1
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Liao HS, Akhtar I, Werner C, Slipets R, Pereda J, Wang JH, Raun E, Nørgaard LO, Dons FE, Hwu EET. Open-source controller for low-cost and high-speed atomic force microscopy imaging of skin corneocyte nanotextures. HARDWAREX 2022; 12:e00341. [PMID: 35936941 PMCID: PMC9352456 DOI: 10.1016/j.ohx.2022.e00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
High-speed atomic force microscopes (HS-AFMs) with high temporal resolution enable dynamic phenomena to be visualized at nanoscale resolution. However, HS-AFMs are more complex and costlier than conventional AFMs, and particulars of an open-source HS-AFM controller have not been published before. These high entry barriers hinder the popularization of HS-AFMs in both academic and industrial applications. In addition, HS-AFMs generally have a small imaging area that limits the fields of implementation. This study presents an open-source controller that enables a low-cost simplified AFM to achieve a maximum tip-sample velocity of 5,093 µm/s (9.3 s/frame, 512 × 512 pixels), which is nearly 100 times higher than that of the original controller. Moreover, the proposed controller doubles the imaging area to 46.3 × 46.3 µm2 compared to that of the original system. The low-cost HS-AFM can successfully assess the severity of atopic dermatitis (AD) by measuring the nanotexture of human skin corneocytes in constant height DC mode. The open-source controller-based HS-AFM system costs less than $4,000, which provides resource-limited research institutes with affordable access to high-throughput nanoscale imaging to further expand the HS-AFM research community.
Collapse
Affiliation(s)
- Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Christian Werner
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Roman Slipets
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jen-Hung Wang
- Department of Mechatronics and Robotics, Technical University of Munich, Germany
| | - Ellen Raun
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Laura Olga Nørgaard
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Frederikke Elisabet Dons
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Edwin En Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Liao HS, Huang YK, Syu-Gu JY, Hwu ET. Real-Time Reflectance Measurement Using an Astigmatic Optical Profilometer. SENSORS (BASEL, SWITZERLAND) 2022; 22:6242. [PMID: 36016000 PMCID: PMC9414481 DOI: 10.3390/s22166242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
An astigmatic optical profilometer with a commercial optical pickup head provides benefits, such as high resolution, compact size, and low cost. To eliminate artifacts caused by complex materials with different reflectances, a z-axis modulation mode is proposed to obtain quantitative surface morphology by measuring S curves on all image pixels. Moreover, the slope of the linear region in the S curve shows a positive relationship with the surface reflectance. However, the slope was calculated using an offline curve fitting method, which did not allow real-time reflectance imaging. Furthermore, quantitative reflectance data were unavailable because of the lack of calibration. In this study, we propose a novel method for real-time reflectance imaging by measuring the amplitude of a focus error signal (FES). The calibration results displayed a linear relationship between the FES amplitude and reflectance. The reflectance image of a grating sample with chrome patterns on a glass substrate demonstrates accurate reflectance measurements with a micrometer spatial resolution.
Collapse
Affiliation(s)
- Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Kang Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Yuan Syu-Gu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - En-Te Hwu
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
4
|
Liao HS, Werner C, Slipets R, Emil Larsen P, Hwang IS, Chang TJ, Ulrich Danzebrink H, Huang KY, Hwu ET. Low-cost, open-source XYZ nanopositioner for high-precision analytical applications. HARDWAREX 2022; 11:e00317. [PMID: 35647417 PMCID: PMC9133644 DOI: 10.1016/j.ohx.2022.e00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale positioning has numerous applications in both academia and industry. A growing number of applications require devices with long working distances and nanoscale resolutions. Friction-inertia piezoelectric positioners, which are based on the stick-slip mechanism, achieve both nanometer resolution and centimeter-scale travel. However, the requirements of complex preload mechanism, precision machining, and precise assembly increase the cost of conventional friction-inertia nanopositioners. Herein we present the design of an open-source XYZ-axis nanopositioning system. Utilizing a magnet-based stick-slip driving mechanism, the proposed XYZ nanopositioner provides several advantages, including sub-nanometer resolution, a payload capacity of up to 12 kg (horizontal), compact size, low cost, and easy assembly; furthermore, the system is adjustment-free. The performance tests validate the precision of the system in both scanning and stepping operation modes. Moreover, the resonant spectra affirm the rigidity and dynamic response of the mechanism. In addition, we demonstrate the practical applications of this nanopositioner in various measurement techniques, including scanning electron microscopy, vibrometry, and atomic force microscopy. Furthermore, we present 11 variations of the nanopositioner designs that are either compatible with ultra-high-vacuum systems and other existing systems, 3D printable, or hacking commercial linear slides.
Collapse
Key Words
- 3D printing
- AFM, Atomic force microscope
- Atomic force microscopy
- Atomic resolution
- DAC, Digital-to-analog converter
- DVD, Digital video disc
- HOPG, Highly oriented pyrolytic graphite
- IDUN, Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
- Nanopositioning
- OPU, Optical pick-up unit
- OSF, Open Science Framework
- PLA, Polylactic acid
- PZT, Piezoelectric actuator
- SEM, Scanning electron microscope
- Scanning electron microscopy
- Vibrometer
Collapse
Affiliation(s)
- Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Christian Werner
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany
| | - Roman Slipets
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Peter Emil Larsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Tien-Jen Chang
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Kuang-Yuh Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
5
|
Casci Ceccacci A, Cagliani A, Marizza P, Schmid S, Boisen A. Thin Film Analysis by Nanomechanical Infrared Spectroscopy. ACS OMEGA 2019; 4:7628-7635. [PMID: 31058251 PMCID: PMC6492230 DOI: 10.1021/acsomega.9b00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 05/31/2023]
Abstract
There is a fundamental need for techniques for thin film characterization. The current options for obtaining infrared (IR) spectra typically suffer from low signal-to-noise-ratios (SNRs) for sample thicknesses confined to a few nanometers. We present nanomechanical infrared spectroscopy (NAM-IR), which enables the measurement of a complete infrared fingerprint of a polyvinylpyrrolidone (PVP) layer as thin as 20 nm with an SNR of 307. Based on the characterization of the given NAM-IR setup, a minimum film thickness of only 160 pm of PVP can be analyzed with an SNR of 2. Compared to a conventional attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) system, NAM-IR yields an SNR that is 43 times larger for a 20 nm-thick PVP layer and requires only a fraction of the acquisition time. These results pave the way for NAM-IR as a highly sensitive, fast, and practical tool for IR analysis of polymer thin films.
Collapse
Affiliation(s)
- Andrea Casci Ceccacci
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alberto Cagliani
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paolo Marizza
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Silvan Schmid
- Institute
of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Abstract
![]()
The optical pickup
unit (OPU) within a CD/DVD/Blu-ray drive integrates
780, 650, and 405 nm wavelength lasers, diffraction-limited optics,
a high-bandwidth optoelectronic transducer up to 400 MHz, and a nanoresolution x-, z-axis, and tilt actuator in a compact
size. In addition, the OPU is a remarkable piece of engineering and
could enable different scientific applications such as sub-angstrom
displacement sensing, micro- and nanoimaging, and nanolithography.
Although off-the-shelf OPUs can be easily obtained, manufacturers
protect their datasheets under nondisclosure agreements to impede
their availability to the public. Thus, OPUs are black boxes that
few people can use for research, and only experienced researchers
can access all their functions. This review details the OPU mechanism
and components. In addition, we explain how to utilize three commercially
available triple-wavelength OPUs from scratch and optimize sensing
quality. Then, we discuss scientific research using OPUs, from standard
optical drive-based turnkey-biomarker array reading and OPU direct
bioapplications (cytometry, optical tweezing, bioimaging) to modified
OPU-based biosensing (DNA chip fluorescence scanning, biomolecular
diagnostics). We conclude by presenting future trends on optical storage
devices and potential applications. Hacking low-cost and high-performance
OPUs may spread micro- and nanoscale biosensing research from research
laboratories to citizen scientists around the globe.
Collapse
Affiliation(s)
- Edwin En-Te Hwu
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
7
|
Weng S, Li X, Li Y, Yu HZ. Optical disc technology-enabled analytical devices: from hardware modification to digitized molecular detection. Analyst 2016; 141:6190-6201. [PMID: 27704085 DOI: 10.1039/c6an01781a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beyond their essential applications in portable data storage for the past 30 years, optical discs and corresponding recording/reading technologies have been extensively explored with the ultimate goal of creating novel analytical tools for on-site chemical analysis and point-of-care (POC) medical diagnosis. In particular, the disc media (CD, DVD, and BD) are proven to be inexpensive and versatile substrate materials for the preparation of various biochips and microfluidic systems; conventional computer drives and disc players are widely adapted for biochip signal reading and microscopic imaging. Herein we provide an overview of such optical disc technology-enabled analytical devices, e.g., integrated systems developed from specifically fabricated analog disks, modified optical drives, or adapted software algorithms.
Collapse
Affiliation(s)
- Samuel Weng
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | | | | | |
Collapse
|
8
|
Wang WM, Cheng CH, Molnar G, Hwang IS, Huang KY, Danzebrink HU, Hwu ET. Optical imaging module for astigmatic detection system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:053706. [PMID: 27250434 DOI: 10.1063/1.4952438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatile disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy.
Collapse
Affiliation(s)
- Wei-Min Wang
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | | | - Gabor Molnar
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | | | - Kuang-Yuh Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hans-Ulrich Danzebrink
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - En-Te Hwu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Detection methods for centrifugal microfluidic platforms. Biosens Bioelectron 2016; 76:54-67. [DOI: 10.1016/j.bios.2015.06.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 01/18/2023]
|
10
|
Sathishkumar P, Punyabrahma P, Mrinalini RSM, Jayanth GR. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:096106. [PMID: 26429493 DOI: 10.1063/1.4930877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.
Collapse
Affiliation(s)
- P Sathishkumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - P Punyabrahma
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - R Sri Muthu Mrinalini
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - G R Jayanth
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Domínguez CM, Kosaka PM, Sotillo A, Mingorance J, Tamayo J, Calleja M. Label-Free DNA-Based Detection of Mycobacterium tuberculosis and Rifampicin Resistance through Hydration Induced Stress in Microcantilevers. Anal Chem 2015; 87:1494-8. [DOI: 10.1021/ac504523f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen M. Domínguez
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Alma Sotillo
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Javier Tamayo
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Montserrat Calleja
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| |
Collapse
|
12
|
Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N. Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 2015; 44:6187-229. [DOI: 10.1039/c4cs00371c] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Review on miniaturization, integration, and automation of laboratory processes within centrifugal microfluidic platforms. For efficient implementation of applications, building blocks are categorized into unit operations and process chains.
Collapse
Affiliation(s)
- O. Strohmeier
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - M. Keller
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - F. Schwemmer
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
- University of Freiburg
- 79110 Freiburg
- Germany
| | | | - D. Mark
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - F. von Stetten
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - R. Zengerle
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - N. Paust
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| |
Collapse
|
13
|
Burger R, Ducrée J. Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Rev Mol Diagn 2014; 12:407-21. [DOI: 10.1586/erm.12.28] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Bache M, Bosco FG, Brøgger AL, Frøhling KB, Alstrøm TS, Hwu ET, Chen CH, Eugen-Olsen J, Hwang IS, Boisen A. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology. NANOTECHNOLOGY 2013; 24:444011. [PMID: 24113286 DOI: 10.1088/0957-4484/24/44/444011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.
Collapse
Affiliation(s)
- Michael Bache
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, DK-2800, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bosco F, Bache M, Yang J, Chen C, Hwu ET, Lin Q, Boisen A. Micromechanical PDGF recognition via lab-on-a-disc aptasensor arrays. SENSORS AND ACTUATORS. A, PHYSICAL 2013; 195:154-159. [PMID: 24672146 PMCID: PMC3963500 DOI: 10.1016/j.sna.2012.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A plug-and-play CD-like platform is used to perform a statistical detection of platelet derived growth factor (PDGF) proteins through aptamer-based surface functionalization of multiple microcantilever arrays. When PDGF proteins bind to aptamer coatings, the cantilevers deflect. The deflection response is monitored by optical read-out units from a commercial DVD-ROM device. We report on the use of an improved sensing platform which facilitates measurements under continuous liquid flow and with temperature control. Also, the mechanical wobbling of the DVD-ROM platform has been minimized and the scanning system has been optimized in order to detect cantilever deflections in liquid with nanometer scale resolution. The capability of the sensing platform is demonstrated by detection of clinically relevant concentrations of PDGF proteins. We present statistical measurements on 100 microcantilevers at different concentrations of PDGF, ranging from 10 nM to 400 nM. Hereby it is possible to reliably characterize the averaged mechanical response of cantilevers as a function of protein concentration.
Collapse
Affiliation(s)
- F.G. Bosco
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby 2800, Denmark
| | - M. Bache
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby 2800, Denmark
| | - J. Yang
- Department of Mechanical Engineering, Columbia University, New York 10027, NY, United States
| | - C.H. Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - E.-T. Hwu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Q. Lin
- Department of Mechanical Engineering, Columbia University, New York 10027, NY, United States
| | - A. Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
16
|
Kosaka PM, Tamayo J, Ruz JJ, Puertas S, Polo E, Grazu V, de la Fuente JM, Calleja M. Tackling reproducibility in microcantilever biosensors: a statistical approach for sensitive and specific end-point detection of immunoreactions. Analyst 2012; 138:863-72. [PMID: 23223515 DOI: 10.1039/c2an36192b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the last decade, microcantilever biosensors have shown enormous potential for highly sensitive label-free detection of nucleic acid and proteins. Despite the enormous advances, the promise of applications of this technology in the biomedical field has been frustrated because of its low reproducibility. Here we tackle the reproducibility issue in microcantilever biosensors and provide the guidelines to minimize the deviations in the biosensor response between different assays. We use as a model system the label-free end-point detection of horseradish peroxidase. We choose the end-point detection mode because of its suitability for implementation in the clinical field that requires simplicity and point-of-care capability. Our study comprises the analysis of 1012 cantilevers with different antibody surface densities, two blocking strategies based on polyethylene-glycol (PEG) and bovine serum albumin (BSA) and stringent controls. The study reveals that the performance of the assay critically depends on both antibody surface density and blocking strategies. We find that the optimal conditions involve antibody surface densities near but below saturation and blocking with PEG. We find that the surface stress induced by the antibody-antigen binding is significantly correlated with the surface stress generated during the antibody attachment and blocking steps. The statistical correlation is harnessed to identify immobilization failure or success, and thus enhancing the specificity and sensitivity of the assay. This procedure enables achieving rates of true positives and true negatives of 90% and 91% respectively. The detection limit is of 10 ng mL(-1) (250 pM) that is similar to the detection limit obtained in our enzyme-linked immunosorbent assay (ELISA) and at least two orders of magnitude smaller than that achieved with well-established label-free biosensors such as a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensor.
Collapse
Affiliation(s)
- Priscila M Kosaka
- Instituto de Microelectrónica de Madrid, CSIC, Issac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Calleja M, Kosaka PM, San Paulo Á, Tamayo J. Challenges for nanomechanical sensors in biological detection. NANOSCALE 2012; 4:4925-4938. [PMID: 22810853 DOI: 10.1039/c2nr31102j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomechanical biosensing relies on changes in the movement and deformation of micro- and nanoscale objects when they interact with biomolecules and other biological targets. This field of research has provided ever-increasing records in the sensitivity of label-free detection but it has not yet been established as a practical alternative for biological detection. We analyze here the latest advancements in the field, along with the challenges remaining for nanomechanical biosensors to become a commonly used tool in biology and biochemistry laboratories.
Collapse
Affiliation(s)
- Montserrat Calleja
- Institute of Microelectronics of Madrid, CSIC, Isaac Newton 8 (PTM), Tres Cantos, 28760 Madrid, Spain.
| | | | | | | |
Collapse
|
18
|
Joo J, Kwon D, Yim C, Jeon S. Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. ACS NANO 2012; 6:4375-4381. [PMID: 22515817 DOI: 10.1021/nn301071c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We developed a novel gravimetric immunoassay for sensitive detection of multiple protein biomarkers using silicon microcantilever arrays and multifunctional hybrid nanoparticles. Magnetic-photocatalytic hybrid nanoparticles with a highly crystalline TiO(2) shell were synthesized using a solvothermal reaction without a calcination process. After functionalizing the hybrid nanoparticles and silicon cantilevers with antibodies, the nanoparticles were used to magnetically separate target biomarkers from human serum. Frequency changes of the microcantilevers due to the binding of the nanoparticles were measured using a dip-and-dry method. Frequency changes were further amplified using a photocatalytic silver reduction reaction. Several biomarkers, including interleukin-6, interferon-γ, and alpha-fetoprotein, were selectively detected using arrays of eight silicon microcantilevers. The detection limit of this assay was ∼0.1 pg/mL, which is superior to the clinical threshold of the biomarkers.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | | | | | | |
Collapse
|
19
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
20
|
Hwu ET, Illers H, Wang WM, Hwang IS, Jusko L, Danzebrink HU. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:013703. [PMID: 22299958 DOI: 10.1063/1.3673001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use. Furthermore, the optical head is capable of measuring sub-atomic displacements of high-frequency AFM probes with a sub-micron laser spot (~570 nm, FWHM) and a high-working bandwidth (80 MHz). Nevertheless, conventional DVD optical heads suffer from signal drift problems. In a previous setup, signal drifts of even thousands of nanometers had been measured. With the anti-drift and auto-alignment mechanism, the signal drift is compensated by actuating a voice coil motor of the DVD optical head. A nearly zero signal drift was achieved. Additional benefits of this mechanism are automatic cantilever alignment and simplified design.
Collapse
Affiliation(s)
- E-T Hwu
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|