1
|
Liu Y, He B, Liu L, Hu L, Jiang G. Fasten the analysis of metal-binding proteins with GE-ICP-MS via increasing the electrolyte concentration of the running buffer. Talanta 2024; 266:125047. [PMID: 37574606 DOI: 10.1016/j.talanta.2023.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The coupled system of column gel electrophoresis and inductively coupled plasma mass spectrometry (GE-ICP-MS) is a highly effective technique for detecting metal-binding proteins. However, it takes a long time for this method to test a single sample, which greatly limits its application. In this study, GE-ICP-MS system was optimized by adjusting the analytical conditions, including the concentration and pH of running buffer and the proportion of polyacrylamide gel. The results of the experiment showed that the migration speed of proteins in GE was enhanced by increasing the electrolyte concentration in the running buffer solution. Additionally, the ICP-MS response, which was dramatically decreased because of the change in running buffer solution, can be stabilized by adjusting pH of running buffer. Meanwhile, the optimization of polyacrylamide gel ratio allows GE-ICP-MS to maintain high resolution for proteins of similar molecular weight with increased detection speed. After increasing the concentration of running buffer by 10 times, four iodine labeled proteins were successfully separated at baseline by the GE-ICP-MS system at pH 8.0 in 40 min using a resolving gel (8%, 7 cm) and a stacking gel (4%, 1 cm), which was three times faster than the original one. Finally, the optimized method was proved by detecting a silver-binding protein in rat plasma samples. The above method provided an effective and rapid detection for metal-binding proteins in organism.
Collapse
Affiliation(s)
- Yingqiu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; School of Environment and Health, Jianghan University, Wuhan, 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Suzuki R, Iki N. Kinetic aspects of iron(III)-chelation therapy with deferasirox (DFX) revealed by the solvolytic dissociation rate of the Fe(III)-DFX complex estimated with capillary electrophoretic reactor. J Inorg Biochem 2023; 241:112131. [PMID: 36706491 DOI: 10.1016/j.jinorgbio.2023.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Capillary electrophoresis was used to estimate the solvolytic dissociation rate (kd) of metal complexes of deferasirox (DFX, H3L), a drug used to treat iron overload. Inert CoIIIL23- did not dissociate. The estimated kd value for FeIIIL23- was (2.7 ± 0.3) × 10-4 s-1 (298 K, pH 7.4). The kd values of other complexes (AlIIIL23-, NiIIL24-, and MnIIL-) were in the range 10-3-10-4 s-1. In contrast, ZnIIL- and CuIIL- were too labile to allow kd estimation. The fact that the half-life of FeIIIL23- (43.3 min) is shorter than the blood half-life of DFX (8-16 h) implies that the blood concentration of DFX should be high enough to prevent dissociation of FeIIIL23-. The possibility of a safer iron-chelation therapy that avoids excretion of other essential metal ions such as ZnII is discussed, highlighting the importance of selectivity in terms of kinetic stability.
Collapse
Affiliation(s)
- Ryota Suzuki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, 980-8579, Sendai, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, 980-8579, Sendai, Japan.
| |
Collapse
|
3
|
Holtkamp HU, Movassaghi S, Morrow SJ, Kubanik M, Hartinger CG. Metallomic study on the metabolism of RAPTA-C and cisplatin in cell culture medium and its impact on cell accumulation. Metallomics 2018; 10:455-462. [DOI: 10.1039/c8mt00024g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The different extracellular speciation of cisplatin and the organoruthenium developmental anticancer agent RAPTA-C impacts the accumulation in cancer cells.
Collapse
Affiliation(s)
- Hannah U. Holtkamp
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Stuart J. Morrow
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Mario Kubanik
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | | |
Collapse
|
4
|
Foteeva LS, Matczuk M, Pawlak K, Aleksenko SS, Nosenko SV, Karandashev VK, Jarosz M, Timerbaev AR. Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(III) metallodrug-DNA interactions. Anal Bioanal Chem 2017; 409:2421-2427. [PMID: 28116493 PMCID: PMC5352744 DOI: 10.1007/s00216-017-0186-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
Abstract
Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.e., in the capillary filled with an oligonucleotide-containing electrolyte). To further characterize the binding kinetics, a drug–oligonucleotide mixture was incubated for a different period of time, followed by ultrafiltration separation into two different in molecular weight fractions (>3 and <3 kDa). The time-dependent distribution profiles of the Ru drug were then assessed by CE-inductively coupled plasma mass spectrometry (ICP-MS), revealing that at least two DNA adducts exist at equilibrium conditions. Using standalone ICP-MS, dominant equilibrium amount of the bound ruthenium was found to occur in a fraction of 5–10 kDa, which includes the oligonucleotide (ca. 6 kDa). Importantly, in all three assays, the drug was used for the first time in in-vitro studies, not in the intact form but as its active species released from the transferrin adduct at simulated cancer cytosolic conditions. This circumstance makes the established analytical platform promising to provide a detailed view on metallodrug targeting, including other possible biomolecules and ex vivo samples.
Collapse
Affiliation(s)
- Lidia S Foteeva
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Katarzyna Pawlak
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Svetlana S Aleksenko
- Saratov State University, Astrakhanskaya St. 83, 410012, Saratov, Russian Federation
| | - Sergey V Nosenko
- Institute of Microelectronics Technology and High-Purity Materials, Acad. Ossipyan St. 6, 142432, Chernologolovka, Russian Federation
| | - Vasily K Karandashev
- Institute of Microelectronics Technology and High-Purity Materials, Acad. Ossipyan St. 6, 142432, Chernologolovka, Russian Federation
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation
| |
Collapse
|
5
|
Aleksenko SS. Determination of adduct forms of antitumor ruthenium(III) complex with cytosolic components by capillary electrophoresis with mass spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816070030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Matczuk M, Legat J, Timerbaev AR, Jarosz M. A sensitive and versatile method for characterization of protein-mediated transformations of quantum dots. Analyst 2016; 141:2574-80. [PMID: 27032066 DOI: 10.1039/c6an00276e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the development and application of an analytical system consisting of capillary electrophoresis (CE) interfaced with inductively coupled plasma mass spectrometry (ICP-MS) for sensitive and high-resolution characterization of quantum dots (QDs) interacting with serum proteins. Separation resolution between the intact CdSeS/ZnS QDs and their protein conjugates was optimized by varying the type and concentration of background electrolyte, applied voltage, and sample loading. Special attention was paid to the CE system compatibility with physiological conditions, avoiding aggregation effects, and analyte recovery. Optimization trials allowed for acquiring satisfactory stability of migration times (within 6.0% between different days), peak area precision of 5.2-8.0%, capillary recoveries in the range of 90-96%, and a lower limit of detection of 7.5 × 10(-9) mol L(-1) Cd. With the developed method distinct metal-specific profiles were obtained for the QDs in combination with individual serum proteins, their mixtures, and in human serum. Particularly, it was found that albumin binding to the particle surface is completed after 1 h, without noticeable disruption of the core-shell integrity. The transferrin adsorption is accompanied by the removal of the ZnS shell, resulting in evolving two different metal-protein conjugated forms. On the other hand, proteinization in real-serum environment occurs without binding to major transport proteins, the QDs also lose their the shell (the higher the dose the longer is the time they stay unbroken). The concomitant changes in migration behavior can be attributed to interactions with serum proteins other than albumin and transferrin. Speciation information provided by CE-ICP-MS may shed light on the mechanism of QD delivery to the target regions of the body.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | | | | | | |
Collapse
|
7
|
Holtkamp H, Grabmann G, Hartinger CG. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry. Electrophoresis 2016; 37:959-72. [PMID: 26643265 DOI: 10.1002/elps.201500502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hannah Holtkamp
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Gerlinde Grabmann
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
- Institute of Inorganic Chemistry; University of Vienna; Vienna Austria
| | | |
Collapse
|
8
|
Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G. Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF. Electrophoresis 2015; 36:509-17. [DOI: 10.1002/elps.201400467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Robert Zabel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| | | | | | - Ulrich Jaehde
- Institute of Pharmacy; University of Bonn; Bonn Germany
| | - Günther Weber
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| |
Collapse
|
9
|
Timerbaev AR. Recent progress of ICP-MS in the development of metal-based drugs and diagnostic agents. J. ANAL. AT. SPECTROM. 2014; 29:1058-1072. [DOI: 10.1039/c3ja50394a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Critical analysis of current capabilities, limitations, and trends of ICP-MS applied to the development of metal-based medicines is conducted.
Collapse
Affiliation(s)
- Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Russian Academy of Sciences
- Moscow, Russia
| |
Collapse
|
10
|
Matczuk M, Prządka M, Aleksenko SS, Czarnocki Z, Pawlak K, Timerbaev AR, Jarosz M. Metallomics for drug development: a further insight into intracellular activation chemistry of a ruthenium(iii)-based anticancer drug gained using a multidimensional analytical approach. Metallomics 2014; 6:147-53. [DOI: 10.1039/c3mt00252g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Aleksenko SS, Matczuk M, Lu X, Foteeva LS, Pawlak K, Timerbaev AR, Jarosz M. Metallomics for drug development: an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(iii) drug bound to holo-transferrin in simulated cancer cytosol. Metallomics 2013; 5:955-63. [DOI: 10.1039/c3mt00092c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
|
13
|
Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 2012; 113:778-812. [PMID: 23057472 DOI: 10.1021/cr300199v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russian Federation.
| |
Collapse
|
14
|
Timerbaev AR. Determination of metal species in biological samples: From speciation analysis to metallomics. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s106193481202013x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Aleksenko SS, Shmykov AY, Oszwałdowski S, Timerbaev AR. Interactions of tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a direct probe. Metallomics 2012; 4:1141-8. [DOI: 10.1039/c2mt20141k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Hai X, Yang BF, Van Schepdael A. Recent developments and applications of EMMA in enzymatic and derivatization reactions. Electrophoresis 2011; 33:211-27. [DOI: 10.1002/elps.201100366] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/12/2022]
|