1
|
Allardyce D, Adu Mantey P, Szalecka M, Nkwo R, Loizidou EZ. Identification of a new class of proteasome inhibitors based on a naphthyl-azotricyclic-urea-phenyl scaffold. RSC Med Chem 2023; 14:573-582. [PMID: 36970145 PMCID: PMC10034219 DOI: 10.1039/d2md00404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Proteasomes play an important role in protein degradation and regulation of many cellular pathways by maintaining protein balance. Inhibitors of proteasomes disrupt this balance affecting proteins that are key in malignancies and as such have found applications in the treatment of multiple myeloma and mantle cell lymphoma. However, resistance mechanisms have been reported for these proteasome inhibitors including mutations at the β5 site which necessitates the constant development of new inhibitors. In this work, we report the identification of a new class of proteasome inhibitors, polycyclic molecules bearing a naphthyl-azotricyclic-urea-phenyl scaffold, from screening of the ZINC library of natural products. The most potent of these compounds showed evidence of dose dependency through proteasome assays with IC50 values in the low micromolar range, and kinetic analysis revealed competitive binding at the β5c site with an estimated inhibition constant, K i, of 1.15 μM. Inhibition was also shown for the β5i site of the immunoproteasome at levels similar to those of the constitutive proteasome. Structure-activity relationship studies identified the naphthyl substituent to be crucial for activity and this was attributed to enhanced hydrophobic interactions within β5c. Further to this, halogen substitution within the naphthyl ring enhanced the activity and allowed for π-π interactions with Y169 in β5c and Y130 and F124 in β5i. The combined data highlight the importance of hydrophobic and halogen interactions in β5 binding and assist in the design of next generation inhibitors of proteasomes.
Collapse
Affiliation(s)
- Duncan Allardyce
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Priscilla Adu Mantey
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Monika Szalecka
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Robert Nkwo
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Eriketi Z Loizidou
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| |
Collapse
|
2
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
3
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
4
|
Reboud-Ravaux M. [The proteasome - structural aspects and inhibitors: a second life for a validated drug target]. Biol Aujourdhui 2021; 215:1-23. [PMID: 34397372 DOI: 10.1051/jbio/2021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/06/2023]
Abstract
The proteasome is the central component of the adaptable ubiquitin proteasome system (UPS) discovered in the 1980's. It sustains protein homeostasis (proteostasis) under a large variety of physiological and pathological conditions. Its dysregulation has been often associated to various human diseases. Its potential regulation by modulators has emerged as promising avenue to develop treatments of various pathologies. The FDA approval in 2003 of the proteasome inhibitor bortezomib to treat multiple myeloma, then mantle lymphoma in 2006, has considerably increased the clinical interest of proteasome inhibition. Second-generation proteasome inhibitors (carfilzomib and ixazomib) have been approved to overcome bortezomib resistance and improved toxicity profile and route of administration. Selective inhibition of immunoproteasome is a promising approach towards the development of immunomodulatory drugs. The design of these drugs relies greatly on the elucidation of high-resolution structures of the targeted proteasomes. The ATPase-dependent 26S proteasome (2.4 MDa) consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of catalytic sites. In recent years, due to technical advances especially in atomic cryo-electron microscopy, significant progress has been made in the understanding of 26S proteasome structure and its dynamics. Stepwise conformational changes of the 19S particle induced by ATP hydrolysis lead to substrate translocation, 20S pore opening and processive protein degradation by the 20S proteolytic subunits (2β1, 2β2 and 2β5). A large variety of structurally different inhibitors, both natural products or synthetic compounds targeting immuno- and constitutive proteasomes, has been discovered. The latest advances in this drug discovery are presented. Knowledge about structures, inhibition mechanism and detailed biological regulations of proteasomes can guide strategies for the development of next-generation inhibitors to treat human diseases, especially cancers, immune disorders and pathogen infections. Proteasome activators are also potentially applicable to the reduction of proteotoxic stresses in neurodegeneration and aging.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
5
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
6
|
Zhao L, Le Chapelain C, Brachmann AO, Kaiser M, Groll M, Bode HB. Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from Photorhabdus laumondii. Chembiochem 2021; 22:1582-1588. [PMID: 33452852 PMCID: PMC8248439 DOI: 10.1002/cbic.202100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The glidobactin-like natural products (GLNPs) glidobactin A and cepafungin I have been reported to be potent proteasome inhibitors and are regarded as promising candidates for anticancer drug development. Their biosynthetic gene cluster (BGC) plu1881-1877 is present in entomopathogenic Photorhabdus laumondii but silent under standard laboratory conditions. Here we show the largest subset of GLNPs, which are produced and identified after activation of the silent BGC in the native host and following heterologous expression of the BGC in Escherichia coli. Their chemical diversity results from a relaxed substrate specificity and flexible product release in the assembly line of GLNPs. Crystal structure analysis of the yeast proteasome in complex with new GLNPs suggests that the degree of unsaturation and the length of the aliphatic tail are critical for their bioactivity. The results in this study provide the basis to engineer the BGC for the generation of new GLNPs and to optimize these natural products resulting in potential drugs for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhao
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences210014NanjingP. R. China
| | - Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Alexander O. Brachmann
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute4002BaselSwitzerland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Helge B. Bode
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe University Frankfurt60438Frankfurt am MainGermany
- Senckenberg Gesellschaft für Naturforschung60325Frankfurt am MainGermany
- Department of Natural Products in Organismic InteractionsMax-Planck-Institute for Terrestrial Microbiology35043MarburgGermany
| |
Collapse
|
7
|
Yang YJ, Wang K, Yang Y, Lai FF, Chen XG, Xiao ZY. Design, synthesis and biological evaluation of dipeptides as novel non-covalent 20S proteasome inhibitors. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:436-451. [PMID: 33844614 DOI: 10.1080/10286020.2021.1910241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Based on the interaction modes of the natural 20S proteasome inhibitors TMC-95A, we have previously discovered a dipeptide 1. To explore the SAR around compound 1, we designed and synthesized a series of dipeptides (8-38) with a fragment-based strategy. Among them, nine compounds showed significant inhibitory activities against the chymotrypsin-like activity of human 20S proteasome with IC50 values at the submicromolar level, which were comparable or even superior to the parent compound 1. Meanwhile, they displayed no significant inhibition against trypsin-like and caspase-like activities of 20S proteasome. The results suggested the feasibility to design dipeptides as novel and potent 20S proteasome inhibitors.[Formula: see text].
Collapse
Affiliation(s)
- Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fang-Fang Lai
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Guang Chen
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Yan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Serrano-Aparicio N, Moliner V, Świderek K. Nature of Irreversible Inhibition of Human 20S Proteasome by Salinosporamide A. The Critical Role of Lys–Asp Dyad Revealed from Electrostatic Effects Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
9
|
Wang J, Liang B, Chen Y, Fuk-Woo Chan J, Yuan S, Ye H, Nie L, Zhou J, Wu Y, Wu M, Huang LS, An J, Warshel A, Yuen KY, Ciechanover A, Huang Z, Xu Y. A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities. Eur J Med Chem 2021; 215:113267. [PMID: 33639344 PMCID: PMC7873610 DOI: 10.1016/j.ejmech.2021.113267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome’s substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boqiang Liang
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Yiling Chen
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Ye
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Linlin Nie
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Jiao Zhou
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yi Wu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China
| | - Meixian Wu
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lina S Huang
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aaron Ciechanover
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Yan Xu
- Nobel Institute of Biomedicine, Zhuhai, 519000, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
10
|
Yang Y, Wang K, Wu B, Yang Y, Lai F, Chen X, Xiao Z. Design, synthesis and biological evaluation of triaryl compounds as novel 20S proteasome inhibitors. Bioorg Med Chem Lett 2020; 30:127508. [PMID: 32853683 DOI: 10.1016/j.bmcl.2020.127508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Thirty novel triaryl compounds were designed and synthesized based on the known proteasome inhibitor PI-1840. Most of them showed significant inhibition against the β5c subunit of human 20S proteasome, and five of them exhibited IC50 values at the sub-micromolar level, which were comparable to or even more potent than PI-1840. The most active two (1c and 1d) showed IC50 values of 0.12 and 0.18 μM against the β5c subunit, respectively, while they displayed no obvious inhibition against the β2c, β1c and β5i subunits. Molecular docking provided informative clues for the subunit selectivity. The potent and subunit selective proteasome inhibitors identified herein represent new chemical templates for further molecular optimization.
Collapse
Affiliation(s)
- Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Wu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Lai
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. J Biol Chem 2019; 294:19604-19615. [PMID: 31727740 DOI: 10.1074/jbc.ra119.010796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
12
|
|
13
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
14
|
Design, synthesis, and evaluation of cystargolide-based β-lactones as potent proteasome inhibitors. Eur J Med Chem 2018; 157:962-977. [PMID: 30165344 DOI: 10.1016/j.ejmech.2018.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 11/20/2022]
Abstract
The peptidic β-lactone proteasome inhibitors (PIs) cystargolides A and B were used to conduct structure-activity relationship (SAR) studies in order to assess their anticancer potential. A total of 24 different analogs were designed, synthesized and evaluated for proteasome inhibition, for cytotoxicity towards several cancer cell lines, and for their ability to enter intact cells. X-ray crystallographic analysis and subunit selectivity was used to determine the specific subunit binding associated with the structural modification of the β-lactone (P1), peptidic core, (Px and Py), and end-cap (Pz) of our scaffold. The cystargolide derivative 5k, structurally unique at both Py and P1, exhibited the most promising inhibitory activity for the β5 subunit of human proteasomes (IC50 = 3.1 nM) and significant cytotoxicity towards MCF-7 (IC50 = 416 nM), MDA-MB-231 (IC50 = 74 nM) and RPMI 8226 (IC50 = 41 nM) cancer cell lines. Cellular infiltration assays revealed that minor structural modifications have significant effects on the ability of our PIs to inhibit intracellular proteasomes, and we identified 5k as a promising candidate for continued therapeutic studies. Our novel drug lead 5k is a more potent proteasome inhibitor than carfilzomib with mid-to-low nanomolar IC50 measurements and it is cytotoxic against multiple cancer cell lines at levels approaching those of carfilzomib.
Collapse
|
15
|
(-)-Homosalinosporamide A and Its Mode of Proteasome Inhibition: An X-ray Crystallographic Study. Mar Drugs 2018; 16:md16070240. [PMID: 30029468 PMCID: PMC6071143 DOI: 10.3390/md16070240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Upon acylation of the proteasome by the β-lactone inhibitor salinosporamide A (SalA), tetrahydrofuran formation occurs by intramolecular alkylation of the incipient alkoxide onto the choroethyl sidechain and irreversibly blocks the active site. Our previously described synthetic approach to SalA, utilizing a bioinspired, late-stage, aldol-β-lactonization strategy to construct the bicyclic β-lactone core, enabled synthesis of (⁻)-homosalinosporamide A (homoSalA). This homolog was targeted to determine whether an intramolecular tetrahydropyran is formed in a similar manner to SalA. Herein, we report the X-ray structure of the yeast 20S proteasome:homoSalA-complex which reveals that tetrahydropyran ring formation does not occur despite comparable potency at the chymotrypsin-like active site in a luminogenic enzyme assay. Thus, the natural product derivative homoSalA blocks the proteasome by a covalent reversible mode of action, opening the door for further fine-tuning of proteasome inhibition.
Collapse
|
16
|
Hovhannisyan AA, Pham TH, Bouvier D, Tan X, Touhar S, Mkryan GG, Dallakyan AM, El Amri C, Melikyan GS, Reboud-Ravaux M, Bouvier-Durand M. Phenoxypropanolamine derivatives as selective inhibitors of the 20S proteasome β1 and β5 subunits. Bioorg Med Chem Lett 2017; 27:5172-5178. [PMID: 29113763 DOI: 10.1016/j.bmcl.2017.10.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
New series of thiophene-containing phenoxypropanolamines were synthesized and evaluated for their potency to inhibit the three proteolytic activities of the mammalian 20S proteasome. Noticeable inhibition of both ChT-L and PA activities was obtained with three compounds: one with unsubstituted phenoxypropanolamine group (7) and the two others with a p-Cl-substituted group (4 and 9). For three other compounds (3, 8 and 10), ChT-L activity alone was significantly inhibited. In silico docking performed on the β5 and β1 subunits bearing the respective ChT-L and PA catalytic sites showed features common to poses associated with active compounds. These features may constitute a selectivity criterion for structure-guided inhibitor design.
Collapse
Affiliation(s)
- Anna A Hovhannisyan
- Department of Organic Chemistry, Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan, Armenia
| | - The Hien Pham
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
| | - Dominique Bouvier
- Sorbonne Universités, UPMC Univ Paris 06, Atelier de BioInformatique, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, Museum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005 Paris Cedex 05, France
| | - Xiao Tan
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
| | - SiAmmar Touhar
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
| | - Gevorg G Mkryan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry HAS A.L.Mnjoyan Institute of Fine Organic Chemistry, 26 Azatutyan Str., Yerevan 0014, Armenia
| | - Ashot M Dallakyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry HAS A.L.Mnjoyan Institute of Fine Organic Chemistry, 26 Azatutyan Str., Yerevan 0014, Armenia
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
| | - Gagik S Melikyan
- Department of Organic Chemistry, Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan, Armenia
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
| | - Michelle Bouvier-Durand
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France.
| |
Collapse
|
17
|
Bulman Page PC, Goodyear RL, Horton AE, Chan Y, Karim R, O’Connell MA, Hamilton C, Slawin AMZ, Buckley BR, Allin SM. Formal Total Synthesis of (+)-C9-Deoxyomuralide from l-Leucine Using a Double Sacrificial Chirality Transfer Approach. J Org Chem 2017; 82:12209-12223. [DOI: 10.1021/acs.joc.7b02078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Benjamin R. Buckley
- Department
of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Steven M. Allin
- School of Science & Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
18
|
Herrero Alvarez N, van de Langemheen H, Brouwer AJ, Liskamp RM. Potential peptidic proteasome inhibitors by incorporation of an electrophilic trap based on amino acid derived α-substituted sulfonyl fluorides. Bioorg Med Chem 2017; 25:5055-5063. [DOI: 10.1016/j.bmc.2017.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022]
|
19
|
Blanco B, Palasis KA, Adwal A, Callen DF, Abell AD. Azobenzene-containing photoswitchable proteasome inhibitors with selective activity and cellular toxicity. Bioorg Med Chem 2017. [PMID: 28642029 DOI: 10.1016/j.bmc.2017.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of azobenzene-containing peptidic boronate esters was prepared and the activity of the thermally adapted states (TAS), enriched in trans isomer, and the photostationary states (PSS), enriched in cis isomer, for each compound were evaluated against β5 and β1 proteasome subunits. Compounds with a sterically demanding phenyl-substituted azobenzene at P2 (4c), and a less sterically demanding unsubstituted azobenzene at the N-terminus (5a), showed the greatest difference in activity between the two states. In both cases, the more active trans-enriched TAS had activity comparable to bortezomib and delanzomib. Furthermore, cis-enriched 4c inhibited tumor growth in both breast and colorectal carcinoma cell lines. Significantly, the initial trans-enriched TAS of 4c was not cytotoxic against the non-malignant MCF-10A cells.
Collapse
Affiliation(s)
- Beatriz Blanco
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Kathryn A Palasis
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alaknanda Adwal
- Centre for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - David F Callen
- Centre for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
20
|
Ghosh C, Gupta N, More P, Sengupta P, Mallick A, Santra MK, Basu S. Engineering and In VitroEvaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect 2016. [DOI: 10.1002/slct.201601117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Neha Gupta
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Piyush More
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Poulomi Sengupta
- Physical Chemistry Division; CSIR National Chemical Laboratory; Academy of Scientific & Innovative Research (AcSIR); Dr. Homi Bhaba Road Pune 411008, Maharashtra India
| | - Abhik Mallick
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Manas Kumar Santra
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Sudipta Basu
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| |
Collapse
|
21
|
Brouwer AJ, Herrero Álvarez N, Ciaffoni A, van de Langemheen H, Liskamp RM. Proteasome inhibition by new dual warhead containing peptido vinyl sulfonyl fluorides. Bioorg Med Chem 2016; 24:3429-35. [DOI: 10.1016/j.bmc.2016.05.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
22
|
Xia X, Kim S, Liu C, Shim SH. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities. Molecules 2016; 21:molecules21070944. [PMID: 27447600 PMCID: PMC6273089 DOI: 10.3390/molecules21070944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1–4) and seven α-pyrone analogues (5–10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1–3, 5, and 9–10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors.
Collapse
Affiliation(s)
- Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Shandong Academy of Sciences, Jinan 250014, China.
| | - Soonok Kim
- National Institute of Biological Resources, Incheon 22689, Korea.
| | - Changheng Liu
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Shandong Academy of Sciences, Jinan 250014, China.
| | - Sang Hee Shim
- Duksung IDC, College of Pharmacy, Duksung Women's University, Seoul 01369, Korea.
| |
Collapse
|
23
|
Liu J, Zhu X, Zhang W. Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors. Chembiochem 2015; 16:2585-9. [PMID: 26477320 DOI: 10.1002/cbic.201500496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anticancer drugs. Although the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast-growing heterologous host. This set of enzymes includes a non-ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl-CoA dehydrogenase (ACAD) homologue. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and (13) C-labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Bioengineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Xuejun Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA. .,Physical Biosciences Division, Lawrence Berkeley National Laboratory, 2151 Berkeley Way, Berkeley, CA, 94704, USA.
| |
Collapse
|
24
|
Totaro KA, Barthelme D, Simpson PT, Sauer RT, Sello JK. Substrate-guided optimization of the syringolins yields potent proteasome inhibitors with activity against leukemia cell lines. Bioorg Med Chem 2015; 23:6218-22. [PMID: 26296913 PMCID: PMC4562813 DOI: 10.1016/j.bmc.2015.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/19/2015] [Indexed: 12/14/2022]
Abstract
Natural products that inhibit the proteasome have been fruitful starting points for the development of drug candidates. Those of the syringolin family have been underexploited in this context. Using the published model for substrate mimicry by the syringolins and knowledge about the substrate preferences of the proteolytic subunits of the human proteasome, we have designed, synthesized, and evaluated syringolin analogs. As some of our analogs inhibit the activity of the proteasome with second-order rate constants 5-fold greater than that of the methyl ester of syringolin B, we conclude that the substrate mimicry model for the syringolins is valid. The improvements in in vitro potency and the activities of particular analogs against leukemia cell lines are strong bases for further development of the syringolins as anti-cancer drugs.
Collapse
Affiliation(s)
- Kyle A Totaro
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, United States
| | - Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Peter T Simpson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, United States
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, United States.
| |
Collapse
|
25
|
Kelotra S, Jain M, Kelotra A, Jain I, Bandaru S, Nayarisseri A, Bidwai A. An in silico Appraisal to Identify High Affinity Anti-Apoptotic Synthetic Tetrapeptide Inhibitors Targeting the Mammalian Caspase 3 Enzyme. Asian Pac J Cancer Prev 2015; 15:10137-42. [DOI: 10.7314/apjcp.2014.15.23.10137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie 2015; 108:94-100. [DOI: 10.1016/j.biochi.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
27
|
Desvergne A, Cheng Y, Grosay-Gaudrel S, Maréchal X, Reboud-Ravaux M, Genin E, Vidal J. Noncovalent Fluorescent Probes of Human Immuno- and Constitutive Proteasomes. J Med Chem 2014; 57:9211-7. [DOI: 10.1021/jm5011429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Audrey Desvergne
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing (B2A), 75005 Paris, France
| | - Yan Cheng
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing (B2A), 75005 Paris, France
| | - Sophie Grosay-Gaudrel
- Université de Rennes 1, CPM, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes Cedex, France
- CNRS, UMR 6510, Chimie et Photonique Moléculaires, 35042 Rennes, France
| | - Xavier Maréchal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing (B2A), 75005 Paris, France
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing (B2A), Integrated Cellular Ageing and Inflammation, 7 Quai St Bernard, 75005 Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing (B2A), 75005 Paris, France
| | - Emilie Genin
- Université de Rennes 1, CPM, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes Cedex, France
- CNRS, UMR 6510, Chimie et Photonique Moléculaires, 35042 Rennes, France
| | - Joëlle Vidal
- Université de Rennes 1, CPM, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes Cedex, France
- CNRS, UMR 6510, Chimie et Photonique Moléculaires, 35042 Rennes, France
| |
Collapse
|
28
|
Inhibitory effect of b-AP15 on the 20S proteasome. Biomolecules 2014; 4:931-9. [PMID: 25317846 PMCID: PMC4279163 DOI: 10.3390/biom4040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022] Open
Abstract
The 26S proteasome is a cellular proteolytic complex containing 19S regulatory particles and the 20S core proteasome. It was reported that the small molecule b-AP15 targets the proteasome by inhibiting deubiquitination of the 19S regulatory particles of the proteasome complex. An investigation of b-AP15 on the 20S proteasome core suggested that this compound can also inhibit the 20S proteasome with a potency equivalent to that found to inhibit the 19S regulatory particles.
Collapse
|
29
|
Kang M, Wu T, Wijeratne EMK, Lau EC, Mason DJ, Mesa C, Tillotson J, Zhang DD, Gunatilaka AAL, La Clair JJ, Chapman E. Functional chromatography reveals three natural products that target the same protein with distinct mechanisms of action. Chembiochem 2014; 15:2125-31. [PMID: 25125376 PMCID: PMC4187115 DOI: 10.1002/cbic.201402258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 01/12/2023]
Abstract
Access to lead compounds with defined molecular targets continues to be a barrier to the translation of natural product resources. As a solution, we developed a system that uses discrete, recombinant proteins as the vehicles for natural product isolation. Here, we describe the use of this functional chromatographic method to identify natural products that bind to the AAA+ chaperone, p97, a promising cancer target. Application of this method to a panel of fungal and plant extracts identified rheoemodin, 1-hydroxydehydroherbarin, and phomapyrrolidone A as distinct p97 modulators. Excitingly, each of these molecules displayed a unique mechanism of p97 modulation. This discovery provides strong support for the application of functional chromatography to the discovery of protein modulators that would likely escape traditional high-throughput or phenotypic screening platforms.
Collapse
Affiliation(s)
- MinJin Kang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Tongde Wu
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706-6800, United States
| | - Eric C. Lau
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Damian J. Mason
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Celestina Mesa
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Joseph Tillotson
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Donna D. Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706-6800, United States
| | - James J. La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA 92163-1052, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| |
Collapse
|
30
|
Beck P, Heinemeyer W, Späth AL, Elnakady Y, Müller R, Groll M. Interactions of the natural product kendomycin and the 20S proteasome. J Mol Biol 2014; 426:3108-3117. [PMID: 25038530 DOI: 10.1016/j.jmb.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/13/2014] [Accepted: 06/26/2014] [Indexed: 01/05/2023]
Abstract
Natural products are a valuable source for novel lead structures in drug discovery, but for the majority of isolated bioactive compounds, the cellular targets are unknown. The structurally unique ansa-polyketide kendomycin (KM) was reported to exert its potent cytotoxic effects via impairment of the ubiquitin proteasome system, but the exact mode of action remained unclear. Here, we present a systematic biochemical characterization of KM-proteasome interactions in vitro and in vivo, including complex structures of wild type and mutant yeast 20S proteasome with KM. Our results provide evidence for a polypharmacological mode of action for KM's cytotoxic effect on cancer cells.
Collapse
Affiliation(s)
- Philipp Beck
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Anna-Lena Späth
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Yasser Elnakady
- Helmholtz Center for Infectious Research (HZI), Department Microbial Natural Products, Saarland University, Campus C2 3, Saarbrücken 66041, Germany
| | - Rolf Müller
- Helmholtz Center for Infectious Research (HZI), Department Microbial Natural Products, Saarland University, Campus C2 3, Saarbrücken 66041, Germany
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany.
| |
Collapse
|
31
|
Forsberg EM, Sicard C, Brennan JD. Solid-phase biological assays for drug discovery. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:337-359. [PMID: 25000820 DOI: 10.1146/annurev-anchem-071213-020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.
Collapse
Affiliation(s)
- Erica M Forsberg
- Biointerfaces Institute, McMaster University, Hamilton, Ontario L8S 4L8, Canada;
| | | | | |
Collapse
|
32
|
Pautasso C, Troia R, Genuardi M, Palumbo A. Pharmacophore modeling technique applied for the discovery of proteasome inhibitors. Expert Opin Drug Discov 2014; 9:931-43. [PMID: 24877566 DOI: 10.1517/17460441.2014.923838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The 26S proteasome has many important roles in the biological functions of the cells, and proteasome inhibitors have multiple and complex activities on cells. These compounds can be natural or synthesized. Most synthetic derivatives have been rationally designed, synthesized and optimized to obtain the best selectivity and increase the activity. The design of chemical entities with desired molecular identification, which plays an important role in biological systems, is provided by pharmacophore modeling. Indeed, pharmacophore models can be established either in a ligand-based manner or in a receptor-based manner. AREAS COVERED The authors discuss the application of pharmacophore modeling techniques to proteasome inhibitors development. Furthermore, the article reviews the classification of the currently discovered proteasome inhibitors where the principal mechanism of action and clinical application are represented. EXPERT OPINION In the era of new drug development, database of compounds should be thoroughly evaluated with a combination of methods that consider both pharmacophore- and ligand-based virtual screening. The concept of pharmacophore helps to discover new active compounds and to evaluate their activity. The nature of proteasome inhibitor pharmacophore affects the secondary active-site specificity; indeed, increasing specificity decreases the cytotoxicity of the proteasome inhibitors. It is hypothesized that the balanced simultaneous modulation of a few druggable targets may have superior efficacy and fewer side effects than single-target or combination therapies for the treatment of human cancers. The discovery of new compounds should aim to find more active compounds that improve the compliance of patients.
Collapse
Affiliation(s)
- Chiara Pautasso
- University of Torino, Myeloma Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Division of Hematology , Torino , Italy ;
| | | | | | | |
Collapse
|
33
|
Niggemann J, Bozko P, Bruns N, Wodtke A, Gieseler MT, Thomas K, Jahns C, Nimtz M, Reupke I, Brüser T, Auling G, Malek N, Kalesse M. Baceridin, a cyclic hexapeptide from an epiphytic bacillus strain, inhibits the proteasome. Chembiochem 2014; 15:1021-9. [PMID: 24692199 DOI: 10.1002/cbic.201300778] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 11/05/2022]
Abstract
A new cyclic hexapeptide, baceridin (1), was isolated from the culture medium of a plant-associated Bacillus strain. The structure of 1 was elucidated by HR-HPLC-MS and 1D and 2D NMR experiments and confirmed by ESI MS/MS sequence analysis of the corresponding linear hexapeptide 2. The absolute configurations of the amino acid residues were determined after derivatization by GC-MS and Marfey's method. The cyclopeptide 1 consists partially of nonribosomal-derived D- and allo-D-configured amino acids. The order of the D- and L-leucine residues within the sequence cyclo(-L-Trp-D-Ala-D-allo-Ile-L-Val-D-Leu-L-Leu-) was assigned by total synthesis of the two possible stereoisomers. Baceridin (1) was tested for antimicrobial and cytotoxic activity and displayed moderate cytotoxicity (1-2 μg mL(-1)) as well as weak activity against Staphylococcus aureus. However, it was identified to be a proteasome inhibitor that inhibits cell cycle progression and induces apoptosis in tumor cells by a p53-independent pathway.
Collapse
Affiliation(s)
- Jutta Niggemann
- Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Micale N, Scarbaci K, Troiano V, Ettari R, Grasso S, Zappalà M. Peptide-Based Proteasome Inhibitors in Anticancer Drug Design. Med Res Rev 2014; 34:1001-69. [DOI: 10.1002/med.21312] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Micale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Kety Scarbaci
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Valeria Troiano
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Roberta Ettari
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Mangiagalli 25 20133 Milano Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute; Università degli Studi di Messina; Viale Annunziata 98168 Messina Italy
| |
Collapse
|
35
|
Inhibition of human and yeast 20S proteasome by analogues of trypsin inhibitor SFTI-1. PLoS One 2014; 9:e89465. [PMID: 24586798 PMCID: PMC3934894 DOI: 10.1371/journal.pone.0089465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 12/21/2022] Open
Abstract
Starting from the primary structure of sunflower trypsin inhibitor SFTI-1, we designed novel non-covalent inhibitors of human and yeast 20S proteasomes. Peptides with Arg residue in P1 position and two basic amino acid residues (Lys or/and Arg) in P2′ and P3′ positions strongly inhibited chymotrypsin-like and caspase-like activities, while trypsin-like activity was poorly modified. We found that some SFTI-1 analogues up-regulated exclusively the chymotrypsin-like activity of latent yeast 20S proteasome.
Collapse
|
36
|
Hovhannisyan A, Pham TH, Bouvier D, Piroyan A, Dufau L, Qin L, Cheng Y, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. New C(4)- and C(1)-derivatives of furo[3,4-c]pyridine-3-ones and related compounds: evidence for site-specific inhibition of the constitutive proteasome and its immunoisoform. Bioorg Med Chem Lett 2014; 24:1571-80. [PMID: 24534487 DOI: 10.1016/j.bmcl.2014.01.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/24/2023]
Abstract
A set of 18 new C(4) and C(1) derivatives of nor-cerpegin (1,1-dimethyl furo[3,4-c]pyridine-3-one), 6 model compounds (γ- and δ-lactones) and 20 furo- or thieno[2,3-d]-pyrimidine-4-one related compounds were designed and synthesized. Each compound was assayed for inhibition of CT-L, T-L and PA proteolytic activities of 20S constitutive proteasome (c20S). Most performant compounds were also assayed on 20S immunoproteasome (i20S). Compound 10 with a benzylamino group at C(4) and dimethylated at C(1) of the furopyridine ring was the most efficient PA site-specific inhibitor of the c20S (IC50(cPA) of 600nM) without noticeable inhibition of the i20S PA site (iPA). In silico docking assays for 10 at the iPA catalytic site revealed the absence of poses normally observed for this compound and related ones at the constitutive PA site (cPA). The thieno[2,3-d]pyrimidine-4-one 40 was T-L site-specific with a mild inhibition of both c20S and i20S in vitro (IC50(cT-L) of 9.9μM and IC50(iT-L) of 6.7μM). In silico docking assays of 40 at T-L sites of c20S and i20S revealed almost identical first rank poses in the two types of sites with no possibility left for nucleophilic attack by Thr1 as observed for the fused furopyridine-3-one 10.
Collapse
Affiliation(s)
- Anna Hovhannisyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - The Hien Pham
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Dominique Bouvier
- Sorbonne Universités, UPMC Univ Paris 06, Atelier de Bioinformatique, Case courrier 1202, 4 Place Jussieu, F 75252 Paris Cedex 05, France.
| | - Alexander Piroyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - Laure Dufau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Lixian Qin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Yan Cheng
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Gagik Melikyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| | - Michelle Bouvier-Durand
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, ERL U1164, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Case 256, 7 Quai St Bernard, F-75005 Paris, France; CNRS, UMR 8256, B2A, Biological Adaptation and Ageing, F-75005 Paris, France.
| |
Collapse
|
37
|
Schorn M, Zettler J, Noel JP, Dorrestein PC, Moore BS, Kaysser L. Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors. ACS Chem Biol 2014; 9:301-9. [PMID: 24168704 DOI: 10.1021/cb400699p] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α',β'-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here, we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anticancer drug Kyprolis, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid nonribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study, we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation.
Collapse
Affiliation(s)
- Michelle Schorn
- Scripps
Institution of Oceanography, University of California, San Diego, California 92093, United States of America
| | - Judith Zettler
- Pharmaceutical
Biology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
| | - Joseph P. Noel
- Jack
H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States of America
| | - Pieter C. Dorrestein
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California 92093, United States of America
| | - Bradley S. Moore
- Scripps
Institution of Oceanography, University of California, San Diego, California 92093, United States of America
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California 92093, United States of America
| | - Leonard Kaysser
- Scripps
Institution of Oceanography, University of California, San Diego, California 92093, United States of America
- Pharmaceutical
Biology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
38
|
List A, Zeiler E, Gallastegui N, Rusch M, Hedberg C, Sieber SA, Groll M. Omuralid und Vibralacton: Unterschiede im Proteasom-β-Lacton-γ-Lactamgerüst verändern die Zielmolekülpräferenz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
List A, Zeiler E, Gallastegui N, Rusch M, Hedberg C, Sieber SA, Groll M. Omuralide and vibralactone: differences in the proteasome- β-lactone-γ-lactam binding scaffold alter target preferences. Angew Chem Int Ed Engl 2013; 53:571-4. [PMID: 24285701 DOI: 10.1002/anie.201308567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 02/05/2023]
Abstract
Despite their structural similarity, the natural products omuralide and vibralactone have different biological targets. While omuralide blocks the chymotryptic activity of the proteasome with an IC50 value of 47 nM, vibralactone does not have any effect at this protease up to a concentration of 1 mM. Activity-based protein profiling in HeLa cells revealed that the major targets of vibralactone are APT1 and APT2.
Collapse
Affiliation(s)
- Anja List
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany)
| | | | | | | | | | | | | |
Collapse
|
40
|
Hasegawa M, Yasuda Y, Tanaka M, Nakata K, Umeda E, Wang Y, Watanabe C, Uetake S, Kunoh T, Shionyu M, Sasaki R, Shiina I, Mizukami T. A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor. Eur J Med Chem 2013; 71:290-305. [PMID: 24321833 DOI: 10.1016/j.ejmech.2013.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
Abstract
In a survey of nonpeptide noncovalent inhibitors of the human 20S proteasome, we found that a novel tamoxifen derivative, RID-F (compound 6), inhibits all three protease activities of the proteasome at submicromolar levels. Structure-activity relationship studies revealed that a RID-F analog (RID-F-S*4, compound 25) is the smallest derivative compound capable of inhibiting proteasome activity, with a potency similar to that of RID-F. Kinetic analyses of the inhibition mode and competition experiments involving biotin-belactosin A (a proteasome inhibitor) binding indicated that the RID-F derivatives interact with the protease subunits in a different manner. Culturing of human cells with these compounds resulted in accumulation of ubiquitinated proteins and induction of apoptosis. Thus, the RID-F derivatives may be useful lead chemicals for the generation of a new class of proteasome inhibitors.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan.
| | - Yukari Yasuda
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Makoto Tanaka
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Kenya Nakata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eri Umeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yanwen Wang
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Chihiro Watanabe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shoko Uetake
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tatsuki Kunoh
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Ryuzo Sasaki
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tamio Mizukami
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
41
|
Francisco V, Costa G, Figueirinha A, Marques C, Pereira P, Miguel Neves B, Celeste Lopes M, García-Rodríguez C, Teresa Cruz M, Teresa Batista M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: contribution of chlorogenic acid. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:126-134. [PMID: 23583902 DOI: 10.1016/j.jep.2013.03.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cymbopogon citratus (DC.) Stapf leaves infusion is used in traditional medicine for the treatment of inflammatory conditions, however little is known about their bioactive compounds. AIM OF THE STUDY Investigate the compounds responsible for anti-inflammatory potential of Cymbopogon citratus (Cy) on cytokines production induced by lipopolysaccharide (LPS) in human and mouse macrophages, and the action mechanisms involved. MATERIALS AND METHODS An essential oil-free infusion of Cy was prepared and polyphenol-rich fractions (PFs) were obtained from it by column chromatography. Chlorogenic acid (CGA) was identified, by HPLC/PDA/ESI-MS(n). The expression of cytokines, namely TNF-α and CCL5, was analyzed by real-time RT-PCR, on LPS-stimulated human macrophages. Activation of nuclear factor (NF)-κB, a master regulator of inflammation, was investigated by western blot and gene reporter assay. Proteasome activity was assessed using a fluorogenic peptide. RESULTS Cymbopogon citratus extract and its polyphenols inhibited the cytokine production on human macrophages. This supports the anti-inflammatory activity of Cy polyphenols in physiologically relevant cells. Concerning the effect on the activation of NF-κB pathway, the results pointed to an inhibition of LPS-induced NF-κB activation by Cy and PFs. CGA was identified, by HPLC/PDA/ESI-MS(n), as the main phenolic acid of the Cy infusion, and it demonstrated to be, at least in part, responsible by that effect. Additionally, it was verified for the first time that Cy and PFs inhibited the proteasome activity, a complex that controls NF-κB activation, having CGA a strong contribution. CONCLUSIONS The results evidenced, for the first time, the anti-inflammatory properties of Cymbopogon citratus through proteasome inhibition and, consequently NF-κB pathway and cytokine expression. Additionally, Cy polyphenols, in particular chlorogenic acid, were highlighted as bioactive compounds.
Collapse
Affiliation(s)
- Vera Francisco
- Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Desvergne A, Genin E, Maréchal X, Gallastegui N, Dufau L, Richy N, Groll M, Vidal J, Reboud-Ravaux M. Dimerized Linear Mimics of a Natural Cyclopeptide (TMC-95A) Are Potent Noncovalent Inhibitors of the Eukaryotic 20S Proteasome. J Med Chem 2013; 56:3367-78. [DOI: 10.1021/jm4002007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Audrey Desvergne
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Emilie Genin
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Xavier Maréchal
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nerea Gallastegui
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Laure Dufau
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nicolas Richy
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michael Groll
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Joëlle Vidal
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michèle Reboud-Ravaux
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
43
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthese und Pharmakologie von Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthesis and pharmacology of proteasome inhibitors. Angew Chem Int Ed Engl 2013; 52:5450-88. [PMID: 23526565 DOI: 10.1002/anie.201207900] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Indexed: 12/17/2022]
Abstract
Shortly after the discovery of the proteasome it was proposed that inhibitors could stabilize proteins which ultimately would trigger apoptosis in tumor cells. The essential questions were whether small molecules would be able to inhibit the proteasome without generating prohibitive side effects and how one would derive these compounds. Fortunately, "Mother Nature" has generated a wide variety of natural products that provide distinct selectivities and specificities. The chemical synthesis of these natural products finally provided access to analogues and optimized drugs of which two different classes have been approved for the treatment of malignancies. Despite these achievements, additional lead structures derived from nature are under investigation and will be discussed with regard to their biological potential and chemical challenges.
Collapse
Affiliation(s)
- Andreas Rentsch
- Institut für Organische Chemie and Centre of Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Hovhannisyan A, Pham TH, Bouvier D, Qin L, Melikyan G, Reboud-Ravaux M, Bouvier-Durand M. C1 and N5 derivatives of cerpegin: synthesis of a new series based on structure-activity relationships to optimize their inhibitory effect on 20S proteasome. Bioorg Med Chem Lett 2013; 23:2696-703. [PMID: 23541650 DOI: 10.1016/j.bmcl.2013.02.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/25/2022]
Abstract
Thirty-two new derivatives of cerpegin (1,1,5-trimethylfuro[3,4-c]pyridine-3,4-dione) were designed and synthesized in high yield by a new method, combining several C(1) and N(5) substituents. All compounds were tested for their inhibitory effect on the CT-L, T-L and PA proteolytic activities of a purified mammalian 20S proteasome. Only one molecule inhibited both CT-L and PA activities. Sixteen molecules specifically inhibited PA at the micromolar range, out of which fourteen had IC50 values around 5 μM and two had IC50 values closer to 2 μM. Except in one case, neither calpain I nor cathepsin B was inhibited. In silico docking suggests a unique mode of binding of the most efficient compounds to the β1 catalytic site (PA activity) in relation to the chemical nature of C(1) substituents.
Collapse
Affiliation(s)
- Anna Hovhannisyan
- Department of Organic Chemistry, Yerevan State University, A. Manoogian Str. 1, 0025 Yerevan, Armenia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Stein ML, Groll M. Applied techniques for mining natural proteasome inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:26-38. [PMID: 23360979 DOI: 10.1016/j.bbamcr.2013.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
Abstract
In eukaryotic cells, the ubiquitin-proteasome-system (UPS) is responsible for the non-lysosomal degradation of proteins and plays a pivotal role in such vital processes as protein homeostasis, antigen processing or cell proliferation. Therefore, it is an attractive drug target with various applications in cancer and immunosuppressive therapies. Being an evolutionary well conserved pathway, many pathogenic bacteria have developed small molecules, which modulate the activity of their hosts' UPS components. Such natural products are, due to their stepwise optimization over the millennia, highly potent in terms of their binding mechanisms, their bioavailability and selectivity. Generally, this makes bioactive natural products an ideal starting point for the development of novel drugs. Since four out of the ten best seller drugs are natural product derivatives, research in this field is still of unfathomable value for the pharmaceutical industry. The currently most prominent example for the successful exploitation of a natural compound in the UPS field is carfilzomib (Kyprolis®), which represents the second FDA approved drug targeting the proteasome after the admission of the blockbuster bortezomib (Velcade®) in 2003. On the other hand side of the spectrum, ONX 0914, which is derived from the same natural product as carfilzomib, has been shown to selectively inhibit the immune response related branch of the pathway. To date, there exists a huge potential of UPS inhibitors with regard to many diseases. Both approved drugs against the proteasome show severe side effects, adaptive resistances and limited applicability, thus the development of novel compounds with enhanced properties is a main objective of active research. In this review, we describe the techniques, which can be utilized for the discovery of novel natural inhibitors, which in particular block the 20S proteasomal activity. In addition, we will illustrate the successful implementation of a recently published methodology with the example of a highly potent but so far unexploited group of proteasome inhibitors, the syrbactins, and their biological functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin L Stein
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Unversität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | | |
Collapse
|
47
|
Brouwer AJ, Jonker A, Werkhoven P, Kuo E, Li N, Gallastegui N, Kemmink J, Florea BI, Groll M, Overkleeft HS, Liskamp RMJ. Peptido Sulfonyl Fluorides as New Powerful Proteasome Inhibitors. J Med Chem 2012; 55:10995-1003. [DOI: 10.1021/jm301443r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arwin J. Brouwer
- Department of Medicinal Chemistry
and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences,
Faculty of Science, Utrecht University,
P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Anika Jonker
- Department of Medicinal Chemistry
and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences,
Faculty of Science, Utrecht University,
P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Paul Werkhoven
- Department of Medicinal Chemistry
and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences,
Faculty of Science, Utrecht University,
P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ethan Kuo
- Bio-organic synthesis, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Nan Li
- Bio-organic synthesis, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Nerea Gallastegui
- Center for Integrated Protein
Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse
4, 85748, Garching, Germany
| | - Johan Kemmink
- Department of Medicinal Chemistry
and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences,
Faculty of Science, Utrecht University,
P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Bogdan I. Florea
- Bio-organic synthesis, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Michael Groll
- Center for Integrated Protein
Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse
4, 85748, Garching, Germany
| | - Herman S. Overkleeft
- Bio-organic synthesis, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Rob M. J. Liskamp
- Department of Medicinal Chemistry
and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences,
Faculty of Science, Utrecht University,
P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
48
|
Proteasome allostery as a population shift between interchanging conformers. Proc Natl Acad Sci U S A 2012; 109:E3454-62. [PMID: 23150576 DOI: 10.1073/pnas.1213640109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is central to this process. CP function is controlled by activator complexes that bind 75 Å away from sites catalyzing proteolysis, and biochemical data are consistent with an allosteric mechanism by which binding is communicated to distal active sites. However, little structural evidence has emerged from the high-resolution images of the CP. Using methyl TROSY NMR spectroscopy, we demonstrate that in solution, the CP interconverts between multiple conformations whose relative populations are shifted on binding of the 11S activator or mutation of residues that contact activators. These conformers differ in contiguous regions of structure that connect activator binding to the CP active sites, and changes in their populations lead to differences in substrate proteolysis patterns. Moreover, various active site modifications result in conformational changes to the activator binding site by modulating the relative populations of these same CP conformers. This distribution is also affected by the binding of a small-molecule allosteric inhibitor of proteolysis, chloroquine, suggesting an important avenue in the development of therapeutics for proteasome inhibition.
Collapse
|
49
|
One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc Natl Acad Sci U S A 2012; 109:18367-71. [PMID: 23091006 DOI: 10.1073/pnas.1211423109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural products represent valuable lead structures for drug discovery. However, for most bioactive compounds no cellular target is yet identified and many substances predicted from genome analysis are inaccessible due to their life stage-dependent biosynthesis, which is not reflected in common isolation procedures. In response to these issues, an NMR-based and target-directed protease assay for inhibitor detection of the proteasome was developed. The methodology is suitable for one-shot identification of inhibitors in conglomerates and crude culture broths. The technique was applied for analysis of the different life stages of the bacterium Photorhabdus luminescens, which resulted in the isolation and characterization of cepafungin I (CepI), the strongest proteasome inhibitor described to date. Its biosynthesis is strictly regulated and solely induced by the specific environmental conditions determined by our methodology. The transferability of the developed technique to other drug targets may disclose an abundance of novel compounds applicable for drug development.
Collapse
|
50
|
Huber EM, Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51:8708-20. [PMID: 22711561 DOI: 10.1002/anie.201201616] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 01/30/2023]
Abstract
Proteolytic degradation is an essential cellular process which is primarily carried out by the 20S proteasome core particle (CP), a protease of 720 kDa and 28 individual subunits. As a result of its central functional role, the proteasome represents an attractive drug target that has been extensively investigated during the last decade and validated by the approval of bortezomib by the US Food and Drug Administration (FDA). Currently, several optimized second-generation proteasome inhibitors are being explored as anticancer drugs in clinical trials, and most of them target both constitutive proteasomes (cCPs) and immunoproteasomes (iCPs). However, selective inhibition of the iCPs, a distinct class of proteasomes predominantly expressed in immune cells, appears to be a promising therapeutic rationale for the treatment of autoimmune disorders. Although a few selective agents have already been identified, the recently determined crystal structure of the iCP will further promote the development and optimization of iCP-selective compounds.
Collapse
Affiliation(s)
- Eva Maria Huber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|