1
|
Xiao W, Sun R, Lou J, Xu Y, Li X, Xin K, Lu W, Sun C, Chen T, Gao Y, Wu D. LPS-enriched interaction drives spectrum conversion in antimicrobial peptides: Design and optimization of AA16 derivatives for targeting gram-negative bacteria. Eur J Med Chem 2025; 289:117462. [PMID: 40048797 DOI: 10.1016/j.ejmech.2025.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
The increasing prevalence of antibiotic-resistant Gram-negative bacteria necessitates the development of novel antimicrobial agents with targeted specificity. In this study, we designed and optimized derivatives of the antimicrobial peptide AA16, which truncated from CD14 protein α-helical region, to selectively target Gram-negative bacteria by enhancing lipopolysaccharide (LPS)-enriched interactions, thereby achieving antibacterial spectrum conversion. Starting from the parent peptide AA16 (Ac-AARIPSRILFGALRVL-Amide), we performed strategic amino acid substitutions based on structure-activity relationship analysis. This led to the identification of AA16-10R, a derivative with a specific substitution at position 10, which demonstrated significantly enhanced antibacterial activity against Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa, while maintaining low hemolytic activity. Mechanistic studies revealed that AA16-10R exhibited a strong binding affinity to LPS (Kd = 0.15 μM), and its interaction with LPS induced the formation of an α-helical structure. This conformational change facilitated its accumulation on the bacterial outer membrane and disrupted membrane integrity. Our innovative approach of exploiting LPS-enriched interactions successfully converted the antimicrobial spectrum of AA16 derivatives from broad-spectrum to Gram-negative-specific. This study highlights a novel strategy for the rational design of antimicrobial peptides based on specific protein-protein interactions, offering a promising avenue for targeted antimicrobial therapy against Gram-negative pathogens.
Collapse
Affiliation(s)
- Wanyang Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ruize Sun
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Xiaokun Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Tianbao Chen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
2
|
Kong J, Deng Y, Xu Y, Zhang P, Li L, Huang Y. A Two-Pronged Delivery Strategy Disrupting Positive Feedback Loop of Neutrophil Extracellular Traps for Metastasis Suppression. ACS NANO 2024; 18:15432-15451. [PMID: 38842256 DOI: 10.1021/acsnano.3c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Neutrophil extracellular traps (NETs) severely affect tumor metastasis through a self-perpetuating feedback loop involving two key steps: (1) mitochondrial aerobic respiration-induced hypoxia promotes NET formation and (2) NETs enhance mitochondrial metabolism to exacerbate hypoxia. Herein, we propose a two-pronged approach with the activity of NET-degrading and mitochondrion-damaging by simultaneously targeting drugs to NETs and tumor mitochondria of this loop. In addition to specifically recognizing and eliminating extant NETs, the NET-targeting nanoparticle also reduces NET-induced mitochondrial biogenesis, thus inhibiting the initial step of the feedback loop and mitigating extant NETs' impact on tumor metastasis. Simultaneously, the mitochondrion-targeting system intercepts mitochondrial metabolism and alleviates tumor hypoxia, inhibiting neutrophil infiltration and subsequent NET formation, which reduces the source of NETs and disrupts another step of the self-amplifying feedback loop. Together, the combination significantly reduces the formation of NET-tumor cell clusters by disrupting the interaction between NETs and tumor mitochondria, thereby impeding the metastatic cascade including tumor invasion, hematogenous spread, and distant colonization. This work represents an innovative attempt to disrupt the feedback loop in tumor metastasis, offering a promising therapeutic approach restraining NET-assisted metastasis.
Collapse
Affiliation(s)
- Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yudi Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiwen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
4
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Cilibrizzi A, Pourzand C, Abbate V, Reelfs O, Versari L, Floresta G, Hider R. The synthesis and properties of mitochondrial targeted iron chelators. Biometals 2023; 36:321-337. [PMID: 35366134 PMCID: PMC10082125 DOI: 10.1007/s10534-022-00383-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
Abstract
Iron levels in mitochondria are critically important for the normal functioning of the organelle. Abnormal levels of iron and the associated formation of toxic oxygen radicals have been linked to a wide range of diseases and consequently it is important to be able to both monitor and control levels of the mitochondrial labile iron pool. To this end a series of iron chelators which are targeted to mitochondria have been designed. This overview describes the synthesis of some of these molecules and their application in monitoring mitochondrial labile iron pools and in selectively removing excess iron from mitochondria.
Collapse
Affiliation(s)
| | - Charareh Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Olivier Reelfs
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Laura Versari
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Robert Hider
- Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
6
|
Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells. Bioorg Med Chem 2023; 83:117213. [PMID: 36934526 DOI: 10.1016/j.bmc.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The anti-cancer peptides emerged as new weapons for cancer therapy due to their potent toxicity toward various cancer cells. However, their therapeutic promise is often limited by non-specific toxicity to normal cells. How to improve peptides' selectivity to cancer cells is always a matter to solve. In this manuscript, we designed a sulfonium tethered lytic peptide conjugated with a HDAC inhibitor to improve the selectivity of cancer cells. The sulfonium tethered lytic peptide with improved hydrophilicity and positive charge showed reduced toxicity to both cancer cells and normal cells. When conjugated with the HDAC inhibitor, this peptide showed increased toxicity to cancer cells. Besides, the stabilized peptide HDAC conjugate showed better serum stability than the linear peptide conjugate. For cellular function, the stabilized peptide conjugate could induce cancer cell apoptosis, cell cycle arrest, and influence multiple signal pathways through transcriptome analysis. This design may provide an alternative approach for the development of safe and effective anti-cancer drugs.
Collapse
|
7
|
Ramirez D, Berry L, Domalaon R, Li Y, Arthur G, Kumar A, Schweizer F. Dioctanoyl Ultrashort Tetrabasic β-Peptides Sensitize Multidrug-Resistant Gram-Negative Bacteria to Novobiocin and Rifampicin. Front Microbiol 2022; 12:803309. [PMID: 35003035 PMCID: PMC8733726 DOI: 10.3389/fmicb.2021.803309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Recently reported peptidomimetics with increased resistance to trypsin were shown to sensitize priority multidrug-resistant (MDR) Gram-negative bacteria to novobiocin and rifampicin. To further optimize proteolytic stability, β-amino acid-containing derivatives of these compounds were prepared, resulting in three dioctanoyl ultrashort tetrabasic β-peptides (dUSTBβPs). The nonhemolytic dUSTBβP 3, comprised of three β3-homoarginine residues and two fatty acyl tails eight carbons long, enhanced the antibacterial activity of various antibiotics from different classes. Notably, compound 3 retained the ability to potentiate novobiocin and rifampicin in wild-type Gram-negative bacteria against MDR clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. dUSTBβP 3 reduced the minimum inhibitory concentration of novobiocin and rifampicin below their interpretative susceptibility breakpoints. Furthermore, compound 3 exhibited improved in vitro stability (86.8 ± 3.7% remaining) relative to its α-amino acid-based counterpart (39.5 ± 7.4% remaining) after a 2 h incubation in human plasma.
Collapse
Affiliation(s)
- Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Liam Berry
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ronald Domalaon
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
9
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
10
|
Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021; 11:5863-5875. [PMID: 33897886 PMCID: PMC8058723 DOI: 10.7150/thno.53615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.
Collapse
|
11
|
Crystal structure, theoretical and vibrational analysis of isostructural salts of l-arginine analogue, (S)-2-amino-3-guanidinopropanoic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Nakase I, Ueno N, Matsuzawa M, Noguchi K, Hirano M, Omura M, Takenaka T, Sugiyama A, Bailey Kobayashi N, Hashimoto T, Takatani-Nakase T, Yuba E, Fujii I, Futaki S, Yoshida T. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio 2021; 11:753-767. [PMID: 33533170 PMCID: PMC7931216 DOI: 10.1002/2211-5463.13107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/30/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Exosomes (extracellular vesicles/EVs) participate in cell–cell communication and contain bioactive molecules, such as microRNAs. However, the detailed characteristics of secreted EVs produced by cells grown under low pH conditions are still unknown. Here, we report that low pH in the cell culture medium significantly affected the secretion of EVs with increased protein content and zeta potential. The intracellular expression level and location of stably expressed GFP‐fused CD63 (an EV tetraspanin) in HeLa cells were also significantly affected by environmental pH. In addition, increased cellular uptake of EVs was observed. Moreover, the uptake rate was influenced by the presence of serum in the cell culture medium. Our findings contribute to our understanding of the effect of environmental conditions on EV‐based cell–cell communication.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Natsumi Ueno
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mie Matsuzawa
- NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mami Hirano
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Mika Omura
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Tomoya Takenaka
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Ayaka Sugiyama
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan.,NanoSquare Research Institute, Osaka Prefecture University, Sakai, Japan
| | - Nahoko Bailey Kobayashi
- Keio University School of Medicine, Tsukuba, Japan.,Institute for Advanced Sciences, Toagosei Co., Ltd, Tsukuba, Japan
| | - Takuya Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.,Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Tetsuhiko Yoshida
- Keio University School of Medicine, Tsukuba, Japan.,Institute for Advanced Sciences, Toagosei Co., Ltd, Tsukuba, Japan
| |
Collapse
|
13
|
Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother 2020; 127:110179. [PMID: 32387862 DOI: 10.1016/j.biopha.2020.110179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/10/2023] Open
Abstract
We have designed 2-domain anticancer peptides with RGD-based KLAK bi-functional short motifs (linear and cyclic analogues). RGD tripeptide acts as tumor blood vessel 'homing' motif while KLAK tetrapeptide internalized in mitochondria and causes cell apoptosis. All three peptides (RGDKLAK; HM, cyclic-RGDKLAK; HMC-1, and RGD-cyclic-KLAK; HMC-2) were conjugated with fluorescein isothiocyanate isomer-I (5-FITC; F) for in-vivo and in-vitro optical imaging studies. These fluorescent-peptide (FL-peptide) analogues were analyzed to possess αvβ3-integrin targeting affinity, high uptake in in-vitro cell binding assays followed by in-vivo tumor xenograft mice studies. Pharmacological profile reveals that F-HMC-1 analogue exhibited selectively and specifically higher affinity for αvβ3-integrin than other analogues in U87MG cells in comparison with HeLa cells. The subcutaneous U87MG tumor xenograft mice models clearly visualized the uptake of F-HMC-1 in tumor tissue in contrast with normal tissues with tumor-to-normal tissue ratio (T/NT = 15.9 ± 1.1) at 2 h post-injection. These results suggested that F-HMC-1 peptide has potential diagnostic applications for targeting αvβ3-integrin assessed by optical imaging study in U87MG tumor xenograft mice models.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Nakase I, Katayama M, Hattori Y, Ishimura M, Inaura S, Fujiwara D, Takatani-Nakase T, Fujii I, Futaki S, Kirihata M. Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT). Chem Commun (Camb) 2019; 55:13955-13958. [PMID: 31617510 DOI: 10.1039/c9cc03924d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we designed and synthesized organelle-targeted cell-penetrating peptide (CPP)-conjugated boron compounds to increase their cellular uptake and to control the intracellular locations for the induction of sophisticated anticancer biological activity in boron neutron capture therapy (BNCT), leading to anticancer effects with ATP reduction and apoptosis when irradiated with neutrons in an in vitro BNCT assay.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodrigues de Almeida N, Catazaro J, Krishnaiah M, Singh Chhonker Y, Murry DJ, Powers R, Conda-Sheridan M. Understanding interactions of Citropin 1.1 analogues with model membranes and their influence on biological activity. Peptides 2019; 119:170119. [PMID: 31336137 PMCID: PMC7161086 DOI: 10.1016/j.peptides.2019.170119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023]
Abstract
The rapid emergence of resistant bacterial strains has made the search for new antibacterial agents an endeavor of paramount importance. Cationic antimicrobial peptides (AMPs) have the ability to kill resistant pathogens while diminishing the development of resistance. Citropin 1.1 (Cit 1.1) is an AMP effective against a broad range of pathogens. 20 analogues of Cit 1.1 were prepared to understand how sequence variations lead to changes in structure and biological activity. Various analogues exhibited an increased antimicrobial activity relative to Cit 1.1. The two most promising, AMP-016 (W3F) and AMP-017 (W3F, D4R, K7R) presented a 2- to 8-fold increase in activity against MRSA (both = 4 μg/mL). AMP-017 was active against E. coli (4 μg/mL), K. pneumoniae (8 μg/mL), and A. baumannii (2 μg/mL). NMR studies indicated that Cit 1.1 and its analogues form a head-to-tail helical dimer in a membrane environment, which differs from a prior study by Sikorska et al. Active peptides displayed a greater tendency to form α-helices and to dimerize when in contact with a negatively-charged membrane. Antimicrobial activity was observed to correlate to the overall stability of the α-helix and to a positively charged N-terminus. Biologically active AMPs were shown by SEM and flow cytometry to disrupt membranes in both Gram-positive and Gram-negative bacteria through a proposed carpet mechanism. Notably, active peptides exhibited typical serum stabilities and a good selectivity for bacterial cells over mammalian cells, which supports the potential use of Cit 1.1 analogues as a novel broad-spectrum antibiotic for drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan Catazaro
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA
| | - Maddeboina Krishnaiah
- Department of Pediatrics Computational Chemistry, University of Nebraska Medical Center - Omaha, NE, 68198-2168, USA
| | - Yashpal Singh Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Daryl J Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, 68588-0304, USA.
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center - Omaha, NE, 68198-6125, USA.
| |
Collapse
|
16
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018; 157:107-124. [DOI: 10.1016/j.biomaterials.2017.12.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 01/02/2023]
|
18
|
Hu C, Chen X, Huang Y, Chen Y. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 2018; 23:132-142. [PMID: 29397453 DOI: 10.1007/s10495-018-1443-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a peptide-peptide co-administration therapy between hybrid peptide kla-TAT and cationic anticancer peptide HPRP-A1 was designed to increase the anticancer activity of the combination peptides through synergistic effect. kla is a pro-apoptotic peptide which could induce rapid cancer cell apoptosis by disruption the mitochondrial membrane when internalized the cells. To enhance more kla peptides pass through cell membrane, a double improvement strategy was designed by chemically conjugation with cell penetration peptide TAT as well as co-administration with cationic membrane active peptide HPRP-A1, and the double anticancer mechanism of the kla-TAT peptide and HPRP-A1 including membrane disruption and apoptosis induction was verified through in vitro experiments. The CompuSyn synergism/antagonism analysis showed that kla-TAT acted synergistically with HPRP-A1 against a non-small cell lung cancer (NSCLC) A549 cell line. The anticancer activities of the two peptides were dramatically increased by co-administration, under the mechanism of cell membrane disruption, caspase-dependent apoptosis induction, as well as cyclin-D1 down-regulation based G1 phase arrest. We believe that the synergic therapeutic strategy would be a meaningful method for the anticancer peptides used in cancer treatment.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.
- College of Life Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
19
|
Han K, Ma Z, Han H. Functional peptide-based nanoparticles for photodynamic therapy. J Mater Chem B 2018; 6:25-38. [DOI: 10.1039/c7tb02804k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy as a non-invasive approach has obtained great research attention during the last decade.
Collapse
Affiliation(s)
- Kai Han
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| |
Collapse
|
20
|
Liu FH, Hou CY, Zhang D, Zhao WJ, Cong Y, Duan ZY, Qiao ZY, Wang H. Enzyme-sensitive cytotoxic peptide–dendrimer conjugates enhance cell apoptosis and deep tumor penetration. Biomater Sci 2018; 6:604-613. [DOI: 10.1039/c7bm01182b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytotoxic peptide conjugated PAMAM dendrimers with MMP2-sensitive PEG for efficient tumor penetration, cellular internalization and mitochondria disruption.
Collapse
Affiliation(s)
- Fu-Hua Liu
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Chun-Yuan Hou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Di Zhang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Wen-Jing Zhao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Yong Cong
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Hao Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| |
Collapse
|
21
|
Li J, Hu K, Chen H, Wu Y, Chen L, Yin F, Tian Y, Li Z. An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chem Commun (Camb) 2017; 53:10452-10455. [PMID: 28884757 DOI: 10.1039/c7cc04923d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The helical peptide KLA (KLAKLAKKLAKLAK) is a well-known inducer of cellular apoptosis, acting to disrupt the mitochondrial membrane. However, its weak cellular uptake impedes development of any further applications. Here, we have utilized a novel in-tether chiral center induced helicity strategy (CIH) to develop a potent apoptosis inducer based on this KLA sequence. Notably, for the two resulting epimers of the CIH-KLA peptide, the CIH-KLA-(R) epimer exhibited superior cellular uptakes and special mitochondrial targeting when compared with its S counterpart. This work provides a promising and versatile method to modify the KLA peptide and a proof-of-concept application for the CIH strategy in modifying bioactive peptides.
Collapse
Affiliation(s)
- Jingxu Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Kuan Hu
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Hailing Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - YuJie Wu
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Longjian Chen
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Feng Yin
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, P. R. China.
| | - Zigang Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| |
Collapse
|
22
|
Rice A, Wereszczynski J. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1941-1950. [PMID: 28583830 DOI: 10.1016/j.bbamem.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Antimicrobial peptides (AMPs) are key components of the innate immune response and represent promising templates for the development of broad-spectrum alternatives to conventional antibiotics. Most AMPs are short, cationic peptides that interact more strongly with negatively charged prokaryotic membranes than net neutral eukaryotic ones. Both AMPs and synthetic analogues with arginine-like side chains are more active against bacteria than those with lysine-like amine groups, though the atomistic mechanism for this increase in potency remains unclear. To examine this, we conducted comparative molecular dynamics simulations of a model negatively-charged membrane system interacting with two mutants of the AMP KR-12: one with lysine residues mutated to arginines (R-KR12) and one with arginine residues mutated to lysine (K-KR12). Simulations show that both partition analogously to the bilayer and display similar preferences for hydrogen bonding with the anionic POPGs. However, R-KR12 binds stronger to the bilayer than K-KR12 and forms significantly more hydrogen bonds, leading to considerably longer interaction times. Additional simulations with methylated R-KR12 and charge-modified K-KR12 mutants show that the extensive interaction seen in the R-KR12 system is partly due to arginine's strong atomic charge distribution, rather than being purely an effect of the greater number of hydrogen bond donors. Finally, free energy simulations reveal that both peptides are disordered in solution but form an amphipathic α-helix when inserted into the bilayer headgroup region. Overall, these results highlight the role of charge and hydrogen bond strength in peptide bilayer insertion, and offer potential insights for designing more potent analogues in the future.
Collapse
Affiliation(s)
- A Rice
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wereszczynski
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| |
Collapse
|
23
|
Sarapas JM, Backlund CM, deRonde BM, Minter LM, Tew GN. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis. Chemistry 2017; 23:6858-6863. [PMID: 28370636 PMCID: PMC5551038 DOI: 10.1002/chem.201700423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 01/21/2023]
Abstract
Cell-penetrating peptides are an important class of molecules with promising applications in bioactive cargo delivery. A diverse series of guanidinium-containing polymeric cell-penetrating peptide mimics (CPPMs) with varying backbone chemistries was synthesized and assessed for delivery of both GFP and fluorescently tagged siRNA. Specifically, we examined CPPMs based on norbornene, methacrylate, and styrene backbones to determine how backbone structure impacted internalization of these two cargoes. Either charge content or degree of polymerization was held constant at 20, with diguanidinium norbornene molecules being polymerized to both 10 and 20 repeat units. Generally, homopolymer CPPMs delivered low amounts of siRNA into Jurkat T cells, with no apparent backbone dependence; however, by adding a short hydrophobic methyl methacrylate block to the guanidinium-rich methacrylate polymer, siRNA delivery to nearly the entire cell population was achieved. Protein internalization yielded similar results for most of the CPPMs, though the block polymer was unable to deliver proteins. In contrast, the styrene-based CPPM yielded the highest internalization for GFP (≈40 % of cells affected), showing that indeed backbone chemistry impacts protein delivery, specifically through the incorporation of an aromatic group. These results demonstrate that an understanding of how polymer structure affects cargo-dependent internalization is critical to designing new, more effective CPPMs.
Collapse
Affiliation(s)
- Joel M Sarapas
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Coralie M Backlund
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lisa M Minter
- Department of Molecular and Cellular Biology, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Veterinary and Animal Sciences, Department of Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Molecular and Cellular Biology, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Veterinary and Animal Sciences, Department of Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
24
|
Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci Rep 2017; 7:1991. [PMID: 28512335 PMCID: PMC5434003 DOI: 10.1038/s41598-017-02014-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes have been shown to play crucial roles in cell-to-cell communication because of their ability to carry biofunctional molecules (e.g., microRNAs and enzymes). EVs also have pharmaceutical advantages and are highly anticipated to be a next-generation intracellular delivery tool. Here, we demonstrate an experimental technique that uses arginine-rich cell-penetrating peptide (CPP)-modified EVs to induce active macropinocytosis for effective cellular EV uptake. Modification of arginine-rich CPPs on the EV membrane resulted in the activation of the macropinocytosis pathway, and the number of arginine residues in the peptide sequences affected the cellular EV uptake efficiency. Consequently, the ribosome-inactivating protein saporin-encapsulated EVs modified with hexadeca-arginine (R16) peptide effectively attained anti-cancer activity.
Collapse
|
25
|
Peptide Pharmacological Approaches to Treating Traumatic Brain Injury: a Case for Arginine-Rich Peptides. Mol Neurobiol 2016; 54:7838-7857. [PMID: 27844291 DOI: 10.1007/s12035-016-0287-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) has a devastating effect on victims and their families, and has profound negative societal and economic impacts, a situation that is further compounded by the lack of effective treatments to minimise injury after TBI. The current strategy for managing TBI is partly through preventative measures and partly through surgical and rehabilitative interventions. Secondary brain damage remains the principal focus for the development of a neuroprotective therapeutic. However, the complexity of TBI pathophysiology has meant that single-action pharmacological agents have been largely unsuccessful in combatting the associated brain injury cascades, while combination therapies to date have proved equally ineffective. Peptides have recently emerged as promising lead agents for the treatment of TBI, especially those rich in the cationic amino acid, arginine. Having been shown to lessen the impact of ischaemic stroke in animal models, there are reasonable grounds to believe that arginine-rich peptides may have neuroprotective therapeutic potential in TBI. Here, we review a range of peptides previously examined as therapeutic agents for TBI. In particular, we focus on cationic arginine-rich peptides -- a new class of agents that growing evidence suggests acts through multiple neuroprotective mechanisms.
Collapse
|
26
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Liu X, Cao R, Wang S, Jia J, Fei H. Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells. J Med Chem 2016; 59:5238-47. [DOI: 10.1021/acs.jmedchem.5b02016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaoli Liu
- CAS Key Laboratory of Nano-Bio
Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- School of Life Science, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China
| | - Rui Cao
- CAS Key Laboratory of Nano-Bio
Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Sha Wang
- CAS Key Laboratory of Nano-Bio
Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Junli Jia
- CAS Key Laboratory of Nano-Bio
Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Hao Fei
- CAS Key Laboratory of Nano-Bio
Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
28
|
Gautam A, Nanda JS, Samuel JS, Kumari M, Priyanka P, Bedi G, Nath SK, Mittal G, Khatri N, Raghava GPS. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci Rep 2016; 6:26278. [PMID: 27189051 PMCID: PMC4870705 DOI: 10.1038/srep26278] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications.
Collapse
Affiliation(s)
- Ankur Gautam
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jagpreet Singh Nanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jesse S Samuel
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Manisha Kumari
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Priyanka Priyanka
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gursimran Bedi
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Samir K Nath
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Garima Mittal
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Neeraj Khatri
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | |
Collapse
|
29
|
Milani D, Knuckey NW, Anderton RS, Cross JL, Meloni BP. The R18 Polyarginine Peptide Is More Effective Than the TAT-NR2B9c (NA-1) Peptide When Administered 60 Minutes after Permanent Middle Cerebral Artery Occlusion in the Rat. Stroke Res Treat 2016; 2016:2372710. [PMID: 27247825 PMCID: PMC4877491 DOI: 10.1155/2016/2372710] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022] Open
Abstract
We examined the dose responsiveness of polyarginine R18 (100, 300, and 1000 nmol/kg) when administered 60 minutes after permanent middle cerebral artery occlusion (MCAO). The TAT-NR2B9c peptide, which is known to be neuroprotective in rodent and nonhuman primate stroke models, served as a positive control. At 24 hours after MCAO, there was reduced total infarct volume in R18 treated animals at all doses, but this reduction only reached statistical significance at doses of 100 and 1000 nmol/kg. The TAT-NR2B9c peptide reduced infarct volume at doses of 300 and 1000 nmol/kg, but not to a statistically significant extent, while the 100 nmol/kg dose was ineffective. The reduction in infarct volume with R18 and TAT-NR2B9c peptide treatments was mirrored by improvements in one or more functional outcomes (namely, neurological score, adhesive tape removal, and rota-rod), but not to a statistically significant extent. These findings further confirm the neuroprotective properties of polyarginine peptides and for R18 extend its therapeutic time window and dose range, as well as demonstrating its greater efficacy compared to TAT-NR2B9c in a severe stroke model. The superior neuroprotective efficacy of R18 over TAT-NR2B9c highlights the potential of this polyarginine peptide as a lead candidate for studies in human stroke.
Collapse
Affiliation(s)
- D. Milani
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6160, Australia
- Western Australian Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - N. W. Knuckey
- Western Australian Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - R. S. Anderton
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6160, Australia
- Western Australian Neuroscience Research Institute, Nedlands, WA 6009, Australia
| | - J. L. Cross
- Western Australian Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - B. P. Meloni
- Western Australian Neuroscience Research Institute, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
30
|
Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett 2015; 589:3915-20. [PMID: 26555191 DOI: 10.1016/j.febslet.2015.11.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides.
Collapse
|
31
|
Soler M, González-Bártulos M, Figueras E, Ribas X, Costas M, Massaguer A, Planas M, Feliu L. Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16. Org Biomol Chem 2015; 13:1470-80. [PMID: 25474438 DOI: 10.1039/c4ob01875c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The undecapeptide KKLFKKILKKL-NH2 (BP16) is a non-toxic cell-penetrating peptide (CPP) that is mainly internalized into cancer cells through a clathrin dependent endocytic mechanism and localizes in late endosomes. Moreover, this CPP is able to enhance the cellular uptake of chlorambucil (CLB) improving its cytotoxicity. In this work, we further explored the cell-penetrating properties of BP16 and those of its arginine analogue BP308. We investigated the influence on the cytotoxicity and on the cellular uptake of conjugating CLB at the N- or the C-terminal end of these undecapeptides. The effect of incorporating the cathepsin B-cleavable sequence Gly-Phe-Leu-Gly in CLB-BP16 and CLB-BP308 conjugates was also evaluated. The activity of CLB was significantly improved when conjugated at the N- or the C-terminus of BP16, or at the N-terminus of BP308. While CLB alone was not active (IC50 of 73.7 to >100 μM), the resulting conjugates displayed cytotoxic activity against CAPAN-1, MCF-7, PC-3, 1BR3G and SKMEL-28 cell lines with IC50 values ranging from 8.7 to 25.5 μM. These results were consistent with the internalization properties observed for the corresponding 5(6)-carboxyfluorescein-labeled conjugates. The presence of the tetrapeptide Gly-Phe-Leu-Gly at either the N- or the C-terminus of CLB-BP16 conjugates further increased the efficacy of CLB (IC50 of 3.6 to 16.2 μM), which could be attributed to its selective release in the lysosomal compartment. Enzymatic assays with cathepsin B showed the release of CLB-Gly-OH from these sequences within a short time. Therefore, the combination of BP16 with an enzymatic cleavable sequence can be used as a drug delivery system for the effective uptake and release of drugs in cancer cells.
Collapse
Affiliation(s)
- Marta Soler
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
33
|
Lin YC, Lim YF, Russo E, Schneider P, Bolliger L, Edenharter A, Altmann KH, Halin C, Hiss JA, Schneider G. Multidimensional Design of Anticancer Peptides. Angew Chem Int Ed Engl 2015; 54:10370-4. [PMID: 26119906 DOI: 10.1002/anie.201504018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/10/2022]
Abstract
The computer-assisted design and optimization of peptides with selective cancer cell killing activity was achieved through merging the features of anticancer peptides, cell-penetrating peptides, and tumor-homing peptides. Machine-learning classifiers identified candidate peptides that possess the predicted properties. Starting from a template amino acid sequence, peptide cytotoxicity against a range of cancer cell lines was systematically optimized while minimizing the effects on primary human endothelial cells. The computer-generated sequences featured improved cancer-cell penetration, induced cancer-cell apoptosis, and were enabled a decrease in the cytotoxic concentration of co-administered chemotherapeutic agents in vitro. This study demonstrates the potential of multidimensional machine-learning methods for rapidly obtaining peptides with the desired cellular activities.
Collapse
Affiliation(s)
- Yen-Chu Lin
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Yi Fan Lim
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Erica Russo
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Petra Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Lea Bolliger
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Adriana Edenharter
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Cornelia Halin
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Jan A Hiss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland).
| |
Collapse
|
34
|
Lin YC, Lim YF, Russo E, Schneider P, Bolliger L, Edenharter A, Altmann KH, Halin C, Hiss JA, Schneider G. Mehrdimensionaler Entwurf von Antikrebspeptiden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 2015; 5:10300. [PMID: 26036864 PMCID: PMC4453128 DOI: 10.1038/srep10300] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Nahoko Bailey Kobayashi
- 1] Keio Advanced Research Centers (KARC), Keio University, Tsukuba, Ibaraki 300-2611, Japan [2] Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsuhiko Yoshida
- 1] Keio Advanced Research Centers (KARC), Keio University, Tsukuba, Ibaraki 300-2611, Japan [2] Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| |
Collapse
|
36
|
Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep 2015; 5:10112. [PMID: 26011176 PMCID: PMC4443764 DOI: 10.1038/srep10112] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
Exosomes, which are approximately 100 nm vesicles secreted by cells, have been studied with respect to cell-to-cell communication, disease diagnosis, and intracellular delivery. The cellular uptake of exosomes occurs by endocytosis; however, the cytosolic release efficiency of encapsulated molecules inside cells is low. To address this issue, here we demonstrate a simple technique for enhancing the cellular uptake and cytosolic release of exosomes by combining a pH-sensitive fusogenic peptide for the fusion of endosomal and exosomal membranes inside cells. This method stimulates the efficient cytosolic release of the exosomal contents with cationic lipids that act as a “glue” to support cellular uptake. Using this simple combined technique, the effective cellular uptake and cytosolic release of an artificially encapsulated dextran macromolecule (70 kDa) in exosomes are achieved, and a marked improvement in bioactivity is attained with the artificially encapsulated ribosome-inactivating protein saporin. Our method will contribute to many biological research fields, including the assessment of the activities of exosomal contents and the development of candidate tools enabling intracellular visualisation and cellular regulation for future therapeutic applications.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
37
|
Qiao ZY, Hou CY, Zhang D, Liu Y, Lin YX, An HW, Li XJ, Wang H. Self-assembly of cytotoxic peptide conjugated poly(β-amino ester)s for synergistic cancer chemotherapy. J Mater Chem B 2015; 3:2943-2953. [DOI: 10.1039/c4tb02144d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DOX-encapsulated self-assembled micelle formation by cytotoxic peptide conjugated poly(β-amino ester)s for synergistic cancer chemotherapy.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Chun-Yuan Hou
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
- School of Chemical Engineering & Technology
| | - Di Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- Qingdao
- China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Hong-Wei An
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Xiao-Jun Li
- School of Chemical Engineering & Technology
- Hebei University of Technology
- Tianjin
- China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| |
Collapse
|
38
|
Lin YC, Hiss JA, Schneider P, Thelesklaf P, Lim YF, Pillong M, Koehler FM, Dittrich PS, Halin C, Wessler S, Schneider G. Piloting the membranolytic activities of peptides with a self-organizing map. Chembiochem 2014; 15:2225-31. [PMID: 25204788 DOI: 10.1002/cbic.201402231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 01/01/2023]
Abstract
Antimicrobial peptides (AMPs) show remarkable selectivity toward lipid membranes and possess promising antibiotic potential. Their modes of action are diverse and not fully understood, and innovative peptide design strategies are needed to generate AMPs with improved properties. We present a de novo peptide design approach that resulted in new AMPs possessing low-nanomolar membranolytic activities. Thermal analysis revealed an entropy-driven mechanism of action. The study demonstrates sustained potential of advanced computational methods for designing peptides with the desired activity.
Collapse
Affiliation(s)
- Yen-Chu Lin
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hyun S, Lee S, Kim S, Jang S, Yu J, Lee Y. Apoptosis inducing, conformationally constrained, dimeric peptide analogs of KLA with submicromolar cell penetrating abilities. Biomacromolecules 2014; 15:3746-52. [PMID: 25188534 DOI: 10.1021/bm501026e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The apoptosis inducing KLA peptide, (KLAKLAK)2, possesses an ability to disrupt mitochondrial membranes. However, this peptide has a poor eukaryotic cell penetrating potential and, as a result, it requires the assistance of other cell penetrating peptides for effective translocation in micromolar concentrations. In an effort to improve the cell penetrating potential of KLA, we have created a library in which pairs of residues on its hydrophobic face are replaced by Cys. The double Cys mutants were then transformed to bundle dimers by oxidatively generating two intermolecular disulfide bonds. We envisioned that once transported into cells, the disulfide bonds would undergo reductive cleavage to generate the monomeric peptides. The results of these studies showed that one of the mutant peptides, dimer B, has a high cell penetrating ability that corresponds to 100% of fluorescence positive cells at 250 nM. Even though dimer B induces disruption of the mitochondrial potential and cytochrome c release followed by caspase activation at submicromolar concentrations, it displays an LD50 of 1.6 μM under serum conditions using HeLa cells. Taken together, the results demonstrate that the strategy involving formation of bundle dimeric peptides is viable for the design of apoptosis inducing KLA peptide that translocate into cells at submicromolar concentrations.
Collapse
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry and Education and ‡Department of Chemistry, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J Membr Biol 2014; 247:861-81. [PMID: 24903487 DOI: 10.1007/s00232-014-9679-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides have inspired developments of abiotic membrane-active polymers that can coat, penetrate, or break lipid bilayers in model systems. Application to cell cultures is more recent, but remarkable bioactivities are already reported. Synthetic polymer chains were tailored to achieve (i) high biocide efficiencies, and selectivity for bacteria (Gram-positive/Gram-negative or bacterial/mammalian membranes), (ii) stable and mild encapsulation of viable isolated cells to escape immune systems, (iii) pH-, temperature-, or light-triggered interaction with cells. This review illustrates these recent achievements highlighting the use of abiotic polymers, and compares the major structural determinants that control efficiency of polymers and peptides. Charge density, sp. of cationic and guanidinium side groups, and hydrophobicity (including polarity of stimuli-responsive moieties) guide the design of new copolymers for the handling of cell membranes. While polycationic chains are generally used as biocidal or hemolytic agents, anionic amphiphilic polymers, including Amphipols, are particularly prone to mild permeabilization and/or intracell delivery.
Collapse
|
41
|
Andreev K, Bianchi C, Laursen JS, Citterio L, Hein-Kristensen L, Gram L, Kuzmenko I, Olsen CA, Gidalevitz D. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2492-2502. [PMID: 24878450 DOI: 10.1016/j.bbamem.2014.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/11/2014] [Accepted: 05/19/2014] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide-β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.
Collapse
Affiliation(s)
- Konstantin Andreev
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| | - Christopher Bianchi
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| | - Jonas S Laursen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby (Denmark)
| | - Linda Citterio
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301, DK-2800 Kgs. Lyngby (Denmark)
| | - Line Hein-Kristensen
- , National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800, Kgs Lyngby (Denmark)
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301, DK-2800 Kgs. Lyngby (Denmark)
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (USA)
| | - Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby (Denmark)
| | - David Gidalevitz
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| |
Collapse
|
42
|
Dosselli R, Ruiz-González R, Moret F, Agnolon V, Compagnin C, Mognato M, Sella V, Agut M, Nonell S, Gobbo M, Reddi E. Synthesis, spectroscopic, and photophysical characterization and photosensitizing activity toward prokaryotic and eukaryotic cells of porphyrin-magainin and -buforin conjugates. J Med Chem 2014; 57:1403-15. [PMID: 24456407 DOI: 10.1021/jm401653r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.
Collapse
Affiliation(s)
- Ryan Dosselli
- Department of Biology, University of Padova , via U. Bassi 58/B, I-35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Casellato A, Rossi Paccani S, Barrile R, Bossi F, Ciucchi L, Codolo G, Pizza M, Aricò B, de Bernard M. The C2 fragment from Neisseria meningitidis antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cell Microbiol 2014; 16:925-37. [PMID: 24397470 DOI: 10.1111/cmi.12250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
Neisseria meningitidis is a human pathogen that can cause fatal sepsis and meningitis once it reaches the blood stream and the nervous system. Here we demonstrate that a fragment, released upon proteolysis of the surface-exposed protein Neisserial Heparin Binding Antigen (NHBA), by the bacterial protease NalP, alters the endothelial permeability by inducing the internalization of the adherens junction protein VE-cadherin. We found that C2 rapidly accumulates in mitochondria where it induces the production of reactive oxygen species: the latter are required for the phosphorylation of the junctional protein and for its internalization that, in turn, is responsible for the endothelial leakage. Our data support the notion that the NHBA-derived fragment C2 might contribute to the extensive vascular leakage typically associated with meningococcal sepsis.
Collapse
|