1
|
Takahashi H, Ikemoto Y, Ogawa A. Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches. ACS Synth Biol 2025; 14:771-780. [PMID: 39729431 PMCID: PMC11934135 DOI: 10.1021/acssynbio.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yuri Ikemoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
4
|
Okamura H, Yao T, Nagatsugi F. Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction. J Am Chem Soc 2024; 146:18513-18523. [PMID: 38941287 PMCID: PMC11240562 DOI: 10.1021/jacs.4c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
Gene expression technology has become an indispensable tool for elucidating biological processes and developing biotechnology. Cell-free gene expression (CFE) systems offer a fundamental platform for gene expression-based technology, in which the reversible and programmable control of transcription can expand its use in synthetic biology and medicine. This study shows that CFE can be controlled via the host-guest interaction of cucurbit[7]uril (CB[7]) with N6-guest-modified adenosines. These adenosine derivatives were conveniently incorporated into the DNA strand using a post-synthetic approach and formed a selective and stable base pair with complementary thymidine in DNA. Meanwhile, alternate addition of CB[7] and the exchanging guest molecule induced the reversible formation of a duplex structure through the formation and dissociation of a bulky complex on DNA. The kinetics of the reversibility was fine-tuned by changing the size of the modified guest moieties. When incorporated into a specific region of the T7 promoter sequence, the guest-modified adenosines enabled tight and reversible control of in vitro transcription and protein expression in the CFE system. This study marks the first utility of the host-guest interaction for gene expression control in the CFE system, opening new avenues for developing DNA-based technology, particularly for precise gene therapy and DNA nanotechnology.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Takeyuki Yao
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
5
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 PMCID: PMC11913122 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
6
|
Ishii Y, Fukunaga K, Cooney A, Yokobayashi Y, Matsuura T. Switchable and orthogonal gene expression control inside artificial cells by synthetic riboswitches. Chem Commun (Camb) 2024; 60:5972-5975. [PMID: 38767578 DOI: 10.1039/d4cc00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Here we report two novel synthetic riboswitches that respond to ASP2905 and theophylline and function in reconstituted cell-free protein synthesis (CFPS) system. We encapsulated the CFPS system as well as DNA-templated encoding reporter genes regulated by these orthogonal riboswitches inside liposomes, and achieved switchable and orthogonal control over gene expression by external stimulation with the cognate ligands.
Collapse
Affiliation(s)
- Yuta Ishii
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Keisuke Fukunaga
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
| | - Aileen Cooney
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
| |
Collapse
|
7
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
8
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
9
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
10
|
Vibhute MA, Mutschler H. A Primer on Building Life‐Like Systems. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahesh A. Vibhute
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Hannes Mutschler
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
11
|
Tabuchi T, Yokobayashi Y. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Res 2022; 50:3535-3550. [PMID: 35253887 PMCID: PMC8989549 DOI: 10.1093/nar/gkac152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cell-free systems that display complex functions without using living cells are emerging as new platforms to test our understanding of biological systems as well as for practical applications such as biosensors and biomanufacturing. Those that use cell-free protein synthesis (CFPS) systems to enable genetically programmed protein synthesis have relied on genetic regulatory components found or engineered in living cells. However, biological constraints such as cell permeability, metabolic stability, and toxicity of signaling molecules prevent development of cell-free devices using living cells even if cell-free systems are not subject to such constraints. Efforts to engineer regulatory components directly in CFPS systems thus far have been based on low-throughput experimental approaches, limiting the availability of basic components to build cell-free systems with diverse functions. Here, we report a high-throughput screening method to engineer cell-free riboswitches that respond to small molecules. Droplet-sorting of riboswitch variants in a CFPS system rapidly identified cell-free riboswitches that respond to compounds that are not amenable to bacterial screening methods. Finally, we used a histamine riboswitch to demonstrate chemical communication between cell-sized droplets.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Zhang P, Fischer A, Ouyang Y, Wang J, Sohn YS, Karmi O, Nechushtai R, Willner I. Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems. Chem Sci 2022; 13:7437-7448. [PMID: 35872834 PMCID: PMC9241983 DOI: 10.1039/d2sc01542k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dynamic dimerization of GOx-loaded microcapsules with β-gal//hemin/G-quadruplex-bridged T1/T2-loaded microcapsules guides the bi-directional intercommunication of the three catalysts cascade.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
14
|
Ji Y, Mu W, Wu H, Qiao Y. Directing Transition of Synthetic Protocell Models via Physicochemical Cues-Triggered Interfacial Dynamic Covalent Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101187. [PMID: 34319646 PMCID: PMC8456217 DOI: 10.1002/advs.202101187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Indexed: 05/15/2023]
Abstract
As the preliminary synthetic analogs of living cells, protocells with life-like features serve as a versatile platform to explore the origin of life. Although protocells constructed from multiple components have been developed, the transition of primitive cellular compartments toward structural complexity and advanced function remains a scientific challenge. Herein, a programmable pathway is established to exploit a simple chemistry to construct structural transition of protocell models from emulsion droplets, nanocapsules to molecularly crowded droplets. The transitional process toward distinct cell-like compartments is driven by interfacial self-assembly of simple components and regulated by physicochemical cues (e.g., mechanical force, solvent evaporation, acid/base equilibrium) triggered dynamic covalent chemistry. These protocell models are further studied by comparing their compartmentalization behavior, sequestration efficiency, and the ability to enrich biomolecules (e.g., enzyme and substrate) toward catalytic reaction or biological activity within the compartments. The results showcase physiochemical cues-driven programmable transition of life-like compartments toward functionalization, and offer a new step toward the design of living soft materials.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hua Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
15
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
16
|
Takahashi H, Ogawa A. Preparation of a Millimeter-Sized Supergiant Liposome That Allows for Efficient, Eukaryotic Cell-Free Translation in the Interior by Spontaneous Emulsion Transfer. ACS Synth Biol 2020; 9:1608-1614. [PMID: 32559381 DOI: 10.1021/acssynbio.0c00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We sought to prepare millimeter-sized supergiant unilamellar vesicles (SGUVs) by spontaneous emulsion transfer for efficient, eukaryotic cell-free translation in the interior. Although the conventional protocols require that a considerably high concentration of sucrose be encapsulated into the SGUVs for their efficient formation, such high amounts of sucrose severely inhibited cell-free translation based on wheat germ extract (WGE). We thus optimized the preparation conditions to permit SGUV formation at a much lower concentration of sucrose that has almost no effect on WGE translation. Under the optimized conditions, we successfully prepared WGE translation system-encapsulating SGUVs that allow for protein synthesis with a high efficiency comparable to that outside a liposome. The optimization also resulted in a high rate of successful SGUV formation (>90%) and a decent stability of the formed SGUVs (>60 min). These SGUVs are expected to serve as research tools in cell-free synthetic biology and as foundations for artificial cell-based biosensors.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
17
|
Bich L. Interactive Models in Synthetic Biology: Exploring Biological and Cognitive Inter-Identities. Front Psychol 2020; 11:682. [PMID: 32351430 PMCID: PMC7174710 DOI: 10.3389/fpsyg.2020.00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/20/2020] [Indexed: 11/25/2022] Open
Abstract
The aim of this article is to investigate the relevance and implications of synthetic models for the study of the interactive dimension of minimal life and cognition, by taking into consideration how the use of artificial systems may contribute to an understanding of the way in which interactions may affect or even contribute to shape biological identities. To do so, this article analyzes experimental work in synthetic biology on different types of interactions between artificial and natural systems, more specifically: between protocells and between biological living cells and protocells. It discusses how concepts such as control, cognition, communication can be used to characterize these interactions from a theoretical point of view, which criteria of relevance and evaluation of synthetic models can be applied to these cases, and what are their limits.
Collapse
Affiliation(s)
- Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Logic and Philosophy of Science, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| |
Collapse
|
18
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Jia H, Schwille P. Bottom-up synthetic biology: reconstitution in space and time. Curr Opin Biotechnol 2019; 60:179-187. [DOI: 10.1016/j.copbio.2019.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/07/2019] [Indexed: 01/30/2023]
|
20
|
Stuhr-Hansen N, Vagianou CD, Blixt O. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides. Bioconjug Chem 2019; 30:2156-2164. [DOI: 10.1021/acs.bioconjchem.9b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Charikleia-Despoina Vagianou
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
21
|
Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. J Am Chem Soc 2019; 141:11103-11114. [PMID: 31241330 DOI: 10.1021/jacs.9b03300] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Artificial cells that encapsulate DNA-programmable protein expression machinery are emerging as an attractive platform for studying fundamental cellular properties and applications in synthetic biology. However, interfacing these artificial cells with the complex and dynamic chemical environment remains a major and urgent challenge. We demonstrate that the repertoire of molecules that artificial cells respond to can be expanded by synthetic RNA-based gene switches, or riboswitches. We isolated an RNA aptamer that binds histamine with high affinity and specificity and used it to design robust riboswitches that activate protein expression in the presence of histamine. Finally, the riboswitches were incorporated in artificial cells to achieve controlled release of an encapsulated small molecule and to implement a self-destructive kill-switch. Synthetic riboswitches should serve as modular and versatile interfaces to link artificial cell phenotypes with the complex chemical environment.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Yusuke Seike
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Shungo Kobori
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Charles Whitaker
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| |
Collapse
|
22
|
An Organisational Approach to Biological Communication. Acta Biotheor 2019; 67:103-128. [PMID: 30712187 DOI: 10.1007/s10441-019-09342-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
This paper aims to provide a philosophical and theoretical account of biological communication grounded in the notion of organisation. The organisational approach characterises living systems as organised in such a way that they are capable to self-produce and self-maintain while in constant interaction with the environment. To apply this theoretical framework to the study of biological communication, we focus on a specific approach, based on the notion of influence, according to which communication takes place when a signal emitted by a sender triggers a change in the behaviour of the receiver that is functional for the sender itself. We critically analyse the current formulations of this account, that interpret what is functional for the sender in terms of evolutionary adaptations. Specifically, the adoption of this etiological functional framework may lead to the exclusion of several phenomena usually studied as instances of communication, and possibly even of entire fields of investigation such as synthetic biology. As an alternative, we reframe the influence approach in organisational terms, characterising functions in terms of contributions to the current organisation of a biological system. We develop a theoretical account of biological communication in which communicative functions are distinguished from other types of biological functions described by the organisational account (e.g. metabolic, ecological, etc.). The resulting organisational-influence approach allows to carry out causal analyses of current instances of phenomena of communication, without the need to provide etiological explanations. In such a way it makes it possible to understand in terms of communication those phenomena which realise interactive patterns typical of signalling interactions-and are usually studied as such in scientific practice-despite not being the result of evolutionary adaptations. Moreover, this approach provides operational tools to design and study communicative interactions in experimental fields such as synthetic biology.
Collapse
|
23
|
Ichihashi N. What can we learn from the construction of in vitro replication systems? Ann N Y Acad Sci 2019; 1447:144-156. [PMID: 30957237 DOI: 10.1111/nyas.14042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Replication is a central function of living organisms. Several types of replication systems have been constructed in vitro from various molecules, including peptides, DNA, RNA, and proteins. In this review, I summarize the progress in the construction of replication systems over the past few decades and discuss what we can learn from their construction. I introduce various types of replication systems, supporting the feasibility of the spontaneous appearance of replication early in Earth's history. In the latter part of the review, I focus on parasitic replicators, one of the largest obstacles for sustainable replication. Compartmentalization is discussed as a possible solution.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Graduate School of Arts and Sciences and Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
25
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
26
|
Yin Y, Chang H, Jing H, Zhang Z, Yan D, Mann S, Liang D. Electric field-induced circulation and vacuolization regulate enzyme reactions in coacervate-based protocells. SOFT MATTER 2018; 14:6514-6520. [PMID: 30051115 DOI: 10.1039/c8sm01168k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial protocells operating under non-equilibrium conditions offer a new approach to achieve dynamic features with life-like properties. Using coacervate micro-droplets comprising polylysine (PLL) and a short single-stranded oligonucleotide (ss-oligo) as a membrane-free protocell model, we demonstrate that circulation and vacuolization can occur simultaneously inside the droplet in the presence of an electric field. The circulation is driven by electrohydrodynamics and applies specifically to the major components of the protocell (PLL and ss-oligo). Significantly, under low electric fields (E = 10 V cm-1) the circulation regulates the movement of the vacuoles, while high levels of vacuolization produced at higher electric fields can deform or reshape the circulation. By taking advantage of the interplay between vacuolization and circulation, we achieve dynamic localization of an enzyme cascade reaction at specific droplet locations. In addition, the spatial distribution of the enzyme reaction is globalized throughout the droplet by tuning the coupling of the circulation and vacuolization processes. Overall, our work provides a new strategy to create non-equilibrium dynamic behaviors in molecularly crowded membrane-free synthetic protocells.
Collapse
Affiliation(s)
- Yudan Yin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Haojing Chang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hairong Jing
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Krinsky N, Kaduri M, Zinger A, Shainsky-Roitman J, Goldfeder M, Benhar I, Hershkovitz D, Schroeder A. Synthetic Cells Synthesize Therapeutic Proteins inside Tumors. Adv Healthc Mater 2018; 7:e1701163. [PMID: 29283226 PMCID: PMC6684359 DOI: 10.1002/adhm.201701163] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Synthetic cells, artificial cell-like particles, capable of autonomously synthesizing RNA and proteins based on a DNA template, are emerging platforms for studying cellular functions and for revealing the origins-of-life. Here, it is shown for the first time that artificial lipid-based vesicles, containing the molecular machinery necessary for transcription and translation, can be used to synthesize anticancer proteins inside tumors. The synthetic cells are engineered as stand-alone systems, sourcing nutrients from their biological microenvironment to trigger protein synthesis. When pre-loaded with template DNA, amino acids and energy-supplying molecules, up to 2 × 107 copies of green fluorescent protein are synthesized in each synthetic cell. A variety of proteins, having molecular weights reaching 66 kDa and with diagnostic and therapeutic activities, are synthesized inside the particles. Incubating synthetic cells, encoded to secrete Pseudomonas exotoxin A (PE) with 4T1 breast cancer cells in culture, resulted in killing of most of the malignant cells. In mice bearing 4T1 tumors, histological evaluation of the tumor tissue after a local injection of PE-producing particles indicates robust apoptosis. Synthetic cells are new platforms for synthesizing therapeutic proteins on-demand in diseased tissues.
Collapse
Affiliation(s)
- Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- The Interdisciplinary Programs for Biotechnology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Mor Goldfeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
28
|
Pavan Kumar BVVS, Fothergill J, Bretherton J, Tian L, Patil AJ, Davis SA, Mann S. Chloroplast-containing coacervate micro-droplets as a step towards photosynthetically active membrane-free protocells. Chem Commun (Camb) 2018; 54:3594-3597. [PMID: 29578216 PMCID: PMC5885784 DOI: 10.1039/c8cc01129j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Encapsulation of structurally and functionally intact chloroplasts within coacervate micro-droplets is used to prepare membrane-free protocells capable of light-induced electron transport.
Collapse
Affiliation(s)
- B V V S Pavan Kumar
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tang TYD, Cecchi D, Fracasso G, Accardi D, Coutable-Pennarun A, Mansy SS, Perriman AW, Anderson JLR, Mann S. Gene-Mediated Chemical Communication in Synthetic Protocell Communities. ACS Synth Biol 2018; 7:339-346. [PMID: 29091420 DOI: 10.1021/acssynbio.7b00306] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substrate signaling, and enzyme cascade-mediated processing.
Collapse
Affiliation(s)
- T-Y. Dora Tang
- Max Planck Institute of Molecular Cell and Genetics, 01307 Dresden, Germany
- BrisSynBio
Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Dario Cecchi
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Giorgio Fracasso
- Max Planck Institute of Molecular Cell and Genetics, 01307 Dresden, Germany
| | - Davide Accardi
- Max Planck Institute of Molecular Cell and Genetics, 01307 Dresden, Germany
| | - Angelique Coutable-Pennarun
- BrisSynBio
Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Sheref S. Mansy
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Adam W. Perriman
- BrisSynBio
Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - J. L. Ross Anderson
- BrisSynBio
Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Stephen Mann
- Centre
for Protolife Research, School of Chemistry University, of Bristol, Bristol BS8 1TS United, Kingdom
- BrisSynBio
Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
30
|
Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. N Biotechnol 2017; 39:199-205. [DOI: 10.1016/j.nbt.2017.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
|
31
|
Rodríguez-Arco L, Li M, Mann S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. NATURE MATERIALS 2017; 16:857-863. [PMID: 28604713 DOI: 10.1038/nmat4916] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
The spontaneous assembly of micro-compartmentalized colloidal objects capable of controlled interactions offers a step towards rudimentary forms of collective behaviour in communities of artificial cell-like entities (synthetic protocells). Here we report a primitive form of artificial phagocytosis in a binary community of synthetic protocells in which multiple silica colloidosomes are selectively ingested by self-propelled magnetic Pickering emulsion (MPE) droplets comprising particle-free fatty acid-stabilized apertures. Engulfment of the colloidosomes enables selective delivery and release of water-soluble payloads, and can be coupled to enzyme activity within the MPE droplets. Our results highlight opportunities for the development of new materials based on consortia of colloidal objects, and provide a novel microscale engineering approach to inducing higher-order behaviour in mixed populations of synthetic protocells.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
32
|
Qiao Y, Li M, Booth R, Mann S. Predatory behaviour in synthetic protocell communities. Nat Chem 2016; 9:110-119. [PMID: 28282044 DOI: 10.1038/nchem.2617] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Recent progress in the chemical construction of colloidal objects comprising integrated biomimetic functions is paving the way towards rudimentary forms of artificial cell-like entities (protocells). Although several new types of protocells are currently available, the design of synthetic protocell communities and investigation of their collective behaviour has received little attention. Here we demonstrate an artificial form of predatory behaviour in a community of protease-containing coacervate microdroplets and protein-polymer microcapsules (proteinosomes) that interact via electrostatic binding. The coacervate microdroplets act as killer protocells for the obliteration of the target proteinosome population by protease-induced lysis of the protein-polymer membrane. As a consequence, the proteinosome payload (dextran, single-stranded DNA, platinum nanoparticles) is trafficked into the attached coacervate microdroplets, which are then released as functionally modified killer protocells capable of rekilling. Our results highlight opportunities for the development of interacting artificial protocell communities, and provide a strategy for inducing collective behaviour in soft matter microcompartmentalized systems and synthetic protocell consortia.
Collapse
Affiliation(s)
- Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Richard Booth
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
33
|
Lentini R, Yeh Martín N, Mansy SS. Communicating artificial cells. Curr Opin Chem Biol 2016; 34:53-61. [DOI: 10.1016/j.cbpa.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
34
|
Ichihashi N, Yomo T. Constructive Approaches for Understanding the Origin of Self-Replication and Evolution. Life (Basel) 2016; 6:life6030026. [PMID: 27420098 PMCID: PMC5041002 DOI: 10.3390/life6030026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022] Open
Abstract
The mystery of the origin of life can be divided into two parts. The first part is the origin of biomolecules: under what physicochemical conditions did biomolecules such as amino acids, nucleotides, and their polymers arise? The second part of the mystery is the origin of life-specific functions such as the replication of genetic information, the reproduction of cellular structures, metabolism, and evolution. These functions require the coordination of many different kinds of biological molecules. A direct strategy to approach the second part of the mystery is the constructive approach, in which life-specific functions are recreated in a test tube from specific biological molecules. Using this approach, we are able to employ design principles to reproduce life-specific functions, and the knowledge gained through the reproduction process provides clues as to their origins. In this mini-review, we introduce recent insights gained using this approach, and propose important future directions for advancing our understanding of the origins of life.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tetsuya Yomo
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Gallo V, Stano P, Luisi PL. Protein Synthesis in Sub-Micrometer Water-in-Oil Droplets. Chembiochem 2016; 16:2073-9. [PMID: 26376303 DOI: 10.1002/cbic.201500274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/07/2022]
Abstract
Water-in-oil (w/o) emulsions are used as a cellular model because of their unique cell-like architecture. Previous works showed the capability of eukaryotic-cell-sized w/o droplets (5-50 μm) to support protein synthesis efficiently; however data about smaller w/o compartments (<1 μm) are lacking. This work focuses on the biosynthesis of the enhanced green fluorescent protein (EGFP) inside sub-micrometric lecithin-based w/o droplets (0.8-1 μm) and on its dependence on the compartments' dynamic properties in terms of solute exchange mechanisms. We demonstrated that protein synthesis is strongly affected by the nature of the lipid interface. These findings could be of value and interest for both basic and applied research.
Collapse
Affiliation(s)
- Valentina Gallo
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Pasquale Stano
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Pier Luigi Luisi
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
36
|
Machtel P, Bąkowska-Żywicka K, Żywicki M. Emerging applications of riboswitches - from antibacterial targets to molecular tools. J Appl Genet 2016; 57:531-541. [PMID: 27020791 PMCID: PMC5061826 DOI: 10.1007/s13353-016-0341-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
The ability to precisely regulate gene expression is one of the most important features of the living cells as it enables the adaptation and survival in different environmental conditions. The majority of regulatory mechanisms involve protein action, however, multiple genes are controlled by nucleic acids. Among RNA-based regulators, the riboswitches present a large group of specific domains within messenger RNAs able to respond to small metabolites, tRNA, secondary messengers, ions, vitamins or amino acids. A simple, accurate, and efficient mechanism of action as well as easiness in handling and engineering make the riboswitches a potent practical tool in industry, medicine, pharmacy or environmental protection. Hereby, we summarize the current achievements and challenges in designing and practical employment of the riboswitch-based tools.
Collapse
Affiliation(s)
- Piotr Machtel
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Kamilla Bąkowska-Żywicka
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland.
| |
Collapse
|
37
|
Yin Y, Niu L, Zhu X, Zhao M, Zhang Z, Mann S, Liang D. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat Commun 2016; 7:10658. [PMID: 26876162 PMCID: PMC4756681 DOI: 10.1038/ncomms10658] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
Collapse
Affiliation(s)
- Yudan Yin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lin Niu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaocui Zhu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zexin Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Xenobiotic Life. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Martini L, Meyer AJ, Ellefson JW, Milligan JN, Forlin M, Ellington AD, Mansy SS. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity. ACS Synth Biol 2015; 4:1144-50. [PMID: 25978303 DOI: 10.1021/acssynbio.5b00054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.
Collapse
Affiliation(s)
- Laura Martini
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Adam J. Meyer
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jared W. Ellefson
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - John N. Milligan
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michele Forlin
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andrew D. Ellington
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sheref S. Mansy
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| |
Collapse
|
40
|
Bich L, Moreno A. The role of regulation in the origin and synthetic modelling of minimal cognition. Biosystems 2015; 148:12-21. [PMID: 26296774 DOI: 10.1016/j.biosystems.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/22/2015] [Accepted: 08/07/2015] [Indexed: 01/27/2023]
Abstract
In this paper we address the question of minimal cognition by investigating the origin of some crucial cognitive properties from the very basic organisation of biological systems. More specifically, we propose a theoretical model of how a system can distinguish between specific features of its interaction with the environment, which is a fundamental requirement for the emergence of minimal forms of cognition. We argue that the appearance of this capacity is grounded in the molecular domain, and originates from basic mechanisms of biological regulation. In doing so, our aim is to provide a theoretical account that can also work as a possible conceptual bridge between Synthetic Biology and Artificial Intelligence. In fact, we argue, Synthetic Biology can contribute to the study of minimal cognition (and therefore to a minimal AI), by providing a privileged approach to the study of these mechanisms by means of artificial systems.
Collapse
Affiliation(s)
- Leonardo Bich
- IAS-Research Center for Life, Mind and Society, Department of Logic and Philosophy of Science, University of the Basque Country (EHU/UPV), Avenida de Tolosa 70, 20018 Donostia-San Sebastián, Spain; Laboratorio de Neurobiologia y Biologia del Conocer (Biology of Cognition Lab), Facultad de Ciencia, Universidad de Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile.
| | - Alvaro Moreno
- IAS-Research Center for Life, Mind and Society, Department of Logic and Philosophy of Science, University of the Basque Country (EHU/UPV), Avenida de Tolosa 70, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
41
|
Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Rep 2015; 2:115-122. [PMID: 29124152 PMCID: PMC5668657 DOI: 10.1016/j.bbrep.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022] Open
Abstract
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments. An artificial lipid bilayer system for large integral membrane proteins. Multi-drug resistance protein embedded in lipid bilayers was used as a model system. Interaction between pravastatin and a membrane protein was examined in vitro system. Characterization by surface sensitive methods such as SPR, QCM, liqAFM.
Collapse
|
42
|
Ding Y, Wu F, Tan C. Synthetic Biology: A Bridge between Artificial and Natural Cells. Life (Basel) 2014; 4:1092-116. [PMID: 25532531 PMCID: PMC4284483 DOI: 10.3390/life4041092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/02/2014] [Accepted: 12/11/2014] [Indexed: 12/24/2022] Open
Abstract
Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616-5270, USA.
| | - Fan Wu
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616-5270, USA.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616-5270, USA.
| |
Collapse
|
43
|
Lewis DD, Villarreal FD, Wu F, Tan C. Synthetic biology outside the cell: linking computational tools to cell-free systems. Front Bioeng Biotechnol 2014; 2:66. [PMID: 25538941 PMCID: PMC4260521 DOI: 10.3389/fbioe.2014.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/23/2014] [Indexed: 12/22/2022] Open
Abstract
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.
Collapse
Affiliation(s)
- Daniel D. Lewis
- Integrative Genetics and Genomics, University of California Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | | | - Fan Wu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
44
|
Fothergill J, Li M, Davis SA, Cunningham JA, Mann S. Nanoparticle-based membrane assembly and silicification in coacervate microdroplets as a route to complex colloidosomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14591-14596. [PMID: 25390037 DOI: 10.1021/la503746u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The chemical construction of complex colloidosomes consisting of a molecularly crowded polyelectrolyte-enriched interior surrounded by a continuous shell of closely packed silica nanoparticles is studied using optical and fluorescence microscopy, high-resolution X-ray microcomputed tomography, and synchrotron radiation X-ray tomographic microscopy. The colloidosomes are prepared by addition of partially hydrophobic silica nanoparticles to dodecane dispersions of positively or negatively charged coacervate microdroplets consisting of aqueous mixtures of poly(diallyldimethylammonium chloride) (PDDA) and adenosine 5'-triphosphate (ATP) or PDDA and poly(acrylic acid) (PAA), respectively. Interfacial assembly of the nanoparticles produces a polydisperse population of well-defined PDDA/PAA droplets with diameters ranging from 50 to 950 μm. In contrast, reconstruction of the PDDA/ATP coacervate interior occurs on addition of the silica nanoparticles to produce a nanoparticle-stabilized oil-in-coacervate-in-oil multiphase emulsion. Transfer of the coacervate-containing colloidosomes into water and replication of their internal structure are achieved by addition of tetramethoxysilane, which serves as both a cross-linking and silicification agent to produce mineralized PDDA/PAA or PDDA/ATP microstructures with a uniform solidified texture or multichambered interior, respectively. The integration of colloidosome and coacervate technologies offers a route to a new type of multifunctional microcompartmentalized system based on the membrane-mediated incarceration of molecularly crowded chemical environments.
Collapse
Affiliation(s)
- James Fothergill
- Centre for Protolife Research, Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, UK
| | | | | | | | | |
Collapse
|
45
|
de Souza TP, Fahr A, Luisi PL, Stano P. Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life. J Mol Evol 2014; 79:179-92. [DOI: 10.1007/s00239-014-9655-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
|
46
|
Ichihashi N, Yomo T. Positive roles of compartmentalization in internal reactions. Curr Opin Chem Biol 2014; 22:12-7. [PMID: 25032508 DOI: 10.1016/j.cbpa.2014.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 12/23/2022]
Abstract
Recently, many researchers have attempted to construct artificial cell models using a bottom-up approach in which various biochemical reactions that involve a defined set of molecules are reconstructed in cell-like compartments, such as liposomes and water-in-oil droplets. In many of these studies, the cell-like compartments have acted only as containers for the encapsulated biochemical reactions, whereas other studies have indicated that compartmentalization improves the rates and yields of these reactions. Here, we introduce two ways in which compartmentalization can improve internal reactions: the isolation effect and the condensation effect. These positive effects of compartmentalization might have played an important role in the genesis of the first primitive cell on early Earth.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
47
|
Chizzolini F, Forlin M, Cecchi D, Mansy SS. Gene position more strongly influences cell-free protein expression from operons than T7 transcriptional promoter strength. ACS Synth Biol 2014; 3:363-71. [PMID: 24283192 DOI: 10.1021/sb4000977] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell-free transcription-translation of multiple proteins typically exploits genes placed behind strong transcriptional promoters that reside on separate pieces of DNA so that protein levels can be easily controlled by changing DNA template concentration. However, such systems are not amenable to the construction of artificial cells with a synthetic genome. Herein, we evaluated the activity of a series of T7 transcriptional promoters by monitoring the fluorescence arising from a genetically encoded Spinach aptamer. Subsequently the influences of transcriptional promoter strength on fluorescent protein synthesis from one, two, and three gene operons were assessed. It was found that transcriptional promoter strength was more effective at controlling RNA synthesis than protein synthesis in vitro with the PURE system. Conversely, the gene position within the operon strongly influenced protein synthesis but not RNA synthesis.
Collapse
Affiliation(s)
- Fabio Chizzolini
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello, Italy
| | - Michele Forlin
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello, Italy
| | - Dario Cecchi
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello, Italy
| | - Sheref S. Mansy
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello, Italy
| |
Collapse
|
48
|
Lentini R, Santero SP, Chizzolini F, Cecchi D, Fontana J, Marchioretto M, Del Bianco C, Terrell JL, Spencer AC, Martini L, Forlin M, Assfalg M, Dalla Serra M, Bentley WE, Mansy SS. Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat Commun 2014; 5:4012. [PMID: 24874202 PMCID: PMC4050265 DOI: 10.1038/ncomms5012] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/30/2014] [Indexed: 01/19/2023] Open
Abstract
Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible. All cells sense and respond to their environment. Therefore, artificial, non-living cellular mimics could be engineered to activate or repress already existing natural sensory pathways of living cells through chemical communication. Here we describe the construction of such a system. The artificial cells expand the senses of Escherichia coli by translating a chemical message that E. coli cannot sense on its own to a molecule that activates a natural cellular response. This methodology could open new opportunities in engineering cellular behaviour without exploiting genetically modified organisms. The control of cellular behaviour largely relies on genetic engineering, but artificial cells could be designed to control cell processes through chemical communication. Here, the authors develop an artificial cell that is able to translate a chemical message into a signal that can be sensed by E. coli and activate a cellular response.
Collapse
Affiliation(s)
- Roberta Lentini
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Silvia Perez Santero
- 1] CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy [2] Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Fabio Chizzolini
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Dario Cecchi
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Jason Fontana
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Marta Marchioretto
- National Research Council-Institute of Biophysics & Bruno Kessler Foundation, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Cristina Del Bianco
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Jessica L Terrell
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Amy C Spencer
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Laura Martini
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Michele Forlin
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Dalla Serra
- National Research Council-Institute of Biophysics & Bruno Kessler Foundation, Via alla Cascata 56/C, 38123 Trento, Italy
| | - William E Bentley
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Sheref S Mansy
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| |
Collapse
|
49
|
Williams DS, Patil AJ, Mann S. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1830-40. [PMID: 24515342 DOI: 10.1002/smll.201303654] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/18/2013] [Indexed: 05/19/2023]
Abstract
Molecularly crowded, polyelectrolyte/ribonucleotide-enriched membrane-free coacervate droplets are transformed into membrane-bounded sub-divided vesicles by using a polyoxometalate-mediated surface-templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro-droplets into novel three-tiered micro-compartments comprising a semi-permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub-membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro-compartments by sequestration into the coacervate micro-droplets prior to vesicle formation. The vesicle-encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two-enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media.
Collapse
Affiliation(s)
- David S Williams
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | | |
Collapse
|
50
|
Mishler DM, Gallivan JP. A family of synthetic riboswitches adopts a kinetic trapping mechanism. Nucleic Acids Res 2014; 42:6753-61. [PMID: 24782524 PMCID: PMC4041436 DOI: 10.1093/nar/gku262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Riboswitches are sequences of RNA that control gene expression via RNA–ligand interactions, without the need for accessory proteins. Riboswitches consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in vitro selection, it is possible to screen large (∼1013 members) libraries of RNA sequences to discover new aptamers. However, limitations in bacterial transformation efficiency make screening such large libraries for riboswitch function in intact cells impractical. Here we show that synthetic riboswitches function in an E. coli S30 extract in a manner similar to how they function in intact E. coli cells. We discovered that, although this family of riboswitches regulates the initiation of protein translation, the fate of whether an RNA message is translated is determined during transcription. Thus, ligand binding does not bias a population of rapidly equilibrating RNA structures, but rather, co-transcriptional ligand binding kinetically traps the RNA in a conformation that supports efficient translation. In addition to providing new insights into the mechanisms of action of a family of synthetic riboswitches, our experiments suggest that it may be possible to perform selections for novel synthetic riboswitches in an in vitro system.
Collapse
Affiliation(s)
- Dennis M Mishler
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Justin P Gallivan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| |
Collapse
|