1
|
Swain N, Singh R, Kautu A, Saxena D, Sharma S, Chopra S, Joshi KB. Self-Assembled Short Peptide Amphiphile-Gold Nanostructures: A Novel Approach for Bacterial Infection Treatment. Chem Asian J 2025:e202401852. [PMID: 40305142 DOI: 10.1002/asia.202401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
This study presents a simple and effective strategy for synthesizing biocompatible hybrid nanostructures composed of short peptide amphiphiles (sPA) and gold nanoparticles (AuNPs) for bacterial infection control. The self-assembling sPA molecules form stable β-sheet structures, which are further enhanced upon the addition of gold ions (Au(III)) and brief sunlight exposure, leading to the formation of functional AuNP-sPA nanostructures. Comprehensive spectroscopic and microscopic characterization confirms the successful integration of AuNPs with sPA, resulting in stable nanomaterials with potent antibacterial properties. The AuNP-sPA conjugates exhibit superior antibacterial activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa with a high bacterial selectivity and biocompatibility with minimal cytotoxicity, reinforcing their therapeutic potential. These findings highlight AuNP-sPA nanostructures as promising alternatives to conventional antibiotics for targeted bacterial infection treatment.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
2
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Huang X, Zhang Z, Chen L, Lin Y, Zeng R, Xu J, Chen S, Zhang J, Cai H, Zhou H, Sun P. Multifunctional Au nano-bridged nanogap probes as ICP-MS/SERS dual-signal tags and signal amplifiers for bacteria discriminating, quantitative detecting and photothermal bactericidal activity. Biosens Bioelectron 2022; 212:114414. [PMID: 35687957 DOI: 10.1016/j.bios.2022.114414] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Ultra-sensitive detection of pathogenic bacteria is of great significance in the early stage of bacterial infections and treatment. In this work, we report a novel strategy using multifunctional Au nano-bridged nanogap nanoparticles (Au NNPs)-based sandwich nanocomposites, that made of Concanavalin A-conjugated Fe3O4@SiO2 NPs (ConA-Fe3O4@SiO2 NPs)/bacteria/aptamer-modified Au NNPs (apt-Au NNPs), for bacteria discrimination and quantitative detection by surface-enhanced Raman scattering (SERS) and inductively coupled plasma mass spectrometry (ICP-MS), and subsequently photothermal antibacterial assay. The sandwich nanocomposite consists of ConA-Fe3O4@SiO2 NPs to magnetically enrich and photothermal killing bacteria, and dual-signal tags of apt-Au NNPs for both SERS sensing and ICP-MS quantification. This strategy can specifically distinguish different kinds of pathogenic bacteria, and provided a good linear relationship of Staphylococcus aureus (S. aureus) in the range from 50 to 104 CFU/mL with a detection limit of 11 CFU/mL, as well as realized ultralow amounts of bacterial detection in serum sample with high accuracy. Based on the quantitative detection, high antibacterial efficiency was monitored by ICP-MS. Overall, the established method combines bacteria discrimination, quantitative detection, and photothermal elimination with a simple and rapid process, which provides a novel way for the early diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhubao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Lingzhi Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Yongjian Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Runmin Zeng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shanze Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jianglin Zhang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China.
| | - Haibo Zhou
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Pinghua Sun
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
4
|
Sarker SR, Polash SA, Karim MN, Saha T, Dekiwadia C, Bansal V, Sabri Y, Kandjani AE, Bhargava SK. Functionalized Concave Cube Gold Nanoparticles as Potent Antimicrobial Agents against Pathogenic Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:492-503. [PMID: 35129945 DOI: 10.1021/acsabm.1c00902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold (Au) is an inert metal in a bulk state; however, it can be used for the preparation of Au nanoparticles (i.e., AuNPs) for multidimensional applications in the field of nanomedicine and nanobiotechnology. Herein, monodisperse concave cube AuNPs (CCAuNPs) were synthesized and functionalized with a natural antioxidant lipoic acid (LA) and a tripeptide glutathione (GSH) because different crystal facets of AuNPs provide binding sites for distinct ligands. There was an ∼10 nm bathochromic shift of the UV-vis spectrum when CCAuNPs were functionalized with LA, and the size of the as-synthesized monodisperse CCAu nanoparticles was 76 nm. The LA-functionalized CCAu nanoparticles (i.e., CCAuLA) showed the highest antibacterial activity against Bacillus subtilis. Both fluorescence images and scanning electron microscopy images confirm the damage of the bacterial cell wall as the mode of antibacterial activity of CCAuNPs. CCAuNPs also cause the oxidation of bacterial cell membrane fatty acids to produce reactive oxygen species, which pave the way for the death of bacteria. Both CCAu nanoparticles and their functionalized derivatives showed excellent hemocompatibility (i.e., percentage of hemolysis is <5% at 80 μg of AuNPs) to human red blood cells and very high biocompatibility to HeLa, L929, and Chinese hamster ovary-green fluorescent protein (CHO-GFP) cells. Taken together, LA and GSH enhance the antibacterial activity and biocompatibility, respectively, of CCAu nanoparticles that interact with the bacteria through Coulomb as well as hydrophobic interactions before demonstrating antibacterial propensity.
Collapse
Affiliation(s)
- Satya Ranjan Sarker
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Savar 1342, Bangladesh
| | - Shakil Ahmed Polash
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Savar 1342, Bangladesh.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Md Nurul Karim
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Tanushree Saha
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1700, Bangladesh.,School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3001, Victoria, Australia
| | - Vipul Bansal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton 3168, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| |
Collapse
|
5
|
Zhang Y, Yu J, Zhang H, Li Y, Wang L. Nanofibrous dressing: Potential alternative for fighting against antibiotic‐resistance wound infections. J Appl Polym Sci 2022. [DOI: 10.1002/app.52178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingjie Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Juan Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Huiru Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| |
Collapse
|
6
|
Wu S, Hulme JP. Recent Advances in the Detection of Antibiotic and Multi-Drug Resistant Salmonella: An Update. Int J Mol Sci 2021; 22:3499. [PMID: 33800682 PMCID: PMC8037659 DOI: 10.3390/ijms22073499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotic and multi-drug resistant (MDR) Salmonella poses a significant threat to public health due to its ability to colonize animals (cold and warm-blooded) and contaminate freshwater supplies. Monitoring antibiotic resistant Salmonella is traditionally costly, involving the application of phenotypic and genotypic tests over several days. However, with the introduction of cheaper semi-automated devices in the last decade, strain detection and identification times have significantly fallen. This, in turn, has led to efficiently regulated food production systems and further reductions in food safety hazards. This review highlights current and emerging technologies used in the detection of antibiotic resistant and MDR Salmonella.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong;
| | - John P. Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| |
Collapse
|
7
|
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO 2-FeS 2 Nanocomposites. Int J Nanomedicine 2020; 15:8911-8920. [PMID: 33209024 PMCID: PMC7670305 DOI: 10.2147/ijn.s282689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. METHODS In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were successfully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. RESULTS In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 - and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. CONCLUSION TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yu-Cheng Hsiao
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | | | - Moh Alimansur
- Dharma Husada Nursing Academy, Kediri, East Java64114, Indonesia
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
8
|
Pardhi DM, Şen Karaman D, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron PA, Tambuwala MM, Bakshi HA, Negi P, Aljabali AA, Dua K, Chellappan DK, Behera A, Pathak K, Watharkar RB, Rautio J, Rosenholm JM. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
Collapse
Affiliation(s)
- Dinesh M Pardhi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Didem Şen Karaman
- Pharmaceutical Sciences Laboratory, Faculty of Science & Engineering, Åbo Akademi University, 20500 Turku, Finland; Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, Turkey
| | - Juri Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Wei Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nitin Charbe
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, Macul, Santiago 7820436, Chile
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, UK
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales (NSW) 230, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences SAIFAI, Etawah 206130, India
| | - Ritesh B Watharkar
- Shramshakti College of Food Technology, Maldad, Sangamner, Ahmednagar, Maharashtra 422608, India
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science & Engineering, Åbo Akademi University, 20500 Turku, Finland.
| |
Collapse
|
9
|
Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, Truong VK, Chapman J, Elbourne A. Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902913. [PMID: 32440470 PMCID: PMC7237851 DOI: 10.1002/advs.201902913] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 02/22/2020] [Indexed: 05/20/2023]
Abstract
The development of antimicrobial drug resistance among pathogenic bacteria and fungi is one of the most significant health issues of the 21st century. Recently, advances in nanotechnology have led to the development of nanomaterials, particularly metals that exhibit antimicrobial properties. These metal nanomaterials have emerged as promising alternatives to traditional antimicrobial therapies. In this review, a broad overview of metal nanomaterials, their synthesis, properties, and interactions with pathogenic micro-organisms is first provided. Secondly, the range of nanomaterials that demonstrate passive antimicrobial properties are outlined and in-depth analysis and comparison of stimuli-responsive antimicrobial nanomaterials are provided, which represent the next generation of microbiocidal nanomaterials. The stimulus applied to activate such nanomaterials includes light (including photocatalytic and photothermal) and magnetic fields, which can induce magnetic hyperthermia and kinetically driven magnetic activation. Broadly, this review aims to summarize the currently available research and provide future scope for the development of metal nanomaterial-based antimicrobial technologies, particularly those that can be activated through externally applied stimuli.
Collapse
Affiliation(s)
- Samuel Cheeseman
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Andrew J. Christofferson
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
- Food Science and TechnologyBundoora CampusSchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3086Australia
| | - Rashad Kariuki
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Daniel Cozzolino
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Food Science and TechnologyBundoora CampusSchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3086Australia
| | - Torben Daeneke
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Russell J. Crawford
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Vi Khanh Truong
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - James Chapman
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Aaron Elbourne
- School of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
- Nanobiotechnology LaboratorySchool of ScienceCollege of ScienceEngineering and HealthRMIT UniversityMelbourneVIC3001Australia
| |
Collapse
|
10
|
Mutalik C, Wang DY, Krisnawati DI, Jazidie A, Yougbare S, Kuo TR. Light-Activated Heterostructured Nanomaterials for Antibacterial Applications. NANOMATERIALS 2020; 10:nano10040643. [PMID: 32235565 PMCID: PMC7222013 DOI: 10.3390/nano10040643] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022]
Abstract
An outbreak of a bacterial contagion is a critical threat for human health worldwide. Recently, light-activated heterostructured nanomaterials (LAHNs) have shown potential as antibacterial agents, owing to their unique structural and optical properties. Many investigations have revealed that heterostructured nanomaterials are potential antibacterial agents under light irradiation. In this review, we summarize recent developments of light-activated antibacterial agents using heterostructured nanomaterials and specifically categorized those agents based on their various light harvesters. The detailed antibacterial mechanisms are also addressed. With the achievements of LAHNs as antibacterial agents, we further discuss the challenges and opportunities for their future clinical applications.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
- Center for Science and Technology, Tunghai University, Taichung 40704, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
- University Nahdlatul Ulama Surabaya, Surabaya 60111, Indonesia
| | - Sibidou Yougbare
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Self-Assembled Monolayers of Copper Sulfide Nanoparticles on Glass as Antibacterial Coatings. NANOMATERIALS 2020; 10:nano10020352. [PMID: 32085548 PMCID: PMC7075189 DOI: 10.3390/nano10020352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
We developed an easy and reproducible synthetic method to graft a monolayer of copper sulfide nanoparticles (CuS NP) on glass and exploited their particular antibacterial features. Samples were fully characterized showing a good stability, a neat photo-thermal effect when irradiated in the Near InfraRed (NIR) region (in the so called “biological window”), and the ability to release controlled quantities of copper in water. The desired antibacterial activity is thus based on two different mechanisms: (i) slow and sustained copper release from CuS NP-glass samples, (ii) local temperature increase caused by a photo-thermal effect under NIR laser irradiation of CuS NP–glass samples. This behavior allows promising in vivo applications to be foreseen, ensuring a “static” antibacterial protection tailored to fight bacterial adhesion in the critical timescale of possible infection and biofilm formation. This can be reinforced, when needed, by a photo-thermal action switchable on demand by an NIR light.
Collapse
|
12
|
Masri A, Anwar A, Khan NA, Siddiqui R. The Use of Nanomedicine for Targeted Therapy against Bacterial Infections. Antibiotics (Basel) 2019; 8:E260. [PMID: 31835647 PMCID: PMC6963790 DOI: 10.3390/antibiotics8040260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023] Open
Abstract
The emergence of drug resistance combined with limited success in the discovery of newer and effective antimicrobial chemotherapeutics poses a significant challenge to human and animal health. Nanoparticles may be an approach for effective drug development and delivery against infections caused by multi-drug resistant bacteria. Here we discuss nanoparticles therapeutics and nano-drug delivery against bacterial infections. The therapeutic efficacy of numerous kinds of nanoparticles including nanoantibiotics conjugates, small molecules capped nanoparticles, polymers stabilized nanoparticles, and biomolecules functionalized nanoparticles has been discussed. Moreover, nanoparticles-based drug delivery systems against bacterial infections have been described. Furthermore, the fundamental limitation of biocompatibility and biosafety of nanoparticles is also conferred. Finally, we propose potential future strategies of nanomaterials as antibacterials.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| |
Collapse
|
13
|
Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, Hossain S, Hasan MA, Takeoka S, Sarker SR. Investigation of the Antibacterial Activity and in vivo Cytotoxicity of Biogenic Silver Nanoparticles as Potent Therapeutics. Front Bioeng Biotechnol 2019; 7:239. [PMID: 31649922 PMCID: PMC6794407 DOI: 10.3389/fbioe.2019.00239] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Biogenic nanoparticles are the smartest weapons to deal with the multidrug-resistant "superbugs" because of their broad-spectrum antibacterial propensity as well as excellent biocompatibility. The aqueous biogenic silver nanoparticles (Aq-bAgNPs) and ethanolic biogenic silver nanoparticles (Et-bAgNPs) were synthesized using aqueous and ethanolic extracts of Andrographis paniculata stem, respectively, as reducing agents. Electron microscopic images confirmed the synthesis of almost spherical shaped biogenic silver nanoparticles (bAgNPs). The zeta potentials of the nanoparticles were negative and were -22 and -26 mV for Aq-bAgNPs and Et-bAgNPs, respectively. The antibacterial activity of bAgNPs was investigated against seven pathogenic (i.e., enteropathogenic Escherichia coli, Salmonella typhi, Staphylococcus aureus, Vibrio cholerae, Enterococcus faecalis, Hafnia alvei, Acinetobacter baumannii) and three nonpathogenic (i.e., E. coli DH5α, E. coli K12, and Bacillus subtilis) bacteria at different time points (i.e., 12, 16, 20, and 24 h) in a dose-dependent manner (i.e., 20, 40, and 60 μg) through broth dilution assay, disk diffusion assay, CellToxTM Green uptake assay, and trypan blue dye exclusion assay. The lowest minimum inhibitory concentration value for both the bAgNPs was 0.125 μg. Et-bAgNPs showed the highest antibacterial activity against S. aureus at 60 μg after 16 h and the diameter of inhibited zone was 28 mm. Lipid peroxidation assay using all the bacterial strains revealed the formation of malondialdehyde-thiobarbituric acid adduct due to the oxidation of cell membrane fatty acids by bAgNPs. The bAgNPs showed excellent hemocompatibility against human as well as rat red blood cells. Furthermore, there was no significant toxicity observed when the levels of rat serum ALT, AST, γ-GT (i.e., liver function biomarkers), and creatinine (i.e., kidney function biomarker) were determined.
Collapse
Affiliation(s)
- Md Monir Hossain
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Shakil Ahmed Polash
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Masato Takikawa
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Razib Datta Shubhra
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Tanushree Saha
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Zinia Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Sharif Hossain
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shinji Takeoka
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
14
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|
15
|
Manivasagan P, Khan F, Hoang G, Mondal S, Kim H, Hoang Minh Doan V, Kim YM, Oh J. Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydr Polym 2019; 225:115228. [PMID: 31521288 DOI: 10.1016/j.carbpol.2019.115228] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Developing new antibacterial nanomaterials and novel therapeutic strategies for the destruction of human pathogenic bacteria that cause infectious diseases is becoming more crucial, because infections caused by antibiotic-resistant bacteria are becoming more and more difficult to be effectively cured with commercially available antibiotics. In this study, we successfully developed new thiol chitosan-wrapped gold nanoshells (TC-AuNSs) as an antibacterial agent for the near-infrared (NIR) laser-triggered photothermal destruction of antibiotic-resistant pathogens, such as Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), owing to their high water solubility, biocompatibility, strong NIR absorption, and outstanding photothermal properties. More interestingly, TC-AuNSs (115 μg/mL) were capable of completely destroying S. aureus, P. aeruginosa, and E.coli within 5 min of NIR laser irradiation, and no bacterial growth was detected on the tryptic soy agar (TSA) plate after 48 h of laser irradiation, indicating that TC-AuNSs along with laser irradiation are highly efficient and can kill bacteria quickly and prevent bacterial regrowth. We believe that TC-AuNSs deserve much more attention as an antibacterial agent, to be used in effectively combating pathogenic bacteria associated with public health problems and monitoring of environmental pollution for hygiene and safety.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Giang Hoang
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
16
|
Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles. Molecules 2019; 24:E1991. [PMID: 31137622 PMCID: PMC6572634 DOI: 10.3390/molecules24101991] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Conventional drugs used for antibacterial therapy display several limitations. This is not due to antibiotics being ineffective, but rather due to their low bioavailability, limited penetration to sites of infection and the rise of drug-resistant bacteria. Although new delivery systems (e.g., nanoparticles) that are loaded with antibacterial drugs have been designed to overcome these limitations, therapeutic efficacy does not seem to have improved. Against this backdrop, stimuli-responsive antibiotic-loaded nanoparticles and materials with antimicrobial properties (nanoantibiotics) present the ability to enhance therapeutic efficacy, while also reducing drug resistance and side effects. These stimuli can either be exogenous (e.g., light, ultrasound) or endogenous (e.g., pH, variation in redox gradient, enzymes). This promising therapeutic approach relies on advances in materials science and increased knowledge of microorganism growth and biofilm formation. This review provides an overview in the field of antibacterial drug-delivery systems and nanoantibiotics that benefit from a response to specific triggers, and also presents a number of future prospects.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 2AJ, UK.
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| |
Collapse
|
17
|
Wagner O, Schultz M, Edri E, Meir R, Barnoy E, Meiri A, Shpaisman H, Sloutskin E, Zalevsky Z. Imaging of nanoparticle dynamics in live and apoptotic cells using temporally-modulated polarization. Sci Rep 2019; 9:1650. [PMID: 30733548 PMCID: PMC6367359 DOI: 10.1038/s41598-018-38375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022] Open
Abstract
Gold nanoparticles are widely exploited in phototherapy. Owing to their biocompatibility and their strong visible-light surface plasmonic resonance, these particles also serve as contrast agents for cell image enhancement and super-resolved imaging. Yet, their optical signal is still insufficiently strong for many important real-life applications. Also, the differentiation between adjacent nanoparticles is usually limited by the optical resolution and the orientations of non-spherical particles are unknown. These limitations hamper the progress in cell research by direct optical microscopy and narrow the range of phototherapy applications. Here we demonstrate exploiting the optical anisotropy of non-spherical nanoparticles to achieve super-resolution in live cell imaging and to resolve the intracellular nanoparticle orientations. In particular, by modulating the light polarization and taking advantage of the polarization-dependence of gold nanorod optical properties, we realize the 'lock-in amplification', widely-used in electronic engineering, to achieve image enhancement in live cells and in cells that undergo apoptotic changes.
Collapse
Affiliation(s)
- Omer Wagner
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Moty Schultz
- Department of Physics and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eitan Edri
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rinat Meir
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eran Barnoy
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Amihai Meiri
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hagay Shpaisman
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eli Sloutskin
- Department of Physics and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
18
|
|
19
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
20
|
Habimana O, Zanoni M, Vitale S, O'Neill T, Scholz D, Xu B, Casey E. One particle, two targets: A combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J Colloid Interface Sci 2018; 526:419-428. [PMID: 29763820 DOI: 10.1016/j.jcis.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Attempts to deal with the problem of detrimental biofilms using nanoparticle technologies have generally focussed on exploiting biocidal approaches. However, it is now recognised that biofilm matrix-components may be targets for the disruption or dispersion of biofilms. Here, we show that the functionalization of gold nanoparticles with the enzyme, proteinase-K (PK) led to both biocidal and matrix disruption effects within Pseudomonas fluorescens biofilms and released cells. This study highlights the potential mechanisms underpinning the properties of Proteinase-K functionalized gold nanoparticles. With the emergence of biocide-resistant biofilm-forming organisms, novel nanoparticle strategies may provide the ideal solution for disrupting and inactivating biofilm cells, thereby minimising the use of biocides or antibiotics.
Collapse
Affiliation(s)
- Olivier Habimana
- The University of Hong Kong, School of Biological Sciences, Pokfulam, Hong Kong Special Administrative Region
| | - Michele Zanoni
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stefania Vitale
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Tiina O'Neill
- Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Dimitri Scholz
- Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Bin Xu
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
|
22
|
Huang J, Zhou J, Zhuang J, Gao H, Huang D, Wang L, Wu W, Li Q, Yang DP, Han MY. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36606-36614. [PMID: 28976189 DOI: 10.1021/acsami.7b11062] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common infectious bacteria in our daily life, and seriously affect human's health. Because of the frequent and extensive use of antibiotics, the microbial strains forming drug resistance have become more and more difficult to deal with. Herein, we utilized bovine serum albumin (BSA) as the template to synthesize uniform copper sulfide (CuS) nanoparticles via a biomineralization method. The as-prepared BSA-CuS nanocomposites showed good biocompatibility and strong near-infrared absorbance performance and can be used as an efficient photothermal conversion agent for pathogenic bacteria ablation with a 980 nm laser at a low power density of 1.59 W/cm2. The cytotoxicity of BSA-CuS nanocomposite was investigated using skin fibroblast cells and displayed good biocompatibility. Furthermore, the antibacterial tests indicated that BSA-CuS nanocomposite showed no antibacterial activity without NIR irradiation. In contrast, they demonstrated satisfying killing bacterial ability in the presence of NIR irradiation. Interestingly, S. aureus and E. coli showed various antibacterial mechanisms, possibly because of the different architectures of bacterial walls. Considering the low cost, easy preparation, excellent biocompatibility and strong photothermal convention efficiency (24.68%), the BSA-CuS nanocomposites combined with NIR irradiation will shed bright light on the treatment of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Jinfei Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Junyang Zhuang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Hongzhi Gao
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Donghong Huang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Lixing Wang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Wenlin Wu
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Ming-Yong Han
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
- Institute of Materials Research and Engineering , Singapore 138634
| |
Collapse
|
23
|
D'Agostino A, Taglietti A, Desando R, Bini M, Patrini M, Dacarro G, Cucca L, Pallavicini P, Grisoli P. Bulk Surfaces Coated with Triangular Silver Nanoplates: Antibacterial Action Based on Silver Release and Photo-Thermal Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E7. [PMID: 28336841 PMCID: PMC5295197 DOI: 10.3390/nano7010007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/05/2016] [Accepted: 12/30/2016] [Indexed: 01/17/2023]
Abstract
A layer of silver nanoplates, specifically synthesized with the desired localized surface plasmon resonance (LSPR) features, was grafted on amino-functionalized bulk glass surfaces to impart a double antibacterial action: (i) the well-known, long-term antibacterial effect based on the release of Ag⁺; (ii) an "on demand" action which can be switched on by the use of photo-thermal properties of silver nano-objects. Irradiation of these samples with a laser having a wavelength falling into the so called "therapeutic window" of the near infrared region allows the reinforcement, in the timescale of minutes, of the classical antibacterial effect of silver nanoparticles. We demonstrate how using the two actions allows for almost complete elimination of the population of two bacterial strains of representative Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Agnese D'Agostino
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Roberto Desando
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Marcella Bini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maddalena Patrini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | | | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy.
| |
Collapse
|
24
|
Shen H, Wang J, Liu H, Li Z, Jiang F, Wang FB, Yuan Q. Rapid and Selective Detection of Pathogenic Bacteria in Bloodstream Infections with Aptamer-Based Recognition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19371-8. [PMID: 27411775 DOI: 10.1021/acsami.6b06671] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sepsis and bacteremia are life-threatening clinical syndromes associated with significant patient morbidity and mortality. Rapid and sensitive detection of pathogenic bacteria is the key to improve patient survival rates. Herein, we have rationally constructed a simple aptamer-based capture platform to shorten the time needed for confirmation of bacterial bloodstream infection in clinical blood samples. This capture platform is made of a mesoporous TiO2-coated magnetic nanoparticle and is modified with target aptamer. It features excellent bacterial enrichment efficiency of about 80% even at low bacterial concentrations (10-2000 CFU mL(-1)). More importantly, the bacteria can be enriched within 2 h, and the time for bacterial identification is effectively shortened in comparison to the "gold standard" in clinical diagnosis of bloodstream infection. The aptamer-based capture platform may pave a way for the detection of biomarkers and find potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Haoyang Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Fenglei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University , Wuhan, P. R. China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| |
Collapse
|
25
|
Abdou Mohamed MA, Raeesi V, Turner PV, Rebbapragada A, Banks K, Chan WC. A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria. Biomaterials 2016; 97:154-63. [DOI: 10.1016/j.biomaterials.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 01/16/2023]
|
26
|
Turcheniuk K, Dumych T, Bilyy R, Turcheniuk V, Bouckaert J, Vovk V, Chopyak V, Zaitsev V, Mariot P, Prevarskaya N, Boukherroub R, Szunerits S. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv 2016. [DOI: 10.1039/c5ra24662h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Gold nanorods (Au NRs) are known for their efficient conversion of photon energy into heat, resulting in hyperthermia and suppression of tumor growths in vitro and in vivo.
Collapse
|
27
|
D'Agostino A, Taglietti A, Grisoli P, Dacarro G, Cucca L, Patrini M, Pallavicini P. Seed mediated growth of silver nanoplates on glass: exploiting the bimodal antibacterial effect by near IR photo-thermal action and Ag+ release. RSC Adv 2016. [DOI: 10.1039/c6ra11608f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Silver nanoplates synthesized with the desired features directly on glass show a bimodal antibacterial action: Ag+ release and NIR laser switchable hyperthermia.
Collapse
Affiliation(s)
- A. D'Agostino
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - A. Taglietti
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - P. Grisoli
- Department of Drug Sciences
- University of Pavia
- 27100 Pavia
- Italy
| | - G. Dacarro
- Department of Physics
- University of Pavia
- 27100 Pavia
- Italy
| | - L. Cucca
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - M. Patrini
- Department of Physics
- University of Pavia
- 27100 Pavia
- Italy
| | - P. Pallavicini
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
28
|
Khan SA, DeGrasse JA, Yakes BJ, Croley TR. Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay. Anal Chim Acta 2015; 892:167-74. [DOI: 10.1016/j.aca.2015.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 12/26/2022]
|
29
|
Turcheniuk K, Hage CH, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Pisfil MG, Héliot L, Boukaert J, Boukherroub R, Szunerits S. Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J Mater Chem B 2015; 3:375-386. [PMID: 32262041 DOI: 10.1039/c4tb01760a] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The development of non-antibiotic based treatments against bacterial infections by Gram-negative uropathogenic E. coli is a complex task. New strategies to treat such infections are thus urgently needed. This report illustrates the development of pegylated reduced graphene oxide nanoparticles (rGO-PEG) and gold nanorods (Au NRs) coated with rGO-PEG (rGO-PEG-Au NRs) for the selective killing of uropathogenic E. coli UTI89. We took advantage of the excellent light absorption properties of rGO-PEG and Au NR particles in the near-infrared (NIR) region to photothermally kill Gram-negative pathogens up to 99% in 10 min by illumination of solutions containing the bacteria. The rGO-PEG-Au NRs demonstrated better photothermal efficiency towards E. coli than rGO-PEG. Targeted killing of E. coli UTI89 could be achieved with rGO-PEG-Au NRs functionalized with multimeric heptyl α-d-mannoside probes. This currently offers a unique biocompatible method for the ablation of pathogens with the opening of probably a new possibility for clinical treatments of patients with urinary infections.
Collapse
Affiliation(s)
- Kostiantyn Turcheniuk
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feng G, Mai CK, Zhan R, Bazan GC, Liu B. Narrow band gap conjugated polyelectrolytes for photothermal killing of bacteria. J Mater Chem B 2015; 3:7340-7346. [DOI: 10.1039/c5tb01118c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the demonstration of antimicrobial conjugated polyelectrolytes (CPEs) with high NIR absorbance for selective and efficient photothermal killing of bacteria over mammalian cells.
Collapse
Affiliation(s)
- Guangxue Feng
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Environmental Research Institute
- National University of Singapore
| | - Cheng-Kang Mai
- Center for Polymers and Organic Solids
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Ruoyu Zhan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Guillermo C. Bazan
- Center for Polymers and Organic Solids
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| |
Collapse
|
31
|
Lin D, Qin T, Wang Y, Sun X, Chen L. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1320-1329. [PMID: 24380413 DOI: 10.1021/am405396k] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As novel optical nanoprobes, surface-enhanced Raman scattering (SERS) tags have drawn growing interests in the application of biomedical imaging and phototherapies. Herein, we demonstrated a novel in situ synthesis strategy for GO wrapped gold nanocluster SERS tags by using a tris(2,2'-bipyridyl)ruthenium(II) chloride (Rubpy)/GO nanohybrid as a complex Raman reporter, inspired by the role of GO as an artificial receptor for various dyes. The introduction of GO in the synthesis procedure provided systematic solutions for controlling several key parameters of SERS tags, including reproducibility, sensitivity, and colloidal and signal stability. An additional interesting thermal-sensitive SERS property (SERS intensity decreased upon increasing the temperature) was also achieved due to the heat-induced release/redistribution of reporter molecules adsorbed on GO. Combining the synergic effect of these features, we further fabricated multifunctional, aldehyde group conjugated Au@Rubpy/GO SERS tags for optical labeling and photothermal ablation of bacteria. Sensitive Raman imaging of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria could be realized, and satisfactory photothermal killing efficacy for both bacteria was achieved. Our results also demonstrated the correlation among the SERS intensity decrease ratio, bacteria survival rate, and the terminal temperature of the tag-bacteria suspension, showing the possibility to use SERS assay to measure antibacterial response during the photothermal process using this tag.
Collapse
Affiliation(s)
- Donghai Lin
- School of Pharmacy, Yantai University , Yantai 264005, China
| | | | | | | | | |
Collapse
|
32
|
Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11348-54. [PMID: 24138085 DOI: 10.1021/am403567k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The emergence of multidrug-resistant-bacteria (MDRB) infection poses a major burden to modern healthcare. Early detection in the bloodstream and a new strategy development for MDRB infection treatment without antibiotics are clinically significant to save millions of lives every year. To tackle the MDRB challenge, the current manuscript reports the design of "multifunctional nanoplatforms" consisting of a magnetic core-plasmonic shell nanoparticle, a methylene blue-bound aptamer, and an MDRB Salmonella DT104 specific antibody. The reported "multifunctional nanoplatform" is capable of targeted separation from a blood sample and sensing and multimodal therapeutic killing of MDRB. Experimental data using an MDRB-infected whole-blood sample show that nanoplatforms can be used for selective magnetic separation and fluorescence imaging. In vitro light-triggered photodestruction of MDRB, using combined photodynamic and photothermal treatment, shows that the multimodal treatment regime can enhance MDRB killing significantly. We discussed the possible mechanisms on combined synergistic therapy for killing MDRB. The "multifunctional nanoplatform" reported in this manuscript has great potential for the imaging and combined therapy of MDRB in clinical settings.
Collapse
Affiliation(s)
- Xuemei Dai
- Department of Chemistry, Jackson State University , Jackson, Mississippi 39217, United States
| | | | | | | |
Collapse
|
33
|
Gold Nanotechnology for Targeted Detection and Killing of Multiple Drug Resistant Bacteria from Food Samples. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1143.ch001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
34
|
Zhao Y, Jiang X. Multiple strategies to activate gold nanoparticles as antibiotics. NANOSCALE 2013; 5:8340-50. [PMID: 23893008 DOI: 10.1039/c3nr01990j] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs.
Collapse
Affiliation(s)
- Yuyun Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, 100190, Beijing, China
| | | |
Collapse
|
35
|
Lai BH, Chen DH. Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria. Acta Biomater 2013; 9:7573-9. [PMID: 23535232 DOI: 10.1016/j.actbio.2013.03.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/25/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
Abstract
LaB6 nanoparticles possess excellent near-infrared (NIR) photothermal conversion properties. Vancomycin can interact strongly with a broad range of Gram-positive and Gram-negative bacteria. Fe3O4 nanoparticles could be used as the carrier for magnetic separation. In this work, vancomycin and Fe3O4 nanoparticles were successfully bound onto the surface of LaB6 nanoparticles with a silica coating and carboxyl functionalization to fabricate vancomycin-modified LaB6@SiO2/Fe3O4 (Van-LaB6@SiO2/Fe3O4) composite nanoparticles as a novel nanomaterial for the NIR photothermal ablation of bacteria. From the analyses of absorption spectra, transmission electron microscopy images and X-ray diffraction patterns, the formation of Van-LaB6@SiO2/Fe3O4 composite nanoparticles was confirmed. The resulting Van-LaB6@SiO2/Fe3O4 composite nanoparticles possessed nearly superparamagnetic properties, retained the excellent NIR photothermal conversion property of LaB6 nanoparticles and could capture the bacteria Staphylococcus aureus and Escherichia coli efficiently. Owing to these capabilities, they were demonstrated to be quite efficient for the magnetic separation and NIR photothermal ablation of S. aureus and E. coli. Furthermore, the magnetic property made the Van-LaB6@SiO2/Fe3O4 composite nanoparticles useful for the magnetic assembling of bacteria, which could further enhance the photothermal ablation efficiency.
Collapse
Affiliation(s)
- Bo-Hung Lai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | |
Collapse
|
36
|
Shibu ES, Hamada M, Murase N, Biju V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2012.09.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Borovička J, Metheringham WJ, Madden LA, Walton CD, Stoyanov SD, Paunov VN. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc 2013; 135:5282-5. [PMID: 23540643 DOI: 10.1021/ja400781f] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a class of selective antimicrobial agents based on the recognition of the shape and size of the bacterial cells. These agents are anisotropic colloid particles fabricated as negative replicas of the target cells which involve templating of the cells with shells of inert material followed by their fragmentation. The cell shape recognition by such shell fragments is due to the increased area of surface contact between the cells and their matching shell fragments which resembles antibody-antigen interaction. We produced such "colloid antibodies" with photothermal mechanism for shape-selective killing of matching cells. This was achieved by the subsequent deposition of (i) gold nanoparticles (AuNPs) and (ii) silica shell over yeast cells, which were chosen as model pathogens. We demonstrated that fragments of these composite AuNP/silica shells act as "colloid antibodies" and can bind to yeast cells of the same shape and size and deliver AuNPs directly onto their surface. We showed that after laser irradiation, the localized heating around the AuNPs kills the microbial cells of matching shape. We confirmed the cell shape-specific killing by photothermal colloid antibodies in a mixture of two bacterial cultures of different cell shape and size. This approach opens a number of avenues for building powerful selective biocides based on combinations of colloid antibodies and cell-killing strategies which can be applied in new antibacterial therapies.
Collapse
Affiliation(s)
- Josef Borovička
- Surfactant and Colloid Group, Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX Hull, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Wang YW, Fu YY, Wu LJ, Li J, Yang HH, Chen GN. Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. J Mater Chem B 2013; 1:2496-2501. [DOI: 10.1039/c3tb20144a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Ju E, Li Z, Li M, Dong K, Ren J, Qu X. Functional polypyrrole–silica composites as photothermal agents for targeted killing of bacteria. Chem Commun (Camb) 2013; 49:9048-50. [DOI: 10.1039/c3cc45290e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
|
41
|
Ray PC, Khan SA, Singh AK, Senapati D, Fan Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 2012; 41:3193-209. [DOI: 10.1039/c2cs15340h] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|