1
|
Yang Y, Yang G, Zhang W, Xin L, Zhu J, Wang H, Feng B, Liu R, Zhang S, Cui Y, Chen Q, Guo D. Application of lipidomics in the study of traditional Chinese medicine. J Pharm Anal 2025; 15:101083. [PMID: 39995576 PMCID: PMC11849089 DOI: 10.1016/j.jpha.2024.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 02/26/2025] Open
Abstract
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Jing Zhu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Hangtian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Shuya Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Yuanwu Cui
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Dean Guo
- Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
2
|
Ikeuchi S, Minamida M, Nakamura T, Konishi M, Kamioka H. Exploratory Systematic Review and Meta-Analysis of Panax Genus Plant Ingestion Evaluation in Exercise Endurance. Nutrients 2022; 14:nu14061185. [PMID: 35334841 PMCID: PMC8950061 DOI: 10.3390/nu14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Many studies that use food containing Panax genus plants (PGPs) have been conducted but most of them have not mentioned the effective compounds ginsenosides and their composition. Therefore, we conducted a systematic review and meta-analysis of time to exhaustion as an index of exercise endurance with ingestion of PGPs or ginsenosides to reveal their effects. Methods: We performed a systematic review with a comprehensive and structured literature search using seven literature databases, four clinical trial databases, and three general web search engines during 15–22 March 2021. A random-effects model was applied to calculate the standardized mean difference (SMD) and 95% confidence interval (CI) as the difference between the mean in the treatment and placebo groups. We evaluated the risk of bias of individual studies along with the risk of bias tool in the Cochrane handbook. This study was funded by Maruzen Pharmaceuticals Co., Ltd. (Hiroshima, Japan). The protocol for this study was registered with the UMIN-CTR (No. UMIN000043341). Results: Five studies met the inclusion criteria. The number of total participants was 90, with 59 in the ingestion-PGPs group and 64 in the control group, because three studies were crossover-design trials. We found that ingestion of PGPs or ginsenosides significantly improved exercise endurance (SMD [95% CI]: 0.58 [0.22–0.95], I2 = 0%). It was suggested that ginsenoside Rg1 (Rg1) and PGPs extract containing Rg1 were significantly effective in improving exercise endurance (SMD [95% CI]: 0.70 [0.14–1.27], I2 = 30%) by additional analysis. Conclusions: This systematic review suggests that the ingestion of PGPs or ginsenosides, especially Rg1, is effective in improving exercise endurance in healthy adults. However, further high-quality randomized controlled trials are required because imprecision and publication bias cannot be ignored in this systematic review.
Collapse
Affiliation(s)
- Shingo Ikeuchi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
- Correspondence: ; Tel.: +81-847-52-6262
| | - Mika Minamida
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Touma Nakamura
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Masatoshi Konishi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Hiroharu Kamioka
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| |
Collapse
|
3
|
Abstract
BACKGROUND Dietary supplements with ginseng, or ginseng alone, are widely used for a broad range of conditions, including erectile dysfunction. Ginseng is particularly popular in Asian countries. Individual studies assessing its effects are mostly small, of uneven methodological quality and have unclear results. OBJECTIVES To assess the effects of ginseng on erectile dysfunction. SEARCH METHODS We conducted systematic searches on multiple electronic databases, including CENTRAL, MEDLINE, Embase, CINAHL, AMED, and loco-regional databases of east Asia, from their inceptions to 30 January 2021 without restrictions on language and publication status. Handsearches included conference proceedings. SELECTION CRITERIA We included randomized or quasi-randomized controlled trials that evaluated the use of any type of ginseng as a treatment for erectile dysfunction compared to placebo or conventional treatment. DATA COLLECTION AND ANALYSIS Two authors independently classified studies and three authors independently extracted data and assessed risk of bias in the included studies. We rated the certainty of evidence according to the GRADE approach. MAIN RESULTS We included nine studies with 587 men with mild to moderate erectile dysfunction, aged from 20 to 70 years old. The studies all compared ginseng to placebo. We found only short-term follow-up data (up to 12 weeks). Primary outcomes Ginseng appears to have a trivial effect on erectile dysfunction when compared to placebo based on the Erectile Function Domain of the International Index of Erectile Function (IIEF)-15 instrument (scale: 1 to 30, higher scores imply better function; mean difference [MD] 3.52, 95% confidence interval [CI] 1.79 to 5.25; I² = 0%; 3 studies; low certainty evidence) assuming a minimal clinically important difference (MCID) of 4. Ginseng probably also has a trivial effect on erectile function when compared to placebo based on the IIEF-5 instrument (scale: 1 to 25, higher scores imply better function; MD 2.39, 95% CI 0.89 to 3.88; I² = 0%; 3 studies; moderate certainty evidence) assuming a MCID of 5. Ginseng may have little to no effect on adverse events compared to placebo (risk ratio [RR] 1.45, 95% CI 0.69 to 3.03; I² = 0%; 7 studies; low certainty evidence). Based on 86 adverse events per 1000 men in the placebo group, this would correspond to 39 more adverse events per 1000 (95% CI 27 fewer to 174 more). Secondary outcomes Ginseng may improve men's self-reported ability to have intercourse (RR 2.55, 95% CI 1.76 to 3.69; I² = 23%; 6 studies; low certainty evidence). Based on 207 per 1000 men self-reporting the ability to have intercourse in the placebo group, this would correspond to 321 more men (95% CI 158 more to 558 more) per 1000 self-reporting the ability to have intercourse. Ginseng may have a trivial effect on men's satisfaction with intercourse based on the Intercourse Satisfaction Domain of the IIEF-15 (scale: 0 to 15, higher scores imply greater satisfaction; MD 1.19, 95% CI 0.41 to 1.97; I²=0%; 3 studies; low certainty evidence) based on a MCID of 25% improvement from baseline. It may also have a trivial effect on men's satisfaction with intercourse based on item 5 of the IIEF-5 (scale: 0 to 5, higher scores imply more satisfaction; MD 0.60, 95% CI 0.02 to 1.18; 1 study; low certainty evidence) based on a MCID of 25% improvement from baseline. No study reported quality of life as an outcome. We found no trial evidence to inform comparisons to other treatments for erectile dysfunction, such as phosphodiesterase-5 inhibitors. We were unable to conduct any predefined subgroup analyses. AUTHORS' CONCLUSIONS Based on mostly low certainty evidence, ginseng may only have trivial effects on erectile function or satisfaction with intercourse compared to placebo when assessed using validated instruments. Ginseng may improve men's self-reported ability to have intercourse. It may have little to no effect on adverse events. We found no trial evidence comparing ginseng to other agents with a more established role in treating erectile dysfunction, such as phosphodiesterase-5 inhibitors.
Collapse
Affiliation(s)
- Hye Won Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea, South
| | - Myeong Soo Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea, South
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Korea, South
| | - Tae-Hun Kim
- Korean Medicine Clinical Trial Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea, South
| | - Terje Alraek
- Institute of Health Sciences, Kristiania University College, Oslo, Norway
- NAFKAM, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chris Zaslawski
- College of Traditional Chinese Medicine, University of Technology, Sydney, Australia
| | - Jong Wook Kim
- Department of Urology, Korea University Guro Hospital, Seoul, Korea, South
| | - Du Geon Moon
- Department of Urology, Korea University Guro Hospital, Seoul, Korea, South
| |
Collapse
|
4
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
5
|
Gurley BJ, Yates CR, Markowitz JS. “…Not Intended to Diagnose, Treat, Cure or Prevent Any Disease.” 25 Years of Botanical Dietary Supplement Research and the Lessons Learned. Clin Pharmacol Ther 2018; 104:470-483. [DOI: 10.1002/cpt.1131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bill J. Gurley
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Charles R. Yates
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis Tennessee USA
| | - John S. Markowitz
- Department of Pharmacotherapy and Translational Research; College of Pharmacy; University of Florida; Gainesville Florida USA
| |
Collapse
|
6
|
Tang H, Huang W, Ma J, Liu L. SWOT analysis and revelation in traditional Chinese medicine internationalization. Chin Med 2018; 13:5. [PMID: 29416556 PMCID: PMC5785906 DOI: 10.1186/s13020-018-0165-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/20/2018] [Indexed: 11/10/2022] Open
Abstract
Traditional Chinese medicine (TCM) is currently the best-preserved and most influential traditional medical system with the largest number of users worldwide. In recent years, the trend of TCM adoption has increased greatly, but the process of TCM internationalization has suffered from a series of setbacks for both internal and external reasons. Thus, the process of TCM internationalization faces formidable challenges, although it also has favourable opportunities. Using SWOT analysis, this paper investigates the strengths, weaknesses, opportunities and threats for TCM. These findings can serve as references for TCM enterprises with global ambitions.
Collapse
Affiliation(s)
- Haitao Tang
- 1China Pharmaceutical University, Longmian Road 639, Nanjing, 211198 China.,Jiangsu Suzhong Pharmaceutical Group Co., Ltd., No. 1, Suzhong Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Wenlong Huang
- 1China Pharmaceutical University, Longmian Road 639, Nanjing, 211198 China
| | - Jimei Ma
- Jiangsu Suzhong Pharmaceutical Group Co., Ltd., No. 1, Suzhong Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Li Liu
- 1China Pharmaceutical University, Longmian Road 639, Nanjing, 211198 China
| |
Collapse
|
7
|
Li YF, Wu JS, Li YY, Dai Y, Zheng M, Zeng JK, Wang GF, Wang TM, Li WK, Zhang XY, Gu M, Huang C, Yang L, Wang ZT, Ma YM. Chicken bile powder protects against α-naphthylisothiocyanate-induced cholestatic liver injury in mice. Oncotarget 2017; 8:97137-97152. [PMID: 29228599 PMCID: PMC5722551 DOI: 10.18632/oncotarget.21385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
This study explored the effects of chicken bile powder (CBP), a 2000-year-old Chinese medicine, on α-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. CBP treatment for 14 days significantly ameliorated ANIT-induced changes in serum alanine aminotransferase, aspartate aminotransferase, bile acids, bilirubin, γ-glutamyl transpeptidase, alkaline phosphatase, and liver tissue morphology. Serum metabolomics showed changes in 24 metabolites in ANIT-exposed mice; 16 of these metabolites were reversed by CBP treatment via two main pathways (bile acid biosynthesis and arachidonic acid metabolism). Additionally, CBP administration markedly increased fecal and biliary bile acid excretion, and reduced total and hydrophobic bile acid levels in the livers of cholestatic mice. Moreover, CBP increased liver expression of bile acid efflux transporters and metabolic enzymes. It also attenuated ANIT-induced increases in hepatic nuclear factor-κB-mediated inflammatory signaling, and increased liver expression of the nuclear farnesoid X receptor (FXR) in cholestatic mice. CBP also activated FXR in vitro in HEK293T cells expressing mouse Na+-taurocholate cotransporting polypeptide. It did not ameliorate the ANIT-induced liver injuries in FXR-knockout mice. These results suggested that CBP provided protection from cholestatic liver injury by restoring bile acid homeostasis and reducing inflammation in a FXR-dependent manner.
Collapse
Affiliation(s)
- Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Dai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Kai Zeng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Feng Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Research Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Effects of growth altitude on chemical constituents and delayed luminescence properties in medicinal rhubarb. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:24-33. [DOI: 10.1016/j.jphotobiol.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022]
|
9
|
Sun M, van Wijk R, van Wijk E, Wang M, van Wietmarschen H, Hankemeier T, van der Greef J. Delayed luminescence: an experimental protocol for Chinese herbal medicines. LUMINESCENCE 2016; 31:1220-8. [DOI: 10.1002/bio.3094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mengmeng Sun
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Leiden University; LACDR; Department of Analytical Biosciences; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Roeland van Wijk
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Meluna Research; Geldermalsen The Netherlands
| | - Eduard van Wijk
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Leiden University; LACDR; Department of Analytical Biosciences; P.O. Box 9502 2300 RA Leiden The Netherlands
- Meluna Research; Geldermalsen The Netherlands
| | - Mei Wang
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Leiden University; LACDR; Department of Analytical Biosciences; P.O. Box 9502 2300 RA Leiden The Netherlands
- TNO Innovation for Life; P.O. Box 360 3700 AJ Zeist The Netherlands
- SU BioMedicine; Utrechtseweg 48 3700 AJ Zeist The Netherlands
| | - Herman van Wietmarschen
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- TNO Innovation for Life; P.O. Box 360 3700 AJ Zeist The Netherlands
| | - Thomas Hankemeier
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Leiden University; LACDR; Department of Analytical Biosciences; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Jan van der Greef
- Sino Dutch Centre for Preventive and Personalized Medicine; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
- Leiden University; LACDR; Department of Analytical Biosciences; P.O. Box 9502 2300 RA Leiden The Netherlands
- TNO Innovation for Life; P.O. Box 360 3700 AJ Zeist The Netherlands
- SU BioMedicine; Utrechtseweg 48 3700 AJ Zeist The Netherlands
| |
Collapse
|
10
|
On-line stop-flow two-dimensional liquid chromatography-mass spectrometry method for the separation and identification of triterpenoid saponins from ginseng extract. Anal Bioanal Chem 2014; 407:331-41. [PMID: 25410638 DOI: 10.1007/s00216-014-8219-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
A method based on stop-flow two-dimensional liquid chromatography coupled with electrospray ionization mass spectrometry (2D LC-ESI MS) was established and applied to analyze triterpenoid saponins from the main root of ginseng. Due to the special structure of triterpenoid saponins (they contain polar sugar side chains and nonpolar aglycones), hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) were used for the two dimensions, respectively. A trap column was used to connect the two dimensions. The dilution effect, which is one of the main shortcomings of traditional comprehensive 2D LC methods, was largely avoided. The peak capacity of this system was 747 and the orthogonality was 56.6 %. Compared with one-dimensional HILIC or RP LC MS analysis, 257 and 185 % more mass spectral peaks (ions with intensities that were higher than 1,000) were obtained from the ginseng main root extracts, and 94 triterpenoid saponins were identified based on MS(n) information and summarized aglycone structures. Given its good linearity and repeatability, the established method was successfully applied to classify ginsengs of different ages (i.e., years of growth), and 19 triterpenoid saponins were found through statistical analysis to vary in concentration depending on the age of the ginseng.
Collapse
|
11
|
|
12
|
Chen S, Yin P, Zhao X, Xing W, Hu C, Zhou L, Xu G. Serum lipid profiling of patients with chronic hepatitis B, cirrhosis, and hepatocellular carcinoma by ultra fast LC/IT-TOF MS. Electrophoresis 2014. [PMID: 24228263 DOI: 10.1002/elps.201200629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, an ultra fast LC/IT-TOF MS (UFLC/IT-TOF MS)-based serum lipidomics method was employed to characterize the serum lipid profile of patients with chronic hepatitis B, cirrhosis, and hepatocellular carcinoma (HCC). After data collection and processing, 96 lipids including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins, triacylglycerides, and cholesterol esters were identified and used for subsequent data analysis. Partial least squares-discriminant analysis revealed that patients with liver diseases had distinctly different serum lipid profile from that of healthy controls; while cirrhosis and HCC patients had a similar serum lipid profile, but different from that of hepatitis patients. The ANOVA analysis found 75 of the 96 identified lipids to be abnormally regulated, among which most of these lipids were downregulated in cirrhosis and HCC patients compared with those of healthy controls and hepatitis patients, while hepatitis patients induced several lipids downregulated and others upregulated compared with those of healthy controls, indicating the aberrant lipid metabolism in patients with liver diseases. This work demonstrated the utility of UFLC/IT-TOF MS-based serum lipidomics as a powerful tool to investigate the lipid metabolism of liver diseases.
Collapse
|
13
|
Li M, Yang L, Bai Y, Liu H. Analytical Methods in Lipidomics and Their Applications. Anal Chem 2013; 86:161-75. [DOI: 10.1021/ac403554h] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Min Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Yang
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
15
|
Identification and characterization of a Mucilaginibacter sp. strain QM49 β-glucosidase and its use in the production of the pharmaceutically active minor ginsenosides (S)-Rh1 and (S)-Rg2. Appl Environ Microbiol 2013; 79:5788-98. [PMID: 23811513 DOI: 10.1128/aem.01150-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we isolated and characterized a new ginsenoside-transforming β-glucosidase (BglQM) from Mucilaginibacter sp. strain QM49 that shows biotransformation activity for various major ginsenosides. The gene responsible for this activity, bglQM, consists of 2,346 bp and is predicted to encode 781 amino acid residues. This enzyme has a molecular mass of 85.6 kDa. Sequence analysis of BglQM revealed that it could be classified into glycoside hydrolase family 3. The enzyme was overexpressed in Escherichia coli BL21(DE3) using a maltose binding protein (MBP)-fused pMAL-c2x vector system containing the tobacco etch virus (TEV) proteolytic cleavage site. Overexpressed recombinant BglQM could efficiently transform the protopanaxatriol-type ginsenosides Re and Rg1 into (S)-Rg2 and (S)-Rh1, respectively, by hydrolyzing one glucose moiety attached to the C-20 position at pH 8.0 and 30°C. The Km values for p-nitrophenyl-β-d-glucopyranoside, Re, and Rg1 were 37.0 ± 0.4 μM and 3.22 ± 0.15 and 1.48 ± 0.09 mM, respectively, and the Vmax values were 33.4 ± 0.6 μmol min(-1) mg(-1) of protein and 19.2 ± 0.2 and 28.8 ± 0.27 nmol min(-1) mg(-1) of protein, respectively. A crude protopanaxatriol-type ginsenoside mixture (PPTGM) was treated with BglQM, followed by silica column purification, to produce (S)-Rh1 and (S)-Rg2 at chromatographic purities of 98% ± 0.5% and 97% ± 1.2%, respectively. This is the first report of gram-scale production of (S)-Rh1 and (S)-Rg2 from PPTGM using a novel ginsenoside-transforming β-glucosidase of glycoside hydrolase family 3.
Collapse
|
16
|
Yang J, Yang S, Yuan YJ. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress. MOLECULAR BIOSYSTEMS 2012; 8:1789-97. [DOI: 10.1039/c2mb05510d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|