1
|
Faiza N, Welch R, Patteson A. Substrate stiffness modulates collective colony expansion of the social bacterium Myxococcus xanthus. APL Bioeng 2025; 9:016104. [PMID: 39845738 PMCID: PMC11752065 DOI: 10.1063/5.0226619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. Myxococcus xanthus is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes. How bacteria sense different surfaces and subsequently coordinate their collective motion remains largely unclear. Using polyacrylamide hydrogels of tunable stiffness, we found that wild type M. xanthus spreads faster on stiffer substrates. Here, we show that using motility mutants that disrupt adventurous motility suppresses this substrate stiffness response, suggesting focal adhesion-based adventurous motility is substrate stiffness dependent. We also show that modifying surface adhesion by adding adhesive ligands, chitosan, increases the amount of M. xanthus flairs, a characteristic feature of adventurous motility. Taken together, we hypothesize a central role of M. xanthus adventurous motility as a driving mechanism for surface and surface stiffness sensing.
Collapse
|
2
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
3
|
Kernosenko L, Samchenko K, Goncharuk O, Pasmurtseva N, Poltoratska T, Siryk O, Dziuba O, Mironov O, Szewczuk-Karpisz K. Polyacrylamide Hydrogel Enriched with Amber for In Vitro Plant Rooting. PLANTS (BASEL, SWITZERLAND) 2023; 12:1196. [PMID: 36904057 PMCID: PMC10007188 DOI: 10.3390/plants12051196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this work, a new material for in vitro plant rooting based on highly dispersed polyacrylamide hydrogel (PAAG) enriched with amber powder was synthesized and investigated. PAAG was synthesized by homophase radical polymerization with ground amber addition. Fourier transform infrared spectroscopy (FTIR) and rheological studies were used to characterize the materials. They showed that the synthesized hydrogels have physicochemical and rheological parameters similar to those of the standard agar media. The acute toxicity of PAAG-amber was estimated based on the influence of washing water on the viability of plant seeds (pea and chickpea) and Daphnia magna. It proved its biosafety after four washes. The impact on plant rooting was studied using the propagation of Cannabis sativa on synthesized PAAG-amber and compared with agar. The developed substrate stimulated the rooting of the plants to more than 98% in comparison to standard agar medium (95%). Additionally, the use of PAAG-amber hydrogel markedly enhanced metric indicators of seedlings: root length increased by 28%, stem length-by 26.7%, root weight-by 167%, stem weight-by 67%, root and stem length-by 27%, root and stem weight-by 50%. This means that the developed hydrogel significantly accelerates reproduction and allows obtaining a larger amount of plant material within a shorter period of time than the standard agar substrate.
Collapse
Affiliation(s)
- Lyudmyla Kernosenko
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Kateryna Samchenko
- Department of Bioenergy, Bioinformatics and Environmental Biotechnology, Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
| | - Olena Goncharuk
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Natalya Pasmurtseva
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Tetiana Poltoratska
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Olena Siryk
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Oksana Dziuba
- M. M. Hryshko National Botanical Garden, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Oleg Mironov
- L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | | |
Collapse
|
4
|
Verjans J, Sedlačík T, Jerca VV, Bernhard Y, Van Guyse JFR, Hoogenboom R. Poly( N-allyl acrylamide) as a Reactive Platform toward Functional Hydrogels. ACS Macro Lett 2023; 12:79-85. [PMID: 36595222 DOI: 10.1021/acsmacrolett.2c00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of poly(N-allyl acrylamide) (PNAllAm) as a platform for the preparation of functional hydrogels is described. The PNAllAm was synthesized via organocatalyzed amidation of poly(methyl acrylate) (PMA) with allylamine and characterized by 1H NMR spectroscopy, size exclusion chromatography (SEC), and turbidimetry, which allowed an estimation of the lower critical solution temperature of ∼26 °C in water. The PNAllAm was then used to make functional hydrogels via photoinitiated thiol-ene chemistry, where dithiothreitol (DTT) was used to cross-link the polymer chains. In addition, mercaptoethanol (ME) was added as a functional thiol to modulate the hydrogel properties. A decrease of the volume-phase transition temperature of the resulting hydrogels was observed with increasing ME content. Altogether this work introduces a straightforward way for the preparation of PNAllAm from PMA and demonstrates its value as a reactive polymer platform for the generation of functional hydrogels.
Collapse
Affiliation(s)
- Jente Verjans
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
A Device for Isolation of Selected Single Adherent Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4303586. [PMID: 36567910 PMCID: PMC9780011 DOI: 10.1155/2022/4303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
In recent years, extensive research has been focused on the field of single cell analysis. The isolation of single cells is the first step in this type of research. However, the techniques used for direct isolation and acquisition of single adherent cells are limited. Here, we present a method of obtaining selected single adherent cells using a separation device. Compared with other single cell isolation methods, this method has the advantages of simple operation, low cost, minimal cell damage, and preservation of cell morphology. Our methodology is, therefore, suitable for the collection of selected single adherent cells.
Collapse
|
6
|
Dsouza A, Constantinidou C, Arvanitis TN, Haddleton DM, Charmet J, Hand RA. Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47323-47344. [PMID: 36222596 PMCID: PMC9614723 DOI: 10.1021/acsami.2c08582] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are cross-linked networks of hydrophilic polymer chains with a three-dimensional structure. Owing to their unique features, the application of hydrogels for bacterial/antibacterial studies and bacterial infection management has grown in importance in recent years. This trend is likely to continue due to the rise in bacterial infections and antimicrobial resistance. By exploiting their physicochemical characteristics and inherent nature, hydrogels have been developed to achieve bacterial capture and detection, bacterial growth or elimination, antibiotic delivery, or bacterial sensing. Traditionally, the development of hydrogels for bacterial/antibacterial studies has focused on achieving a single function such as antibiotic delivery, antibacterial activity, bacterial growth, or bacterial detection. However, recent studies demonstrate the fabrication of multifunctional hydrogels, where a single hydrogel is capable of performing more than one bacterial/antibacterial function, or composite hydrogels consisting of a number of single functionalized hydrogels, which exhibit bacterial/antibacterial function synergistically. In this review, we first highlight the hydrogel features critical for bacterial studies and infection management. Then, we specifically address unique hydrogel properties, their surface/network functionalization, and their mode of action for bacterial capture, adhesion/growth, antibacterial activity, and bacterial sensing, respectively. Finally, we provide insights into different strategies for developing multifunctional hydrogels and how such systems can help tackle, manage, and understand bacterial infections and antimicrobial resistance. We also note that the strategies highlighted in this review can be adapted to other cell types and are therefore likely to find applications beyond the field of microbiology.
Collapse
Affiliation(s)
- Andrea Dsouza
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | - Theodoros N. Arvanitis
- Institute
of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - David M. Haddleton
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Jérôme Charmet
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
- Warwick
Medical School, The University of Warwick, Coventry, United Kingdom CV4 7AL
- School
of Engineering—HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Rachel A. Hand
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
7
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
8
|
Random encounters and amoeba locomotion drive the predation of Listeria monocytogenes by Acanthamoeba castellanii. Proc Natl Acad Sci U S A 2022; 119:e2122659119. [PMID: 35914149 PMCID: PMC9371647 DOI: 10.1073/pnas.2122659119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, Acanthamoeba are ubiquitous in the soil and aqueous environments inhabited by Listeria monocytogenes. Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which Acanthamoeba castellanii assemble L. monocytogenes in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that A. castellanii may recruit L. monocytogenes by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of A. castellanii and L. monocytogenes and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that L. monocytogenes captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of L. monocytogenes trapped by A. castellanii revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.
Collapse
|
9
|
Sardelli L, Vangosa FB, Merli M, Ziccarelli A, Visentin S, Visai L, Petrini P. Bioinspired in vitro intestinal mucus model for 3D-dynamic culture of bacteria. BIOMATERIALS ADVANCES 2022; 139:213022. [PMID: 35891596 DOI: 10.1016/j.bioadv.2022.213022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The intestinal mucus is a biological barrier that supports the intestinal microbiota growth and filters molecules. To perform these functions, mucus possesses optimized microstructure and viscoelastic properties and it is steadily replenished thus flowing along the gut. The available in vitro intestinal mucus models are useful tools in investigating the microbiota-human cells interaction, and are used as matrices for bacterial culture or as static component of microfluidic devices like gut-on-chips. The aim of this work is to engineer an in vitro mucus models (I-Bac3Gel) addressing in a single system physiological viscoelastic properties (i.e., 2-200 Pa), 3D structure and suitability for dynamic bacterial culture. Homogeneously crosslinked alginate hydrogels are optimized in composition to obtain target viscoelastic and microstructural properties. Then, rheological tests are exploited to assess a priori the hydrogels capability to withstand the flow dynamic condition. We experimentally assess the suitability of I-Bac3Gels in the evolving field of microfluidics by applying a dynamic flow to a bacterial-loaded mucus model and by monitoring E. coli growth and survival. The engineered models represent a step forward in the modelling of the mucus, since they can answer to different urgent needs such as a 3D structure, bioinspired properties and compatibility with dynamic system.
Collapse
Affiliation(s)
- Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Marta Merli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Anna Ziccarelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Liu X, Inda ME, Lai Y, Lu TK, Zhao X. Engineered Living Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201326. [PMID: 35243704 PMCID: PMC9250645 DOI: 10.1002/adma.202201326] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Living biological systems, ranging from single cells to whole organisms, can sense, process information, and actuate in response to changing environmental conditions. Inspired by living biological systems, engineered living cells and nonliving matrices are brought together, which gives rise to the technology of engineered living materials. By designing the functionalities of living cells and the structures of nonliving matrices, engineered living materials can be created to detect variability in the surrounding environment and to adjust their functions accordingly, thereby enabling applications in health monitoring, disease treatment, and environmental remediation. Hydrogels, a class of soft, wet, and biocompatible materials, have been widely used as matrices for engineered living cells, leading to the nascent field of engineered living hydrogels. Here, the interactions between hydrogel matrices and engineered living cells are described, focusing on how hydrogels influence cell behaviors and how cells affect hydrogel properties. The interactions between engineered living hydrogels and their environments, and how these interactions enable versatile applications, are also discussed. Finally, current challenges facing the field of engineered living hydrogels for their applications in clinical and environmental settings are highlighted.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Maria Eugenia Inda
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Lai
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Asp ME, Ho Thanh MT, Germann DA, Carroll RJ, Franceski A, Welch RD, Gopinath A, Patteson AE. Spreading rates of bacterial colonies depend on substrate stiffness and permeability. PNAS NEXUS 2022; 1:pgac025. [PMID: 36712798 PMCID: PMC9802340 DOI: 10.1093/pnasnexus/pgac025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.
Collapse
Affiliation(s)
- Merrill E Asp
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Minh-Tri Ho Thanh
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Danielle A Germann
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Alana Franceski
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Roy D Welch
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA,Health Sciences Research Institute, University of California, Merced, Merced, CA 95343, USA
| | | |
Collapse
|
12
|
Oriano M, Zorzetto L, Guagliano G, Bertoglio F, van Uden S, Visai L, Petrini P. The Open Challenge of in vitro Modeling Complex and Multi-Microbial Communities in Three-Dimensional Niches. Front Bioeng Biotechnol 2020; 8:539319. [PMID: 33195112 PMCID: PMC7606986 DOI: 10.3389/fbioe.2020.539319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
The comprehension of the underlying mechanisms of the interactions within microbial communities represents a major challenge to be faced to control their outcome. Joint efforts of in vitro, in vivo and ecological models are crucial to controlling human health, including chronic infections. In a broader perspective, considering that polymicrobial communities are ubiquitous in nature, the understanding of these mechanisms is the groundwork to control and modulate bacterial response to any environmental condition. The reduction of the complex nature of communities of microorganisms to a single bacterial strain could not suffice to recapitulate the in vivo situation observed in mammals. Furthermore, some bacteria can adapt to various physiological or arduous environments embedding themselves in three-dimensional matrices, secluding from the external environment. Considering the increasing awareness that dynamic complex and dynamic population of microorganisms (microbiota), inhabiting different apparatuses, regulate different health states and protect against pathogen infections in a fragile and dynamic equilibrium, we underline the need to produce models to mimic the three-dimensional niches in which bacteria, and microorganisms in general, self-organize within a microbial consortium, strive and compete. This review mainly focuses, as a case study, to lung pathology-related dysbiosis and life-threatening diseases such as cystic fibrosis and bronchiectasis, where the co-presence of different bacteria and the altered 3D-environment, can be considered as worst-cases for chronic polymicrobial infections. We illustrate the state-of-art strategies used to study biofilms and bacterial niches in chronic infections, and multispecies ecological competition. Although far from the rendering of the 3D-environments and the polymicrobial nature of the infections, they represent the starting point to face their complexity. The increase of knowledge respect to the above aspects could positively affect the actual healthcare scenario. Indeed, infections are becoming a serious threat, due to the increasing bacterial resistance and the slow release of novel antibiotics on the market.
Collapse
Affiliation(s)
- Martina Oriano
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Zorzetto
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Giuseppe Guagliano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Federico Bertoglio
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatic, Department of Biotechnology, Braunschweig, Germany
| | - Sebastião van Uden
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| |
Collapse
|
13
|
Díaz Lantada A, Mazarío Picazo N, Guttmann M, Wissmann M, Schneider M, Worgull M, Hengsbach S, Rupp F, Bade K, Plaza GR. Soft-Lithography of Polyacrylamide Hydrogels Using Microstructured Templates: Towards Controlled Cell Populations on Biointerfaces. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1586. [PMID: 32235578 PMCID: PMC7177395 DOI: 10.3390/ma13071586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Polyacrylamide hydrogels are interesting materials for studying cells and cell-material interactions, thanks to the possibility of precisely adjusting their stiffness, shear modulus and porosity during synthesis, and to the feasibility of processing and manufacturing them towards structures and devices with controlled morphology and topography. In this study a novel approach, related to the processing of polyacrylamide hydrogels using soft-lithography and employing microstructured templates, is presented. The main novelty relies on the design and manufacturing processes used for achieving the microstructured templates, which are transferred by soft-lithography, with remarkable level of detail, to the polyacrylamide hydrogels. The conceived process is demonstrated by patterning polyacrylamide substrates with a set of vascular-like and parenchymal-like textures, for controlling cell populations. Final culture of amoeboid cells, whose dynamics is affected by the polyacrylamide patterns, provides a preliminary validation of the described strategy and helps to discuss its potentials.
Collapse
Affiliation(s)
- Andrés Díaz Lantada
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Noelia Mazarío Picazo
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Centre for Biomedical Technology, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Markus Wissmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Marc Schneider
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Matthias Worgull
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Stefan Hengsbach
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Florian Rupp
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Klaus Bade
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (M.G.); (M.W.); (M.S.); (M.W.); (S.H.); (F.R.); (K.B.)
| | - Gustavo R. Plaza
- Centre for Biomedical Technology, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
14
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Serwer P, Hunter B, Wright ET. Cell-gel interactions of in-gel propagating bacteria. BMC Res Notes 2018; 11:699. [PMID: 30286794 PMCID: PMC6172759 DOI: 10.1186/s13104-018-3811-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
Objective Our immediate objective is to test the data-suggested possibility that in-agarose gel bacterial propagation causes gel fiber dislocation and alteration of cell distribution. We also test the further effect of lowering water activity. We perform these tests with both Gram-negative and Gram-positive bacteria. Data are obtained via electron microscopy of thin sections, which provides the first images of both bacteria and gel fibers in gel-supported bacterial lawns. The long-term objective is analysis of the effects of in-gel propagation on the DNA packaging of phages. Results We find that agarose gel-supported cells in lawns of Escherichia coli and Lysinibacillus (1) are primarily in clusters that increase in size with time and are surrounded by gel fibers, and (2) sometimes undergo gel-induced, post-duplication rotation and translation. Bacterial growth-induced dislocation of gel fibers is observed. One reason for clustering is that clustering promotes growth by increasing the growth-derived force applied to the gel fibers. Reactive force exerted by gel on cells explains cell movement. Finally, addition to growth medium of 0.94 M sucrose causes cluster-associated E. coli cells to become more densely packed and polymorphic. Shape is determined, in part, by neighboring cells, a novel observation to our knowledge.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Barbara Hunter
- Department of Pathology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
16
|
Novel sensor platform for rapid detection and quantification of coliforms on food contact surfaces. J Microbiol Methods 2018; 153:74-83. [PMID: 30240812 DOI: 10.1016/j.mimet.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023]
Abstract
In this paper, a novel sensor platform based on screen printed carbon electrode coated by graphene modified polyacrylamide gel (GR/PAAGC) was developed and implemented for sampling, detection and enumeration of coliform bacteria (coliforms) on food contact surfaces. The optimized formula of polyacrylamide (PAA) and agar-agar increased the adhesive properties of the gel, being crucial for the coliforms recovery, attached to food contact surfaces. The 6-Chloro-3-indoxyl-β-D-galactopyranoside (6-CIGP) was used as a new electrochemical reporter for β-D-galactosidase activity. The released 6,6'-Dichloro-Indigo (6-DI) was directly detected by GR/PAAGC sensor. The presence of Isopropyl-β-D-thiogalactopyranoside (IPTG) and n-Octyl-β-D-thiogalactopyranoside (OBDG) in the gel contributed to reduction of the detection time. The addition of graphene enhanced the voltammetric signal and increased the conductivity of PAA gel. The anodic and cathodic peaks of the released product were directly proportional to the concentration of coliforms. Bacterial cell concentrations ranging from 1.6log10CFU/mL to 6.6log10CFU/mL were detected. Well-shaped, sharp voltammetric curves were generated within 3 h. Redox peaks exhibited good sensitivity with detection limits (LOD) < 0.6log10CFU/mL. After series of optimization experiments, coliforms ranging from 0.6log10CFU/cm2 to 6.610CFU/cm2 on stainless steel surfaces have been detected within 30 min with a LOD of 0.1log10CFU/cm2. The developed rapid, sensitive, reproducible and specific sensor successfully applied for single detection as well as for real-time monitoring of growth of coliform bacteria on stainless steel surfaces during food processing.
Collapse
|
17
|
Kandemir N, Vollmer W, Jakubovics NS, Chen J. Mechanical interactions between bacteria and hydrogels. Sci Rep 2018; 8:10893. [PMID: 30022071 PMCID: PMC6052062 DOI: 10.1038/s41598-018-29269-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 01/30/2023] Open
Abstract
Mechanical interactions between bacterial cells and extracellular polymeric substance are essential in determining biofilm assembly and disassembly as well the mechanical characteristics of biofilms. However, the physics of these mechanical interactions in different cell culture conditions are poorly understood. We created typical artificial biofilm consisting of planktonic bacteria and hydrogel, in the absence of metabolic or regulatory effect. We have demonstrated that the cell culture medium can significantly affect the mechanical interactions between bacterial cells and hydrogels. The stiffness of the bacteria-hydrogel artificial biofilm cannot be simply attributed by the summation of the contribution from the bacteria and hydrogel based on the mathematical models and computational models. We have revealed that the tryptone component of Luria-Bertani broth medium plays an important role in stiffening effect of bacteria-hydrogel construct. Such significant stiffening effect can be explained by the following mechanism: the presence of tryptone in cell culture medium may enable the bacteria itself to crosslink the hydrogel polymer chains. Our findings have also demonstrated the synergy of modelling and innovative experiments which would potentially impact the biofilm control strategies.
Collapse
Affiliation(s)
- Nehir Kandemir
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE17RU, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE24AX, UK
| | - Nicholas S Jakubovics
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, NE24BW, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE17RU, UK.
| |
Collapse
|
18
|
Pokusaev BG, Karlov SP, Vyaz’min AV, Nekrasov DA. Laws of the Formation and Diffusion Properties of Silica and Agarose Gels. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2018. [DOI: 10.1134/s0040579518020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Tan H, Tu S, Zhao Y, Wang H, Du Q. A simple and environment-friendly approach for synthesizing macroporous polymers from aqueous foams. J Colloid Interface Sci 2018; 509:209-218. [DOI: 10.1016/j.jcis.2017.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/08/2023]
|
20
|
Martinez MV, Bruno MM, Miras MC, Barbero CA. Electroactive polymers made by loading redox ions inside crosslinked polymeric hydrogels. Effects of hydrophobic interactions and solvent dynamics. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Truong VK, Mainwaring DE, Murugaraj P, Nguyen DHK, Ivanova EP. Impact of confining 3-D polymer networks on dynamics of bacterial ingress and self-organisation. J Mater Chem B 2015; 3:8704-8710. [DOI: 10.1039/c5tb01880c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alignment of microbial colonies along with polymeric cell wall.
Collapse
Affiliation(s)
- Vi Khanh Truong
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - David E. Mainwaring
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Pandiyan Murugaraj
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Duy H. K. Nguyen
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Elena P. Ivanova
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| |
Collapse
|
22
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|
23
|
De Silva DA, Martens PJ, Gilmore KJ, in het Panhuis M. Degradation behavior of ionic-covalent entanglement hydrogels. J Appl Polym Sci 2014. [DOI: 10.1002/app.41216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- D. Awanthi De Silva
- Soft Materials Group; School of Chemistry, University of Wollongong; Wollongong NSW Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney Australia
| | - Kerry J. Gilmore
- Intelligent Polymer Research Institute; ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong; Wollongong NSW Australia
| | - Marc in het Panhuis
- Soft Materials Group; School of Chemistry, University of Wollongong; Wollongong NSW Australia
- Intelligent Polymer Research Institute; ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong; Wollongong NSW Australia
| |
Collapse
|
24
|
Yin N, Santos TMA, Auer GK, Crooks JA, Oliver PM, Weibel DB. Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol 2014; 80:1926-32. [PMID: 24441155 PMCID: PMC3957650 DOI: 10.1128/aem.03452-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) has a range of structural and physicochemical properties that make it a particularly useful material for the culture of bacteria. We studied the growth of 14 genera of bacteria on BC substrates produced by Acetobacter xylinum and compared the results to growth on the commercially available biopolymers agar, gellan, and xanthan. We demonstrate that BC produces rates of bacterial cell growth that typically exceed those on the commercial biopolymers and yields cultures with higher titers of cells at stationary phase. The morphology of the cells did not change during growth on BC. The rates of nutrient diffusion in BC being higher than those in other biopolymers is likely a primary factor that leads to higher growth rates. Collectively, our results suggest that the use of BC may open new avenues in microbiology by facilitating bacterial cell culture and isolation.
Collapse
Affiliation(s)
- Na Yin
- College of Materials Science and Engineering, Donghua University, Shanghai, People's Republic of China
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Thiago M. A. Santos
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - George K. Auer
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - John A. Crooks
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Piercen M. Oliver
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Nghe P, Boulineau S, Gude S, Recouvreux P, van Zon JS, Tans SJ. Microfabricated polyacrylamide devices for the controlled culture of growing cells and developing organisms. PLoS One 2013; 8:e75537. [PMID: 24086559 PMCID: PMC3782435 DOI: 10.1371/journal.pone.0075537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/19/2013] [Indexed: 01/09/2023] Open
Abstract
The ability to spatially confine living cells or small organisms while dynamically controlling their aqueous environment is important for a host of microscopy applications. Here, we show how polyacrylamide layers can be patterned to construct simple microfluidic devices for this purpose. We find that polyacrylamide gels can be molded like PDMS into micron-scale structures that can enclose organisms, while being permeable to liquids, and transparent to allow for microscopic observation. We present a range of chemostat-like devices to observe bacterial and yeast growth, and C. elegans nematode development. The devices can integrate PDMS layers and allow for temporal control of nutrient conditions and the presence of drugs on a minute timescale. We show how spatial confinement of motile C. elegans enables for time-lapse microscopy in a parallel fashion.
Collapse
|
26
|
Wessel AK, Hmelo L, Parsek MR, Whiteley M. Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 2013; 11:337-48. [PMID: 23588251 DOI: 10.1038/nrmicro3010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms lead social lives and use coordinated chemical and physical interactions to establish complex communities. Mechanistic insights into these interactions have revealed that there are remarkably intricate systems for coordinating microbial behaviour, but little is known about how these interactions proceed in the spatially organized communities that are found in nature. This Review describes the technologies available for spatially organizing small microbial communities and the analytical methods for characterizing the chemical environment surrounding these communities. Together, these complementary technologies have provided novel insights into the impact of spatial organization on both microbial behaviour and the development of phenotypic heterogeneity within microbial communities.
Collapse
Affiliation(s)
- Aimee K Wessel
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5000, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.
Collapse
Affiliation(s)
- Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
- Department of Biomedical Engineering, University of Wisconsin-Madison,
Madison, WI 53706
| |
Collapse
|
28
|
Harper JC, Brozik SM, Brinker CJ, Kaehr B. Biocompatible microfabrication of 3D isolation chambers for targeted confinement of individual cells and their progeny. Anal Chem 2012; 84:8985-9. [PMID: 23072333 DOI: 10.1021/ac301816c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a technique to physically isolate single/individual cells from their surrounding environment by fabricating three-dimensional microchambers around selected cells under biocompatible conditions. Isolation of targeted cells is achieved via rapid fabrication of protein hydrogels from a biocompatible precursor solution using multiphoton lithography, an intrinsically 3D laser direct write microfabrication technique. Cells remain chemically accessible to environmental cues enabling their propagation into well-defined, high density populations. We demonstrate this methodology on gram negative (E. coli), gram positive (S. aureus), and eukaryotic (S. cerevisiae) cells. The opportunities to confine viable, single/individual-cells and small populations within user-defined microenvironments afforded by this approach should facilitate the study of cell behaviors across multiple generations.
Collapse
Affiliation(s)
- Jason C Harper
- Sandia National Laboratories, Albuquerque, New Mexico 87131, United States
| | | | | | | |
Collapse
|