1
|
Li C, Liu R, Song Y, Chen Y, Zhu D, Yu L, Huang Q, Zhang Z, Xue Z, Hua Z, Lu C, Lu A, Liu Y. Hyaluronic Acid Hydrogels Hybridized With Au-Triptolide Nanoparticles for Intraarticular Targeted Multi-Therapy of Rheumatoid Arthritis. Front Pharmacol 2022; 13:849101. [PMID: 35712709 PMCID: PMC9197263 DOI: 10.3389/fphar.2022.849101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hongkong, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| |
Collapse
|
2
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
3
|
Cui Y, Zheng J, Zhuang W, Wang H. A target-activated plasmon coupling surface-enhanced Raman scattering platform for the highly sensitive and reproducible detection of miRNA-21. NEW J CHEM 2021. [DOI: 10.1039/d1nj00173f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed an SERS-based platform for the miRNA-21 assay with nucleic acid and Raman dye-modified AuNPs as capture substrates.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Jing Zheng
- Science and Technology Division
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Wei Zhuang
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan
- P. R. China
- Institute of Disaster Medicine
| |
Collapse
|
4
|
Kumar S, Kanagawa M, Namura K, Fukuoka T, Suzuki M. Multilayer thin-film flake dispersion gel for surface-enhanced Raman spectroscopy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01562-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Dutra MAL, Marques NDN, Fernandes RDS, de Souza Filho MDSM, Balaban RDC. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110771. [PMID: 32464443 DOI: 10.1016/j.ecoenv.2020.110771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Herein is presented a simple and sensible method to determine organic pollutants in water, based on the utilization of silver nanoparticles (AgNPs) loaded in Polyacrylamide (PAAm)/starch hybrid hydrogels combined with surface-enhanced Raman scattering (SERS) spectroscopy. The materials were characterized by swelling degree studies, UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and scanning electron microscopy (SEM). PAAm/starch hydrogels showed variable swelling capacity, according to the synthetic molar composition. The most promising results were attributed to lower concentrations of starch and crosslink agent (N,N'-methylenebisacrylamide - MBA). Spectroscopic analysis confirmed the formation of AgNPs, by noticing the peak at around 420 nm, due to its surface plasmon resonance (SPR) effect. The results showed that AgNPs were stabilized by hydrogels networks. The average size of the AgNPs was smaller than 100 nm and the size and quantity of nanoparticles were influenced by the molar composition of the hydrogel matrix. The SERS substrate based on the AgNPs-PAAm/starch exhibited reproducibility, stability, and limit of detection (LOD) of phenol in water of 1 × 10-8 M. The average mass of AgNPs-PAAm/starch hydrogels used for each detection analysis was around 10 mg. The spectra with enhanced intensities were possible due to a large number of hot spots generated on the AgNPs-PAAm/starch hydrogel substrate, which leads to potential use for organic pollutant detection. In addition, there is also the possibility of reusing the hydrogel matrix substrate in other analyzes.
Collapse
|
6
|
Cui Y, Wang H, Liu S, Wang Y, Huang J. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Analyst 2019; 145:445-452. [PMID: 31819931 DOI: 10.1039/c9an02051a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The self-assembly of plasmonic nanoparticles provides a powerful approach to generate surface-enhanced Raman scattering (SERS), which promotes the actual applications in chemical and biomolecular analyses. Herein, we developed a facile SERS sensing strategy for an ATP assay with a 3-D DNA nanomachine that walks by the Exo III cleavage, leading to the formation of AuNP aggregates, which resulted in the enhancement of the electromagnetic field. Depending on the target-activated Exo III cleavage, the 3-D nanomachine can walk along the 3-D track on the surface of AuNPs and generate self-assembled hot-spots to enhance the SERS signal of a Raman dye, allowing a homogenous assay of the ATP concentration with high sensitivity and reproducibility. Under optimized experimental conditions, the biosensor detected ATP with a widened dynamic range from 1 pM to 1 × 105 pM with a limit of detection of up to 0.29 pM. Hence, the novel strategy provides a useful and practical platform for the SERS assay of ATP with high sensitivity and repeatability. Besides, this platform shows great potential for applications in high-throughput assays for drug screening and clinical diagnostics.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- College of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yu Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Jiadong Huang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
7
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
8
|
Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates. MICROMACHINES 2019; 10:mi10050282. [PMID: 31035552 PMCID: PMC6562888 DOI: 10.3390/mi10050282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates with high sensitivity and reproducibility are highly desirable for high precision and even molecular-level detection applications. Here, large-scale uniformly hybrid nanoparticle-enhanced Raman spectroscopy (NERS) substrates with high reproducibility and controllability were developed. Using oxygen plasma treatment, large-area and uniformly rough polystyrene sphere (URPS) arrays in conjunction with 20 nm Au films (AuURPS) were fabricated for SERS substrates. Au nanoparticles and clusters covered the surface of the URPS arrays, and this increased the Raman signal. In the detection of malachite green (MG), the fabricated NERS substrates have high reproducibility and sensitivity. The enhancement factor (EF) of Au nanoparticles and clusters was simulated by finite-difference time-domain (FDTD) simulations and the EF was more than 104. The measured EF of our developed substrate was more than 108 with a relative standard deviation as low as 6.64%–13.84% over 15 points on the substrate. The minimum limit for the MG molecules reached 50 ng/mL. Moreover, the Raman signal had a good linear relationship with the logarithmic concentration of MG, as it ranged from 50 ng/mL to 5 μg/mL. The NERS substrates proposed in this work may serve as a promising detection scheme in chemical and biological fields.
Collapse
|
9
|
Luo Z, Xu Y, Ye E, Li Z, Wu YL. Recent Progress in Macromolecule-Anchored Hybrid Gold Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800029. [PMID: 29869424 DOI: 10.1002/marc.201800029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNPs), with elegant thermal, optical, or chemical properties due to quantum size effects, may serve as unique species for therapeutic or diagnostic applications. It is worth mentioning that their small size also results in high surface activity, leading to significantly impaired stability, which greatly hinders their biomedical utilizations. To overcome this problem, various types of macromolecular materials are utilized to anchor AuNPs so as to achieve advanced synergistic effect by dispersing, protecting, and stabilizing the AuNPs in polymeric-Au hybrid self-assemblies. In this review, the most recent development of polymer-AuNP hybrid systems, including AuNPs@polymeric nanoparticles, AuNPs@polymeric micelle, AuNPs@polymeric film, and AuNPs@polymeric hydrogel are discussed with respect to their different synthetic strategies. These sophisticated materials with diverse functions, oriented toward biomedical applications, are further summarized into several active domains in the areas of drug delivery, gene delivery, photothermal therapy, antibacterials, bioimaging, etc. Finally, the possible approaches for future design of multifunctional polymer-AuNP hybrids by combining hybrid chemistry with biological interface science are proposed.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
10
|
Li H, Men D, Sun Y, Liu D, Li X, Li L, Li C, Cai W, Li Y. Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Rajput A, Kumar S, Singh JP. Vertically standing nanoporous Al–Ag zig-zag silver nanorod arrays for highly active SERS substrates. Analyst 2017; 142:3959-3966. [DOI: 10.1039/c7an00851a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have demonstrated a simple de-alloying method to create nanogaps in a vertically standing zigzag AgNR arrays which act as SERS active hot spots for better SERS sensitivity.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Physics
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Samir Kumar
- Department of Physics
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Jitendra P. Singh
- Department of Physics
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| |
Collapse
|
12
|
Qu LL, Geng YY, Bao ZN, Riaz S, Li H. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1760-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Wei H, Vikesland PJ. pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform. Sci Rep 2015; 5:18131. [PMID: 26658696 PMCID: PMC4676058 DOI: 10.1038/srep18131] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/13/2015] [Indexed: 11/18/2022] Open
Abstract
The low affinity of neutral and hydrophobic molecules towards noble metal surfaces hinders their detection by surface-enhanced Raman spectroscopy (SERS). Herein, we present a method to enhance gold nanoparticle (AuNP) surface affinity by lowering the suspension pH below the analyte pKa. We developed an AuNP/bacterial cellulose (BC) nanocomposite platform and applied it to two common pollutants, carbamazepine (CBZ) and atrazine (ATZ) with pKa values of 2.3 and 1.7, respectively. Simple mixing of the analytes with AuNP/BC at pH < pKa resulted in consistent electrostatic alignment of the CBZ and ATZ molecules across the nanocomposite and highly reproducible SERS spectra. Limits of detection of 3 nM and 11 nM for CBZ and ATZ, respectively, were attained. Tests with additional analytes (melamine, 2,4-dichloroaniline, 4-chloroaniline, 3-bromoaniline, and 3-nitroaniline) further illustrate that the AuNP/BC platform provides reproducible analyte detection and quantification while avoiding the uncontrolled aggregation and flocculation of AuNPs that often hinder low pH detection.
Collapse
Affiliation(s)
- Haoran Wei
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia.,Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia.,Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia.,Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia.,Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina
| |
Collapse
|
14
|
Sivanesan A, Izake EL, Agoston R, Ayoko GA, Sillence M. Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids. J Nanobiotechnology 2015; 13:43. [PMID: 26104688 PMCID: PMC4477471 DOI: 10.1186/s12951-015-0102-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/05/2015] [Indexed: 11/29/2022] Open
Abstract
Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
Collapse
Affiliation(s)
- Arumugam Sivanesan
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD, 4001, Australia.
| | - Emad L Izake
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD, 4001, Australia.
| | - Roland Agoston
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD, 4001, Australia.
| | - Godwin A Ayoko
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD, 4001, Australia.
| | - Martin Sillence
- Discipline of Biosciences, Faculty of Science and Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD, 4001, Australia.
| |
Collapse
|
15
|
Lee MR, Phang IY, Cui Y, Lee YH, Ling XY. Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:740-748. [PMID: 25264141 DOI: 10.1002/smll.201401343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Indexed: 06/03/2023]
Abstract
The ability to shape-shift in response to a stimulus increases an organism's survivability in nature. Similarly, man-made dynamic and responsive "smart" microtechnology is crucial for the advancement of human technology. Here, 10-30 μm shape-changing 3D BSA protein hydrogel microstructures are fabricated with dynamic, quantitative, directional, and angle-resolved bending via two-photon photolithography. The controlled directional responsiveness is achieved by spatially controlling the cross-linking density of BSA at a nanometer lengthscale. Atomic force microscopy measurements of Young's moduli of structures indicate that increasing the laser writing distance at the z-axis from 100-500 nm decreases the modulus of the structure. Hence, through nanoscale modulation of the laser writing z-layer distance at the nanoscale, control over the cross-linking density is possible, allowing for the swelling extent of the microstructures to be quantified and controlled with high precision. This method of segmented moduli is applied within a single microstructure for the design of shape-shifting microstructures that exhibit stimulus-induced chirality, as well as for the fabrication of a free-standing 3D microtrap which is able to open and close in response to a pH change.
Collapse
Affiliation(s)
- Mian Rong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | | | | | | | | |
Collapse
|
16
|
Fateixa S, Soares SF, Daniel-da-Silva AL, Nogueira HIS, Trindade T. Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS. Analyst 2015; 140:1693-701. [DOI: 10.1039/c4an02105c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatine based nanocomposites incorporating Ag nanoparticles as a new SERS platform for the detection of diethyldithiocarbamate (EtDTC), aiming controlled release applications.
Collapse
Affiliation(s)
- S. Fateixa
- Department of Chemistry and CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - S. F. Soares
- Department of Chemistry and CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | - H. I. S. Nogueira
- Department of Chemistry and CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - T. Trindade
- Department of Chemistry and CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
17
|
Ouyang L, Zhu L, Jiang J, Xie W, Tang H. Three-dimensional plasmonic hydrogel architecture: facile synthesis and its macroscale effective space. RSC Adv 2015. [DOI: 10.1039/c4ra13293a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A facile strategy was developed to fabricate a 3D hydrogel decorated with Ag nanoparticles as a SERS substrate. The macro effective depth in this 3D network was confirmed. The substrate produced satisfactory results in the analysis of trace environmental molecules.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Jizhou Jiang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Wei Xie
- Department of Chemistry
- University of Duisburg-Essen
- 45141 Essen
- Germany
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education
- College of Chemistry and Materials Science
- South Central University for Nationalities
- Wuhan 430074
- P. R. China
| |
Collapse
|
18
|
Hu C, Yue W, Yang M. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis. Analyst 2014; 138:6709-20. [PMID: 24067742 DOI: 10.1039/c3an01321a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Signal generation and amplification based on nanomaterials and microfluidic techniques have both attracted considerable attention separately due to the demands for ultrasensitive and high-throughput detection of biomolecules. This article reviews the latest development of signal amplification strategies based on nanoparticles for bioanalysis and their integration and applications in microfluidic systems. The applications of nanoparticles in bioanalysis were categorized based on the different approaches of signal amplification, and the microfluidic techniques were summarized based on cell analysis and biomolecule detection with a focus on the integration of nanoparticle-based amplification in microfluidic devices for ultrasensitive bioanalysis. The advantages and limitations of the combination of nanoparticles-based amplification with microfluidic techniques were evaluated, and the possible developments for future research were discussed.
Collapse
Affiliation(s)
- Chong Hu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
19
|
Gong Z, Wang C, Wang C, Tang C, Cheng F, Du H, Fan M, Brolo AG. A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst 2014; 139:5283-9. [DOI: 10.1039/c4an00968a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A surface enhanced Raman scattering (SERS) hydrogel substrate, capable of extracting small amounts of organic species from surfaces of different types of materials with variable roughness, has been fabricated.
Collapse
Affiliation(s)
- Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
| | - Canchen Wang
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
| | - Cong Wang
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Fansheng Cheng
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Hongjie Du
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
| | | |
Collapse
|
20
|
Shin K, Chung H. Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications. Analyst 2013; 138:3335-46. [PMID: 23636144 DOI: 10.1039/c3an36843b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent studies to improve sample representation in Raman measurement by covering a large area of a sample in spectral collection. Three different schemes have been mainly investigated to fulfill the goal: (1) averaging of Raman spectra collected at many different locations on a sample, (2) rotation of a sample during spectral collection and (3) simultaneous wide area illumination (WAI) for spectral collection. The use of a wide area illumination scheme, simultaneously illuminating a laser over a large area for spectral acquisition without any further assistance such as sample rotation, has increased in diverse fields. Applications employing the WAI scheme in pharmaceutical, polymer/chemical/petrochemical and other areas are described in this review.
Collapse
Affiliation(s)
- Kayeong Shin
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | | |
Collapse
|
21
|
Abstract
Hydrogels have had extensive applications in scientific and industrial applications since their invention over 50 years ago. Responsive hydrogels based on temperature, light, and pH stimuli have been developed by changing the chemical components of the matrix structure. On the other hand, metallic nanoparticles of different shapes and sizes have been prepared by physical as well as chemical methods. These inorganic assemblies are currently widely used in the biomedical sciences and engineering fields. Recently, the combined use of hydrogels and nanoparticles in a single entity has gained enormous attention in areas such as catalysts, surface-enhanced Raman scattering, biosensors, and drug delivery. In this review, recent literature describing these technologies is summarized and an outlook on the promising future of this emerging field is provided.
Collapse
|