization of Linear α-Olefins Enabled by 1,4-Cyano Group Migration. Angew Chem Int Ed Engl 2024; 63:e202402511. [PMID: 38634323 DOI: 10.1002/anie.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
α-Olefins are valued and abundant building blocks from fossil resources. They are widely used to provide small-molecule or polymeric products. Despite numerous advantages of radical polymerization, it has been well-documented as textbook knowledge that α-olefins and their functionalized derivatives cannot be radically homopolymerized because of the degradative chain transfer side reactions. Herein, we report our studies on the homopolymerization of thiocyanate functionalized α-olefins enabled by 1,4-cyano group migration under radical conditions. By this approach, a library of ABC sequence-controlled polymers with high molecular weights can be prepared. We can also extend this strategy to the homopolymerization of α-substituted styrenic and acylate monomers which are known to be challenging to achieve. Overall, the demonstrated functional group migration radical polymerization could provide new possibilities to synthesize polymers with unprecedented main chain sequences and structures. These polymers are promising candidates for novel polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Litao Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaxin Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changhu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaowei Yue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chonglei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
4
|
Bhardwaj S, Gopalakrishnan DK, Garg D, Vaitla J. Bidirectional Iterative Approach to Sequence-Defined Unsaturated Oligoesters. JACS AU 2023; 3:252-260. [PMID: 36711094 PMCID: PMC9875252 DOI: 10.1021/jacsau.2c00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Herein, we describe the development of a new strategy for the synthesis of unsaturated oligoesters via sequential metal- and reagent-free insertion of vinyl sulfoxonium ylides into the O-H bond of carboxylic acid. Like two directional coupling of amino acids (N- to C-terminal and C- to N-terminal) in peptide synthesis, the present approach offers a strategy in both directions to synthesize oligoesters. The sequential addition of the vinyl sulfoxonium ylide to the carboxylic acids (acid iteration sequence) in one direction and the sequential addition of the carboxylic acids to the vinyl sulfoxonium ylide (ylide iteration sequence) in another direction yield (Z)-configured unsaturated oligoesters. To perform this iteration, we have developed a highly regioselective insertion of vinyl sulfoxonium ylide into the X-H (X = O, N, C, S, halogen) bond of acids, thiols, phenols, amines, indoles, and halogen acids under metal-free reaction conditions. The insertion reaction is applied to a broad range of substrates (>50 examples, up to 99% yield) and eight iterative sequences. Mechanistic studies suggest that the rate-limiting step depends on the type of X-H insertion.
Collapse
|
5
|
Lei Y, Chen Y. Post-polymerization modification of poly(ethyl sorbate) leading to various alternating copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kim H, Goseki R, Ishizone T. Anionic Self-alternating Polymerization of 1-(4-Vinylphenyl)-1-phenylethylene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamin Kim
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
7
|
Shibata K, Kametani Y, Daito Y, Ouchi M. Homopolymer- block-Alternating Copolymers Composed of Acrylamide Units: Design of Transformable Divinyl Monomers and Sequence-Specific Thermoresponsive Properties. J Am Chem Soc 2022; 144:9959-9970. [PMID: 35613460 DOI: 10.1021/jacs.2c02836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, we synthesized an acrylamide-based terpolymer that is a block copolymer composed of an AB alternating copolymer and a C homopolymer. The key to the unprecedented achievement is rational design of an acrylate-acrylamide divinyl monomer carrying CF3-substituted salicylic acid ester bonds (AAm-CF3) to realize the efficient and selective cyclopolymerization as well as the quantitative transformation of the resultant cyclorepeating units. The selectivity in the cyclopolymerization and the pendant transformation ability were evaluated through reactivity ratios of the corresponding model monomers and quantitative aminolysis reactions of the model compound. The cyclopolymerization via the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) process with a macrochain-transfer agent and subsequent aminolysis reaction afforded the homopolymer-block-alternating copolymer. The sequence-controlled terpolymer exhibited a very unique thermal response behavior in water that was strikingly different from the corresponding sequence-uncontrolled terpolymers, such as homopolymer-block-statistical copolymers and all statistical terpolymers, despite the fact that the structure cannot be distinguished by 1H NMR.
Collapse
Affiliation(s)
- Kentaro Shibata
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Kametani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuji Daito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers (Basel) 2022; 14:1128. [PMID: 35335458 PMCID: PMC8956016 DOI: 10.3390/polym14061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
Collapse
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yanan Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| |
Collapse
|
9
|
Babi J, Zhu L, Lin A, Uva A, El‐Haddad H, Peloewetse A, Tran H. Self‐assembled free‐floating
nanomaterials from
sequence‐defined
polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jon Babi
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Linglan Zhu
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Angela Lin
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Azalea Uva
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Hana El‐Haddad
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Atang Peloewetse
- Department of Chemistry University of Toronto Toronto Ontario Canada
| | - Helen Tran
- Department of Chemistry University of Toronto Toronto Ontario Canada
- Department of Chemical Engineering University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Gao Y, Zhang L, Jia R, Huang Z, Xie Y, Xuan S, Zhou N, Zhang Z, Zhu X. 2,5-Dimethylfuran/Acrylonitrile as Latent Monomer for Sequence-Controlled Copolymer and Sequence-Dependent Thermo-Responsivity. Macromol Rapid Commun 2021; 42:e2000724. [PMID: 33496041 DOI: 10.1002/marc.202000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Indexed: 11/10/2022]
Abstract
Sequence control has attracted increasing attention for its ability of regulating polymer property and performance. Herein, the sequence-controlled polymer containing acrylonitrile (AN) is achieved by using 2,5-dimethylfuran/acrylonitrile adduct as a latent monomer. The temperature-dependent retro Diels-Alder reaction is engaged in controlling the release of AN during RAFT polymerization, that is, regulating the instant AN concentration via a non-invasive and in situ manner. Such control over the instant AN concentration and particularly the molar ratio of comonomer pair leads to the simultaneous change of monomer units in "living" polymeric chain, thus resulting in the sequence-controlled polymeric structures. By delicately manipulating the polymerization temperature, diverse sequence-on-demand structures of AN-containing copolymers, such as poly(AN/methyl methacrylate), poly(AN/styrene), poly(AN/butyl acrylate), poly(AN/N,N-dimethylacrylamide), and poly(AN/N-isopropylacrylamide) are created. Meanwhile, this study presents an initial attempt in tuning the thermal responsivity of poly(AN/N-isopropylacrylamide), which is closely correlated to the sequence of polymer structure. More importantly, the polymer with averagely distributed AN units results in the higher thermal sensitivity. Therefore, the synthetic strategy proposed in this work offers a promising platform for accessing the sequence-controlled copolymers containing AN structures, thus expanding the investigation on the relationship between the polymer structures and correlated properties.
Collapse
Affiliation(s)
- Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Jia
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Software Technology, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
12
|
Zhang R, Li X, Ma H, Han L, Li C, Zhang S, Bai H, Li Y. Dependence of the liquid crystalline properties on the exactly controlled single-site functionalized density of mesogens focused on the alternating copolymer model. Polym Chem 2021. [DOI: 10.1039/d1py01310f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorinated liquid crystal polymers (FLCPs) with an alternating sequence of mesogenic moieties within their backbones were precisely constructed.
Collapse
Affiliation(s)
- Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuwen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Li C, Han L, Chen X, Bao X, Sun Q, Ma H, Li Y. Regulation of tectonic sequences in chain-folding-directed monodisperse isomeric oligomers precisely tailored by Ugi-hydrosilylation orthogonal cycles. Polym Chem 2021. [DOI: 10.1039/d1py00416f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monodisperse discrete oligomers with a tailored sequence of linkages within their backbones, which has been defined as a tectonic sequence, were precisely constructed through Ugi-4CRs coupled to hydrosilylation orthogonal cycles.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xiping Chen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xinyu Bao
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qi Sun
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
14
|
Okuno Y, Shibata T, Ohyou A, Suzuki R, Takegami M, Kato S, Isomura S, Aoki S, Kanno J, Sato Y. Synthesis of Bi‐functional Immobilized Polymer Catalysts via a Two‐step Radiation‐induced Graft Polymerization Process. ChemCatChem 2020. [DOI: 10.1002/cctc.202001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshinori Okuno
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Takako Shibata
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Akie Ohyou
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Rie Suzuki
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Mayuko Takegami
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Satoshi Kato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shigeki Isomura
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shoji Aoki
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Junichi Kanno
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Yasuo Sato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| |
Collapse
|
15
|
Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polym J 2020. [DOI: 10.1038/s41428-020-00405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Kametani Y, Tournilhac F, Sawamoto M, Ouchi M. Unprecedented Sequence Control and Sequence‐Driven Properties in a Series of AB‐Alternating Copolymers Consisting Solely of Acrylamide Units. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials CNRS, ESPCI-Paris PSL Research University 10 rue Vauquelin 75005 Paris France
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
17
|
Kametani Y, Tournilhac F, Sawamoto M, Ouchi M. Unprecedented Sequence Control and Sequence-Driven Properties in a Series of AB-Alternating Copolymers Consisting Solely of Acrylamide Units. Angew Chem Int Ed Engl 2020; 59:5193-5201. [PMID: 31943523 DOI: 10.1002/anie.201915075] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Herein, we report a method to synthesize a series of alternating copolymers that consist exclusively of acrylamide units. Crucial to realizing this polymer synthesis is the design of a divinyl monomer that contains acrylate and acrylamide moieties connected by two activated ester bonds. This design, which is based on the reactivity ratio of the embedded vinyl groups, allows a "selective" cyclopolymerization, wherein the intramolecular and intermolecular propagation are repeated alternately under dilute conditions. The addition of an amine to the resulting cyclopolymers afforded two different acryl amide units, i.e., an amine-substituted acryl amide and a 2-hydroxy-ethyl-substituted acryl amide in alternating sequence. Using this method, we could furnish ten types of alternating copolymers; some of these exhibit unique properties in solution and in the bulk, which are different from those of the corresponding random copolymers, and we attributed the differences to the alternating sequence.
Collapse
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, CNRS, ESPCI-Paris, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
18
|
|
19
|
Han F, Shi Q, Zhang L, Liu B, Zhang Y, Gao Y, Jia R, Zhang Z, Zhu X. Stereoisomeric furan/maleimide adducts as latent monomers for one-shot sequence-controlled polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01379b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two stereoisomeric latent monomers were used for one-shot sequence-controlled polymerization to create diverse sequence structures.
Collapse
Affiliation(s)
- Fufu Han
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Qiunan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Baolei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yajie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Rui Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
20
|
Nishimori K, Ouchi M. AB-alternating copolymers via chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chem Commun (Camb) 2020; 56:3473-3483. [DOI: 10.1039/d0cc00275e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, four topics on alternating copolymers synthesized via chain-growth polymerization are reviewed: (1) how to control the alternating sequence; (2) sequence analysis; (3) self-assembly; and (4) functions.
Collapse
Affiliation(s)
- Kana Nishimori
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
21
|
Ma Q, Han L, Ma H, Liu P, Shen H, Yang L, Li C, Hao X, Li Y. Investigation of the features of alternating copolymerization of 1,1-bis(4-dimethylsilylphenyl)ethylene and isoprene modified with additive. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Oh D, Furuya Y, Ouchi M. Unusual Radical Copolymerization of Suprabulky Methacrylate with N-Hydroxysuccinmide Acrylate: Facile Syntheses of Alternating-Rich Copolymers of Methacrylic Acid and N-Alkyl Acrylamide. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dongyoung Oh
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yousuke Furuya
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Kanbayashi N, Okamura TA, Onitsuka K. Living Cyclocopolymerization through Alternating Insertion of Isocyanide and Allene via Controlling the Reactivity of the Propagation Species: Detailed Mechanistic Investigation. J Am Chem Soc 2019; 141:15307-15317. [PMID: 31475819 DOI: 10.1021/jacs.9b07431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cyclocopolymerization through the alternating insertion of an isocyanide and allene into palladium-carbon bond was developed based on the controlling the reactivity of the propagation species using bidentate ligands. We revealed that the rate of the presented cyclocopolymerization was depended on the ligands of Pd-initiator. When the palladium-methyl complexes having appropriate cis-chelating ligand, such as 1,3-bis(diphenylphosphino)propane (dppp), were used as initiator, the cyclocopolymerization of bifunctional aryl isocyanides (1) that contain both isocyano and allenyl moieties polymerized to afford poly(quinolylene-2,3-methylene)s with controlled molecular weight and narrow molecular weight distributions. The resulting polymer was characterized by 1H and 13C NMR analyses, which clearly showed that the terminal moiety of the polymer formed well-defined organopalladium complex as the resting state for the polymerization, which could undergo further polymerization; not only cyclocopolymerization with 1 but also homopolymerization of simple aryl isocyanide. In the analysis of the cyclocopolymerization mechanism, we conclusively demonstrated that the insertion reaction of isocyanide is the rate-determination step in the cyclocopolymerization, which proceeds via a five-coordinate intermediate with a geometrical change. The cis-chelating ligand controls the site interchange reaction, which dominates the reactivity of propagation species.
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science , Osaka University , Toyonaka, Osaka 560-0043 , Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science , Osaka University , Toyonaka, Osaka 560-0043 , Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science , Osaka University , Toyonaka, Osaka 560-0043 , Japan
| |
Collapse
|
24
|
Cazares-Cortes E, Baker BC, Nishimori K, Ouchi M, Tournilhac F. Polymethacrylic Acid Shows Thermoresponsivity in an Organic Solvent. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Esther Cazares-Cortes
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Benjamin C. Baker
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Kana Nishimori
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, 615-8510 Kyoto, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, 615-8510 Kyoto, Japan
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
25
|
Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Von Peptiden lernen: eine Strategie für das Design funktionaler Präzisionspolymer‐Sequenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eva Maron
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | | | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Australien
| | - Tara Y. Meyer
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA USA
| | - Tanja Junkers
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Australien
- Institute for Materials ResearchHasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Hans G. Börner
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
26
|
Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Learning from Peptides to Access Functional Precision Polymer Sequences. Angew Chem Int Ed Engl 2019; 58:10747-10751. [DOI: 10.1002/anie.201902217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Eva Maron
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | | | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk Clayton VIC 3800 Australia
| | - Tara Y. Meyer
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA USA
| | - Tanja Junkers
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk Clayton VIC 3800 Australia
- Institute for Materials ResearchHasselt University Martelarenlaan 42 3500 Hasselt Belgium
| | - Hans G. Börner
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
27
|
Zhang L, Ji Y, Gu X, Zhang W, Zhou N, Zhang Z, Zhu X. Synthesis of sequence-controlled polymers with pendent “clickable” or hydrophilic groups via latent monomer strategy. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
One-shot synthesis of sequence-controlled polymers with versatile succimide motifs for post-modifications. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Zhou Z, Ergene C, Palermo EF. Synthetic mimics of cyclic antimicrobial peptides via templated ring-opening metathesis (TROM). Polym Chem 2019. [DOI: 10.1039/c9py01271k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We utilized a templated ring-opening metathesis (TROM) strategy to synthesize a series of precision macrocyclic olefins, each containing two, three or four repeating units of a cyclooctene with pendant carboxylic acid side chains.
Collapse
Affiliation(s)
- Zhe Zhou
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Cansu Ergene
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Edmund F. Palermo
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| |
Collapse
|
30
|
Goseki R, Zhang F, Takahata K, Uchida S, Ishizone T. Synthesis of a well-defined alternating copolymer of 1,1-diphenylethylene and tert-butyldimethylsilyloxymethyl substituted styrene by anionic copolymerization: toward tailored graft copolymers with controlled side chain densities. Polym Chem 2019. [DOI: 10.1039/c9py01161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Well-defined alternating copolymers comprising 1,1-diphenylethylene (DPE) and styrene derivative having sterically bulky tert-butyldimethylsilyloxymethyl group at the meta position (St-TBS) were successfully synthesized.
Collapse
Affiliation(s)
- Raita Goseki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Fan Zhang
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuki Takahata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
31
|
Mochizuki S, Kitao T, Uemura T. Controlled polymerizations using metal-organic frameworks. Chem Commun (Camb) 2018; 54:11843-11856. [PMID: 30259030 DOI: 10.1039/c8cc06415f] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This short review focuses on recent developments in polymerization reactions using metal-organic frameworks (MOFs). MOFs are crystalline porous materials that are able to tune their frameworks, enabling their use as promising media for polymerization. The precise design of the MOF structure is key to controlling polymerizations, allowing for the regulation of not only primary but also higher-order structures.
Collapse
Affiliation(s)
- Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
32
|
Hutchings LR, Brooks PP, Shaw P, Ross‐Gardner P. Fire and Forget! One‐Shot Synthesis and Characterization of Block‐Like Statistical Terpolymers via Living Anionic Polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lian R. Hutchings
- Durham Centre for Soft Matter, Department of ChemistryDurham University Durham DH1 3LE United Kingdom
| | - Paul P. Brooks
- Durham Centre for Soft Matter, Department of ChemistryDurham University Durham DH1 3LE United Kingdom
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| | - Peter Shaw
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| | - Paul Ross‐Gardner
- Synthomer Central Road, Templefields, Harlow Essex CM20 2BH United Kingdom
| |
Collapse
|
33
|
Pasini D, Takeuchi D. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem Rev 2018; 118:8983-9057. [PMID: 30146875 DOI: 10.1021/acs.chemrev.8b00286] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomers possessing two functionalities suitable for polymerization are often designed and utilized in syntheses directed to the formation of cross-linked macromolecules. In this review, we give an account of recent developments related to the use of such monomers in cyclopolymerization processes, in order to form linear, soluble macromolecules. These processes can be activated by means of radical, ionic, or transition-metal mediated chain-growth polymerization mechanisms, to achieve cyclic moieties of variable ring size which are embedded within the polymer backbone, driving and tuning peculiar physical properties of the resulting macromolecules. The two functionalities are covalently linked by a "tether", which can be appropriately designed in order to "imprint" elements of chemical information into the polymer backbone during the synthesis and, in some cases, be removed by postpolymerization reactions. The two functionalities can possess identical or even very different reactivities toward the polymerization mechanism involved; in the latter case, consequences and outcomes related to the sequence-controlled, precision synthesis of macromolecules have been demonstrated. Recent advances in new initiating systems and polymerization catalysts enabled the precision syntheses of polymers with regulated cyclic structures by highly regio- and/or stereoselective cyclopolymerization. Cyclopolymerizations involving double cyclization, ring-opening, or isomerization have been also developed, generating unique repeating structures, which can hardly be obtained by conventional polymerization methods.
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry and INSTM Research Unit , University of Pavia , Viale Taramelli , 10-27100 Pavia , Italy
| | - Daisuke Takeuchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , 3 Bunkyo-cho , Hirosaki , Aomori , 036-8561 , Japan
| |
Collapse
|
34
|
Kametani Y, Sawamoto M, Ouchi M. Control of the Alternating Sequence for
N
‐Isopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angew Chem Int Ed Engl 2018; 57:10905-10909. [DOI: 10.1002/anie.201805049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/16/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
35
|
Kametani Y, Sawamoto M, Ouchi M. Control of the Alternating Sequence for
N
‐Isopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
36
|
Nadamoto K, Maruyama K, Fujii N, Ikeda T, Kihara SI, Haino T. Supramolecular Copolymerization by Sequence Reorganization of a Supramolecular Homopolymer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kouhei Nadamoto
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Kei Maruyama
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Naoka Fujii
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Toshiaki Ikeda
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
- Present address: Department of Chemistry; School of Science; Tokai University; 4-1-1 Kitakaname Hiratsuka, Kanagawa 259-1292 Japan
| | - Shin-ichi Kihara
- Department of Chemical Engineering; Graduate School of Engineering; Hiroshima University; 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Takeharu Haino
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
37
|
Nadamoto K, Maruyama K, Fujii N, Ikeda T, Kihara SI, Haino T. Supramolecular Copolymerization by Sequence Reorganization of a Supramolecular Homopolymer. Angew Chem Int Ed Engl 2018; 57:7028-7033. [DOI: 10.1002/anie.201800980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/28/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Kouhei Nadamoto
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Kei Maruyama
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Naoka Fujii
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Toshiaki Ikeda
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
- Present address: Department of Chemistry; School of Science; Tokai University; 4-1-1 Kitakaname Hiratsuka, Kanagawa 259-1292 Japan
| | - Shin-ichi Kihara
- Department of Chemical Engineering; Graduate School of Engineering; Hiroshima University; 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Takeharu Haino
- Department of Chemistry; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
38
|
Mochizuki S, Ogiwara N, Takayanagi M, Nagaoka M, Kitagawa S, Uemura T. Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nat Commun 2018; 9:329. [PMID: 29362404 PMCID: PMC5780473 DOI: 10.1038/s41467-017-02736-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
The design of monomer sequences in polymers has been a challenging research subject, especially in making vinyl copolymers by free-radical polymerization. Here, we report a strategy to obtain sequence-regulated vinyl copolymers, utilizing the periodic structure of a porous coordination polymer (PCP) as a template. Mixing of Cu2+ ion and styrene-3,5-dicarboxylic acid (S) produces a PCP, [Cu(styrene-3,5-dicarboxylate)] n , with the styryl groups periodically immobilized along the one-dimensional channels. After the introduction of acrylonitrile (A) into the host PCP, radical copolymerization between A and the immobilized S is performed inside the channel, followed by decomposing the PCP to isolate the resulting copolymer. The predominant repetitive SAAA sequence in the copolymer is confirmed by monomer composition, NMR spectroscopy and theoretical calculations. Copolymerization using methyl vinyl ketone also provides the same type of sequence-regulated copolymer, showing that this methodology has a versatility to control the copolymer sequence via transcription of PCP periodicity at the molecular level.
Collapse
Affiliation(s)
- Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Naoki Ogiwara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masayoshi Takayanagi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masataka Nagaoka
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Kitagawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takashi Uemura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
39
|
Qu C, Li Z, He J. Synthesis of copolymers with an exact alternating sequence using the cationic polymerization of pre-sequenced monomers. Polym Chem 2018. [DOI: 10.1039/c8py00626a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternating copolymers of styrene/methyl vinyl ether and styrene/vinyl alcohol were synthesized. The effect of an alternating sequence on the fluorescence emissions of the products was investigated.
Collapse
Affiliation(s)
- Chengke Qu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Zhenhua Li
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Junpo He
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
40
|
De Neve J, Haven JJ, Maes L, Junkers T. Sequence-definition from controlled polymerization: the next generation of materials. Polym Chem 2018. [DOI: 10.1039/c8py01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An overview is given on the state-of-the-art in synthesis of sequence-controlled and sequence-defined oligomers and polymers.
Collapse
Affiliation(s)
- Jeroen De Neve
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Joris J. Haven
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Lowie Maes
- Institute for Materials Research
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| |
Collapse
|
41
|
Yang L, Ma H, Han L, Hao X, Liu P, Shen H, Li Y. Synthesis of a sequence-controlled in-chain alkynyl/tertiary amino dual-functionalized terpolymer via living anionic polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01837a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-functionalized sequence-defined terpolymer was synthesized via living anionic polymerization; meanwhile its kinetic characteristics and sequence structure were investigated in detail via the in situ1H NMR method.
Collapse
Affiliation(s)
- Lincan Yang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
42
|
Gu X, Zhang L, Li Y, Zhang W, Zhu J, Zhang Z, Zhu X. Facile synthesis of advanced gradient polymers with sequence control using furan-protected maleimide as a comonomer. Polym Chem 2018. [DOI: 10.1039/c7py02125a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse advanced gradient polymers, including simultaneous, hierarchical, di-blocky, symmetrical, and tri-blocky gradient polymers, were facilely fabricated by applying furan protected maleimide as a co-monomer.
Collapse
Affiliation(s)
- Xue Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ying Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
43
|
Lutz JF. Defining the Field of Sequence-Controlled Polymers. Macromol Rapid Commun 2017; 38. [PMID: 29160615 DOI: 10.1002/marc.201700582] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Over the last ten years, the development of synthetic polymers containing controlled monomer sequences has become a prominent topic in fundamental and applied polymer science. This emerging area is particularly broad and combines classical polymer chemistry tools with techniques imported from other domains such as biology, biochemistry, organic synthesis, engineering, and bioanalytics. Consequently, it also generates new structures, terminologies, and applications that are not within the traditional scope of polymer science. The term "sequence-controlled polymers" (SCPs) was recently proposed as a generic name to describe all these recent trends. However, since the field of SCPs has been growing very rapidly in recent literature, it is urgent to accurately define its scientific frontiers. In this important context, this review is an attempt to define, rationalize, and classify the field of SCPs. In particular, all synthetic approaches that have been reported for the synthesis of SCPs are discussed and categorized. In addition, the characterization tools, properties, and potential applications of these new polymers are described herein. Overall, this review serves as a reference guide for understanding the burgeoning field of SCPs.
Collapse
Affiliation(s)
- Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
44
|
Ouchi M, Sawamoto M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J 2017. [DOI: 10.1038/pj.2017.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Sun Y, Jia Z, Chen C, Cong Y, Mao X, Wu J. Alternating Sequence Controlled Copolymer Synthesis of α-Hydroxy Acids via Syndioselective Ring-Opening Polymerization of O-Carboxyanhydrides Using Zirconium/Hafnium Alkoxide Initiators. J Am Chem Soc 2017; 139:10723-10732. [DOI: 10.1021/jacs.7b04712] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yangyang Sun
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zhaowei Jia
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Changjuan Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- College
of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, People’s Republic of China
| | - Yong Cong
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaoyang Mao
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jincai Wu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
46
|
Kametani Y, Nakano M, Yamamoto T, Ouchi M, Sawamoto M. Cyclopolymerization of Cleavable Acrylate-Vinyl Ether Divinyl Monomer via Nitroxide-Mediated Radical Polymerization: Copolymer beyond Reactivity Ratio. ACS Macro Lett 2017; 6:754-757. [PMID: 35650857 DOI: 10.1021/acsmacrolett.7b00368] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclopolymerization of a divinyl monomer, where two different vinyl groups, that is, acrylate and vinyl ether, are connected via an ester bond, was performed under diluted condition with nitroxide-meditated radical polymerization (NMP). Both vinyl groups were consumed at almost same rate under suitable condition, although the inherent cross-propagation ability between the two vinyl groups are pretty low in radical copolymerization. Furthermore, the polymerization was controlled to some extent to give polymers of unimodal molecular weight distributions. The results obviously differed from copolymerization and homopolymerization with vinyl monomers that constitutes the divinyl monomer, 2-methoxyethyl acrylate and 2-acetoxyethyl vinyl ether. Structural analyses indicated formation of the cyclopolymer but the cyclo-efficiency was imperfect indicating that some units of olefinic dangling were incorporated. Eventually, the ester bonds of the cyclo units were cleaved to convert into the copolymer consisting of acrylic acid and 2-hydroxy ethyl vinyl ether and the composition ratio (DPacryl/DPVE) was 55:45. The copolymer showed higher glass transition temperature than that estimated from the composition ratio and Tg values of the homopolymers, which is likely due to the formation of quasi-cyclopolymer between carboxylic acid and hydroxy groups aligned in alternating fashion.
Collapse
Affiliation(s)
- Yuki Kametani
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Marina Nakano
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taizo Yamamoto
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Kawaguchi, Saitama 332-0012, Japan
| | - Mitsuo Sawamoto
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
47
|
Kubatzki F, Al-Shok L, Ten Brummelhuis N. Synthesis and Functionalization of Periodic Copolymers. Polymers (Basel) 2017; 9:E166. [PMID: 30970845 PMCID: PMC6432474 DOI: 10.3390/polym9050166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022] Open
Abstract
For the copolymerization of non-conjugated olefins and maleimides, it is known that under certain conditions periodic ABA monomer sequences are formed. In this work, such a copolymerization is used to create polymers which have defined (periodic) monomer sequences and can be functionalized after polymerization. The copolymerization of pentafluorophenol (PFP) active esters of 4-pentenoic acid and perillic acid with N-phenyl maleimide (PhMI) was studied in 1,2-dichloroethane (DCE) and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propanol (HFPP). In DCE and for the copolymerization of the PFP ester of 4-pentenoic acid and PhMI in HFPP, polymers were formed where the active esters were separated by at least one PhMI unit. The average number of separating PhMI units can be controlled by varying the feed ratio of the monomers. For the copolymerization of the PFP ester of perillic acid in HFPP, a preference for the formation of periodic copolymers was observed, where active esters were preferably separated from each other by a maximum of two PhMI moieties. Therefore, the copolymerization of said active ester containing monomers with PhMI provides a platform to create polymers in which reactive moieties are distributed along the polymer chain in different fashions. The active esters in the non-conjugated vinyl monomers could be used in a post-polymerization functionalization step to create functionalized polymers with defined monomer sequences in a modular way.
Collapse
Affiliation(s)
- Falk Kubatzki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany.
| | - Lucas Al-Shok
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany.
| | - Niels Ten Brummelhuis
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany.
| |
Collapse
|
48
|
Ji Y, Zhang L, Gu X, Zhang W, Zhou N, Zhang Z, Zhu X. Sequence-Controlled Polymers with Furan-Protected Maleimide as a Latent Monomer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuxuan Ji
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xue Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
49
|
Ji Y, Zhang L, Gu X, Zhang W, Zhou N, Zhang Z, Zhu X. Sequence-Controlled Polymers with Furan-Protected Maleimide as a Latent Monomer. Angew Chem Int Ed Engl 2017; 56:2328-2333. [DOI: 10.1002/anie.201610305] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yuxuan Ji
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xue Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
50
|
Abstract
Sequence-defined oligourethanes were transformed into ATRP initiators and used for the synthesis of precision macromolecular architectures.
Collapse
Affiliation(s)
- Sofia Telitel
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Benoît Éric Petit
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Salomé Poyer
- Aix Marseille Université
- CNRS
- UMR 7273
- Institute of Radical Chemistry
- 13397 Marseille Cedex 20
| | - Laurence Charles
- Aix Marseille Université
- CNRS
- UMR 7273
- Institute of Radical Chemistry
- 13397 Marseille Cedex 20
| | - Jean-François Lutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| |
Collapse
|