1
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Wei K, He M, Zhang J, Zhao C, Nie C, Zhang T, Liu Y, Chen T, Jiang J, Chu X. A DNA Logic Circuit Equipped with a Biological Amplifier Loaded into Biomimetic ZIF-8 Nanoparticles Enables Accurate Identification of Specific Cancers In Vivo. Angew Chem Int Ed Engl 2023; 62:e202307025. [PMID: 37615278 DOI: 10.1002/anie.202307025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Esmaelpourfarkhani M, Mohammad Danesh N, Ramezani M, Alibolandi M, Khakshour Abdolabadi A, Abnous K, Mohammad Taghdisi S. Split aptamer-based fluorescent biosensor for ultrasensitive detection of cocaine using N-methyl mesoporphyrin IX as fluorophore. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Zhao S, Yu L, Yang S, Tang X, Chang K, Chen M. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. NANOSCALE HORIZONS 2021; 6:298-310. [PMID: 33877218 DOI: 10.1039/d0nh00587h] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA computers are considered one of the most prominent next-generation molecular computers that perform Boolean logic using DNA elements. DNA-based Boolean logic gates, especially DNA strand displacement-based logic gates (SDLGs), have shown tremendous potential in biosensing since they can perform the logic analysis of multi-targets simultaneously. Moreover, SDLG biosensors generate a unique output in the form of YES/NO, which is contrary to the quantitative measurement used in common biosensors. In this review, the recent achievements of SDLG biosensing strategies are summarized. Initially, the development and mechanisms of Boolean logic gates, strand-displacement reaction, and SDLGs are introduced. Afterwards, the diversified input and output of SDLG biosensors are elaborated. Then, the state-of-the-art SDLG biosensors are reviewed in the classification of different signal-amplification methods, such as rolling circle amplification, catalytic hairpin assembly, strand-displacement amplification, DNA molecular machines, and DNAzymes. Most importantly, limitations and future trends are discussed. The technology reviewed here is a promising tool for multi-input analysis and lays a foundation for intelligent diagnostics.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | | | | | | | | | | |
Collapse
|
5
|
Ida J, Kuzuya A, Choong YS, Lim TS. An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection. RSC Adv 2020; 10:33040-33051. [PMID: 35515051 PMCID: PMC9056686 DOI: 10.1039/d0ra05439a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/23/2020] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids have special ability to organize themselves into various non-canonical structures, including a four-stranded DNA structure termed G-quadruplex (G4) that has been utilized for diagnostic and therapeutic applications. Herein, we report the ability of G4 to distinguish dengue virus (DENV) based on its serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) using a split G4-hemin DNAzyme configuration. In this system, two separate G-rich oligonucleotides are brought together upon target DNA strand hybridization to form a three-way junction architecture, allowing the formation of a G4 structure. The G4 formation in complexation with hemin can thus provide a signal readout by generating a DNAzyme that is able to catalyze H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This results in a change of color providing a sensing platform for the colorimetric detection of DENV. In our approach, betaine and dimethyl sulfoxide were utilized for better G4 generation by enhancing the target-probe hybridization. In addition to this serotype-specific assay, a multi-probe cocktail assay, which is an all-in-one assay was also examined for DENV detection. The system highlights the potential of split G-quadruplex configurations for the development of DNA-based detection and serotyping systems in the future.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate, Suita Osaka 564-8680 Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
6
|
Sitte E, Senge MO. The Red Color of Life Transformed - Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European J Org Chem 2020; 2020:3171-3191. [PMID: 32612451 PMCID: PMC7319466 DOI: 10.1002/ejoc.202000074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Protoporphyrin IX (PPIX) is the porphyrin scaffold of heme b, a ubiquitous prosthetic group of proteins responsible for oxygen binding (hemoglobin, myoglobin), electron transfer (cytochrome c) and catalysis (cytochrome P450, catalases, peroxidases). PPIX and its metallated derivatives frequently find application as therapeutic agents, imaging tools, catalysts, sensors and in light harvesting. The vast toolkit of accessible porphyrin functionalization reactions enables easy synthetic modification of PPIX to meet the requirements for its multiple uses. In the past few years, particular interest has arisen in exploiting the interaction of PPIX and its synthetic derivatives with biomolecules such as DNA and heme-binding proteins to evolve molecular devices with new functions as well as to uncover potential therapeutic toeholds. This review strives to shine a light on the most recent developments in the synthetic chemistry of PPIX and its uses in selected fields of chemical biology.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
- Institute for Advanced Study (TUM‐IAS)Technische Universität MünchenLichtenberg‐Str. 2a85748GarchingGermany
| |
Collapse
|
7
|
Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS. G-Quadruplexes as An Alternative Recognition Element in Disease-Related Target Sensing. Molecules 2019; 24:E1079. [PMID: 30893817 PMCID: PMC6471233 DOI: 10.3390/molecules24061079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Jörn Glökler
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
8
|
Fan D, Zhu X, Dong S, Wang E. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements. Chemphyschem 2017; 18:1767-1772. [DOI: 10.1002/cphc.201601291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Xiaoqing Zhu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| |
Collapse
|
9
|
Miao X, Yang C, Leung CH, Ma DL. Application of iridium(III) complex in label-free and non-enzymatic electrochemical detection of hydrogen peroxide based on a novel "on-off-on" switch platform. Sci Rep 2016; 6:25774. [PMID: 27170211 PMCID: PMC4864421 DOI: 10.1038/srep25774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
We herein report a label-free and non-enzymatic electrochemical sensor for the highly sensitive detection of hydrogen peroxide (H2O2) based on a novel "on-off-on" switch system. In our design, MB was used as an electron mediator to accelerate the electron transfer while AuNPs was used to amplify the electrochemical signal due to its excellent biocompatibility and good conductivity. The "switch-off" state was achieved by introducing the guanine-rich capture probe (CP) and an iridium complex onto the electrode surface to form a hydrophobic layer, which then hinders electron transfer. Upon addition of H2O2, fenton reaction occurs and produces OH• in the presence of Fe(2+). The OH• cleaves the CP into DNA fragments, thus resulting in the release of CP and iridium complex from the sensing interface, recovering the electrochemical signal to generate a "switch-on" state. Based on this novel switch system, a detection limit as low as 3.2 pM can be achieved for H2O2 detection. Moreover, satisfactory results were obtained by using this method for the detection of H2O2 in sterilized milk. To the best of our knowledge, this is the first G-quadruplex-based electrochemical sensor using an iridium(III) complex.
Collapse
Affiliation(s)
- Xiangmin Miao
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
10
|
Fan D, Zhu J, Zhai Q, Wang E, Dong S. Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. Chem Commun (Camb) 2016; 52:3766-9. [DOI: 10.1039/c5cc10556k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two fluorescence sensitive substrates of G4 DNAzyme with inverse responses were simultaneously used to a cascade advanced DNA logic device based DNA analysis for the first time.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
11
|
Wang M, Wang W, Kang TS, Leung CH, Ma DL. Development of an Iridium(III) Complex as a G-Quadruplex Probe and Its Application for the G-Quadruplex-Based Luminescent Detection of Picomolar Insulin. Anal Chem 2015; 88:981-7. [DOI: 10.1021/acs.analchem.5b04064] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Modi Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Partner
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
12
|
Ma DL, Wang M, He B, Yang C, Wang W, Leung CH. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19060-19067. [PMID: 26284502 DOI: 10.1021/acsami.5b05861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University , Hong Kong, China
| | - Modi Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| |
Collapse
|
13
|
Zhu J, Zhang L, Dong S, Wang E. How to split a G-quadruplex for DNA detection: new insight into the formation of DNA split G-quadruplex. Chem Sci 2015; 6:4822-4827. [PMID: 29142717 PMCID: PMC5667574 DOI: 10.1039/c5sc01287b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/31/2015] [Indexed: 01/30/2023] Open
Abstract
Here, we get a new insight into the formation of a split G-quadruplex from the viewpoints of the split mode and guanine base number. An unusual result is that the split mode 4 : 8 performed best in six split modes, including the frequently used mode 1 : 3 and 2 : 2 in the split G-quadruplex enhanced fluorescence assay. Circular dichroism spectra verified the conclusion. The application of the split G-quadruplex based assay in DNA detection was performed on the point mutations of the JAK2 V617F and HBB genes. A multi-target analysis method based on a pool of G-segments split from T30695 (GGGTGGGTGGGTGGGT) by the magic "law of 4 : 8" was established.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Libing Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| |
Collapse
|
14
|
Recent Developments in G-Quadruplex Probes. ACTA ACUST UNITED AC 2015; 22:812-28. [DOI: 10.1016/j.chembiol.2015.06.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
|
15
|
Kan Y, Jiang C, Xi Q, Wang X, Peng L, Jiang J, Yu R. A simple, sensitive colorimetric assay for coralyne based on target induced split G-quadruplex formation. ANAL SCI 2015; 30:561-8. [PMID: 24813954 DOI: 10.2116/analsci.30.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The screening of potential drugs specifically binding to polydeoxyadenosine (poly(dA)) has been of great interest in recent studies. We have developed a simple colorimetric strategy through the mechanism of target induced split G-quadruplex formation for detecting coralyne, a poly(dA)-binding drug with noticeable antitumor activity. Two DNA oligonucleotides containing a split G-quadruplex sequence and an adenine-rich sequence are used in our strategy. In the presence of coralyne, the adenine-rich sequences of two oligonucleotides are drawn into close proximity, resulting in the formation of a split G-quadruplex DNAzyme that catalyzes the generation of a colored product. The DNAzyme-based colorimetric assay for coralyne has a linear range of from 0.033 to 1.667 μM with a low detection limit of 16 nM. The developed method is simple, cost-effective and visible; it holds great potential for applications in drug screening.
Collapse
Affiliation(s)
- Yingya Kan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | | | | | | | | | | | | |
Collapse
|
16
|
Ren J, Wang T, Wang E, Wang J. Versatile G-quadruplex-mediated strategies in label-free biosensors and logic systems. Analyst 2015; 140:2556-72. [DOI: 10.1039/c4an02282c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review addresses how G-quadruplex (G4)-mediated biosensors convert the events of target recognition into a measurable physical signal. The application of label-free G4-strategies in the construction of logic systems is also discussed.
Collapse
Affiliation(s)
- Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Tianshu Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
17
|
Chen Y, Song Y, Wu F, Liu W, Fu B, Feng B, Zhou X. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chem Commun (Camb) 2015; 51:6980-3. [DOI: 10.1039/c5cc01389e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy.
Collapse
Affiliation(s)
- Yuqi Chen
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Yanyan Song
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Wenting Liu
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Boshi Fu
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Bingkun Feng
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences
- Institute of Advanced Studies
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
18
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014; 54:446-50. [DOI: 10.1002/anie.201408334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/27/2014] [Indexed: 12/19/2022]
|
19
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Ma DL, Lin S, Leung KH, Zhong HJ, Liu LJ, Chan DSH, Bourdoncle A, Mergny JL, Wang HMD, Leung CH. An oligonucleotide-based label-free luminescent switch-on probe for RNA detection utilizing a G-quadruplex-selective iridium(III) complex. NANOSCALE 2014; 6:8489-8494. [PMID: 24816304 DOI: 10.1039/c4nr00541d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(iii) complex for the construction of an oligonucleotide-based, label-free, rapid and convenient luminescent RNA detection platform.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu J, Zhang L, Zhou Z, Dong S, Wang E. Molecular aptamer beacon tuned DNA strand displacement to transform small molecules into DNA logic outputs. Chem Commun (Camb) 2014; 50:3321-3. [PMID: 24531570 DOI: 10.1039/c3cc49833f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular aptamer beacon tuned DNA strand displacement reaction was introduced in this work. This strand displacement mode can be used to transform the adenosine triphosphate (ATP) input into a DNA strand output signal for the downstream gates to process. A simple logic circuit was built on the basis of this mechanism.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | |
Collapse
|
22
|
Zhu J, Zhang L, Zhou Z, Dong S, Wang E. Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal Chem 2013; 86:312-6. [PMID: 24308699 DOI: 10.1021/ac403235y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We proposed a new three-way DNA junction-driven strand displacement mode and fabricated an aptamer-based label-free fluorescent sensing platform on the basis of this mechanism. Assembling the aptamer sequence into the three-way DNA junction makes the platform sensitive to the target of the aptamer. A label-free signal readout method, split G-quadruplex enhanced fluorescence of protoporphyrin IX (PPIX), was used to report the final signal. Here, adenosine triphosphatase (ATP) was taken as a model and detected through this approach, and DNA strand could also be detected by it. The mechanism was investigated by native polyacrylamide gel electrophoresis. Furthermore, on the basis of this molecular platform, we built a logic circuit with ATP and DNA strands as input. Aptamer played an important role in mediating the small molecule ATP to tune the DNA logic gate. Through altering the aptamer sequence, this molecular platform will be sensitive to various stimuli and applied in a wide field.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Zhu J, Zhang L, Dong S, Wang E. Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS NANO 2013; 7:10211-10217. [PMID: 24134127 DOI: 10.1021/nn4044854] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We introduced a four-way DNA junction-driven toehold-mediated strand displacement method. Separation of the different functional domains on different strands in the four-way junction structure and usage of glue strand to recombine them for different logic gates make the design more flexible. On the basis of this mechanism, a majority logic circuit fabricated by DNA strands was designed and constructed by assembling three AND gates and one OR gate together. The output strand drew the G-rich segments together to form a split G-quadruplex, which could specifically bind PPIX and enhance its fluorescence. Just like a poll with three voters, the high fluorescence signal would be given off only when two or three voters vote in favor. Upon slight modification, the majority circuit was utilized to select the composite number from 0 to 9 represented by excess-three code. It is a successful attempt to integrate the logic gates into a circuit and to achieve desired functions.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| | | | | | | |
Collapse
|
24
|
Ai J, Xu Y, Lou B, Li D, Wang E. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta 2013; 118:54-60. [PMID: 24274270 DOI: 10.1016/j.talanta.2013.09.062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Herein, one multifunctional AS1411-functionalized fluorescent gold nanoparticles (named NAANPs) is synthesized and successfully applied for both targeted cancer cell imaging and efficient photodynamic therapy (PDT). The NAANPs are obtained by functionalizing the gold nanoparticles with AS1411 aptamer and then bound with one porphyrin derivative N-methylmesoporphyrin IX (NMM). Using HeLa cells over expressing nucleolin as representative cancer cells, the formed NAANPs can target to the cell surface via the specific AS1411-nucleolin interaction, which can discriminate the cancer cells from normal ones (e.g. HEK293) unambiguously. That the fluorescence intensity of NMM increased significantly upon binding to AS1411 G-quadruplex makes the NAANPs appropriate fluorescence reagent for cell imaging. Meanwhile, NMM can also be used as a photosensitizer, thus irradiation of the NAANPs by the white light from a common electric torch can lead to efficient production of cytotoxic reactive oxygen species for establishing a new type of PDT to cancer cells. Gold nanoparticles play the roles of both carrier and enhancer of the functional groups onto the cells. In addition, they not only possess inherently certain cytotoxicity to the cancer cells, but also boost the cellular uptake of the fluorescent groups. As a result, the efficiency of both the targeted cell imaging and PDT could be ensured.
Collapse
Affiliation(s)
- Jun Ai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
25
|
Zhu J, Yang X, Zhang L, Zhang L, Lou B, Dong S, Wang E. A visible multi-digit DNA keypad lock based on split G-quadruplex DNAzyme and silver microspheres. Chem Commun (Camb) 2013; 49:5459-61. [PMID: 23665889 DOI: 10.1039/c3cc42028k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel visible multi-digit DNA keypad lock system was fabricated based on split G-quadruplex DNAzyme and silver microspheres. The final result of the keypad lock can be easily recognized by the naked eye and the number of inputs for the keypad lock can be flexibly adjusted. This molecular platform showed excellent scalability and flexibility.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhu J, Zhang L, Li T, Dong S, Wang E. Enzyme-free unlabeled DNA logic circuits based on toehold-mediated strand displacement and split G-quadruplex enhanced fluorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2440-4. [PMID: 23447454 DOI: 10.1002/adma.201205360] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Indexed: 05/14/2023]
Abstract
Adopting fluorescence of PPIX enhanced by a split G-quadruplex and toehold mediated strand displacement reaction, a series of unlabeled fluorescent logic gates is set up and some of them are cascaded into circuits. Controlled release of PPIX, which is also a photosensitizer in photodynamic diagnosis and therapy, is realized by this circuit, making it a wise choice for DNA computing.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P R China
| | | | | | | | | |
Collapse
|
27
|
He HZ, Chan DSH, Leung CH, Ma DL. G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res 2013; 41:4345-59. [PMID: 23435319 PMCID: PMC3632106 DOI: 10.1093/nar/gkt108] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 01/06/2023] Open
Abstract
G-quadruplexes represent a versatile sensing platform for the construction of label-free molecular detection assays owing to their diverse structures that can be selectively recognized by G-quadruplex-specific luminescent probes. In this Survey and Summary, we highlight recent examples of the application of the label-free strategy for the development of G-quadruplex-based luminescent detection platforms with a view towards the potential application of tetraplex structures in the design of DNA logic gates.
Collapse
Affiliation(s)
- Hong-Zhang He
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chung-Hang Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
28
|
Ma DL, He HZ, Chan DSH, Leung CH. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem Sci 2013. [DOI: 10.1039/c3sc50924a] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|