1
|
Tharappel AM, Li Z, Li H. Effect of insertion of intein to Cryptococcus amylolentus, a nonpathogenic fungus closely related to causative agents of cryptococcosis. Microb Pathog 2025; 199:107267. [PMID: 39736341 PMCID: PMC11863799 DOI: 10.1016/j.micpath.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Inteins are mobile elements within a host protein, with flanking exteins. Autocleavage of intein results in the fusion of exteins, leading to activation of protein. The presence of intein is species dependent. Pathogenic fungi Cryptococcus neoformans (Cne) and C. gattii (Cga) contain inteins in their inactive Prp8 protein precursor, whereas closely related nonpathogenic C. amylolentus (Cam) lacks inteins. Handling pathogenic fungi requires additional safety requirements. Studies on nonpathogenic but closely related fungal strains can expedite research on the role of inteins and potential changes in virulence or pathology. In this report, we have genetically modified and characterized Cam to possess intein (Cam-int). First, we inserted a selection marker into the Prp8 intein of Cne using an MIG vector and tested intein splicing efficiency in E. coli. The intein-selection marker fragment was then integrated into the prp8 gene of Cam, demonstrating in vivo splicing within Cam without affecting certain virulence factors. Intein splicing inhibitors, cisplatin and 6G-318S, showed increased sensitivity to Cam-int compared to the wild-type strain without the intein. This Cam-int fungal strain can serve as a valuable tool for further studying the role of inteins and holds potential for screening intein splicing inhibitors.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA.
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA; Biological Chemistry Program, Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, 85721, USA; Department of Molecular & Cellular Biology, College of Science, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Chen Y, Wang C, Qi M, Wei Y, Jiang H, Du Z. Molecular targets of cisplatin in HeLa cells explored through competitive activity-based protein profiling strategy. J Inorg Biochem 2024; 254:112518. [PMID: 38460483 DOI: 10.1016/j.jinorgbio.2024.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Cisplatin is widely used as anticancer drugs, and DNA is considered as the main target. Considering its high affinity towards cysteines and the important role of cystine containing proteins, we applied a competitive activity-based protein profiling strategy to identify protein cysteines that bind with cisplatin in HeLa cells. Living cells were treated with cisplatin at cytotoxic concentrations, then the protein was extracted. After labeling with desthiobiotin iodoacetamide (DBIA) probe, protein was precipitated, digested and isotopically labeled, subsequently the peptides were combined, and the biotinylated cysteine-containing peptides were enriched and quantified by LC-MS/MS. A total of 3571 peptides which originated from 1871 proteins were identified using the DBIA probe. Among them, 46 proteins were screened as targets, including proteins that have been identified as binding proteins by previous study. A novel cisplatin target, calpain-1 (CAPN1), was identified and validated as binding with cisplatin in vitro.
Collapse
Affiliation(s)
- Yi Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Galuppo C, Gomes de Oliveira Junior A, Dos Santos Oliveira L, de Souza Guarda PH, Buffon R, Abbehausen C. Reactivity of Ni II, Pd II and Pt II complexes bearing phosphine ligands towards Zn II displacement and hydrolysis in Cis 2His 2 and Cis 3His zinc-fingers domains. J Inorg Biochem 2023; 240:112117. [PMID: 36635196 DOI: 10.1016/j.jinorgbio.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
A systematic study of the effect of phosphine and bis-phosphine ligands in the interaction of NiII, PdII, and PtII complexes with two classes of zinc fingers was performed. The Cys2His2, finger 3 of specific protein-1, and the Cys2HisCys C-terminal zinc finger of nucleocapsid protein 7 of the HIV-1 were used as models of the respective class. In general, phosphine ligands favor the metal binding to the peptide, although the bis-phosphine ligands produce more specific binding than the monodentate. In the case of nickel complexes, the interaction of NiII ions with the sequence SKH, present in Cys2His2, results in hydrolysis, contrasting to the preferred zinc ejection produced by the NiII complexes with chelating phosphines, producing Ni(bis-phosphine) fingers. In the absence of the SKH sequence, zinc ejection is observed with the formation of nickel fingers, with reactivity dependent on the phosphine. On the other hand, Pd(phosphines) produces Pd2 fingers in the case of triphenylphosphine with the phosphine coordinated as intermediate species. The bis-phosphine ligands produce very clean spectra and a stable signal Pd(bis-phosphine)finger. Interestingly, phosphines produce very reactive platinum complexes, which eject zinc and promote peptide hydrolysis. The results reported here are relevant to the understanding of the mechanism of these interactions and how to modulate metallocompounds for zinc finger interference.
Collapse
Affiliation(s)
- Carolina Galuppo
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Laiane Dos Santos Oliveira
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Regina Buffon
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Shi Y, Tian H, Xia Y, Sun Y, Zhou Z, Ren Y, Shi T, Liu Z, Ma G. Deciphering the reaction mechanism and the reactivity of the TCEP species towards reduction of hexachloroiridate(IV). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Tharappel AM, Li Z, Li H. Inteins as Drug Targets and Therapeutic Tools. Front Mol Biosci 2022; 9:821146. [PMID: 35211511 PMCID: PMC8861304 DOI: 10.3389/fmolb.2022.821146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant pathogens are of significant concern in recent years. Hence new antifungal and anti-bacterial drug targets are urgently needed before the situation goes beyond control. Inteins are polypeptides that self-splice from exteins without the need for cofactors or external energy, resulting in joining of extein fragments. Inteins are present in many organisms, including human pathogens such as Mycobacterium tuberculosis, Cryptococcus neoformans, C. gattii, and Aspergillus fumigatus. Because intein elements are not present in human genes, they are attractive drug targets to develop antifungals and antibiotics. Thus far, a few inhibitors of intein splicing have been reported. Metal-ions such as Zn2+ and Cu2+, and platinum-containing compound cisplatin inhibit intein splicing in M. tuberculosis and C. neoformans by binding to the active site cysteines. A small-molecule inhibitor 6G-318S and its derivative 6G-319S are found to inhibit intein splicing in C. neoformans and C. gattii with a MIC in nanomolar concentrations. Inteins have also been used in many other applications. Intein can be used in activating a protein inside a cell using small molecules. Moreover, split intein can be used to deliver large genes in experimental gene therapy and to kill selected species in a mixed population of microbes by taking advantage of the toxin-antitoxin system. Furthermore, split inteins are used in synthesizing cyclic peptides and in developing cell culture model to study infectious viruses including SARS-CoV-2 in the biosafety level (BSL) 2 facility. This mini-review discusses the recent research developments of inteins in drug discovery and therapeutic research.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Hongmin Li,
| |
Collapse
|
7
|
Tao J, Jia S, Wang M, Huang Z, Wang B, Zhang W, Wei Y, Li W, Jiang H, Du Z. Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method. J Proteome Res 2021; 20:4553-4565. [PMID: 34427088 DOI: 10.1021/acs.jproteome.1c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cisplatin is widely used for the treatment of various solid tumors. It is mainly administered by intravenous injection, and a substantial amount of the drug will bind to plasma proteins, a feature that is closely related to its pharmacokinetics, activity, toxicity, and side effects. However, due to the unique properties of platinum complexes and the complexity of the blood proteome, existing methods cannot systematically identify the binding proteome of cisplatin in blood. In this study, high-abundance protein separation and an ion mobility mass spectrometry-based 4D proteomic method were combined to systematically and comprehensively identify the binding proteins of cisplatin in blood. The characteristic isotope patterns of platinated peptides and a similarity algorithm were utilized to eliminate false-positive identification. Finally, 39 proteins were found to be platinated. Bioinformatics analysis showed that the identified proteins were mainly involved in the complement and coagulation cascade pathways. The binding ratio of some peptides with cisplatin was measured based on the area ratio of the free peptide using the parallel reaction monitoring method. This study provides a new method for systematically identifying binding proteins of metal drugs in blood, and the identified proteins might be helpful for understanding the toxicity of platinum anticancer drugs.
Collapse
Affiliation(s)
- Jianmei Tao
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Shuailong Jia
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430030, Hubei Province, PR China
| | - Meiqin Wang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Zhuobin Huang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Bo Wang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Wenwen Zhang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Yinyu Wei
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Wenzhuo Li
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Hongliang Jiang
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| | - Zhifeng Du
- School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei Province, PR China
| |
Collapse
|
8
|
de Paiva REF, Peterson EJ, Du Z, Farrell NP. The leaving group in Au(I)-phosphine compounds dictates cytotoxic pathways in CEM leukemia cells and reactivity towards a Cys 2His 2 model zinc finger. Dalton Trans 2021; 49:16319-16328. [PMID: 32432260 DOI: 10.1039/d0dt01136c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i)-phosphine "auranofin-like" compounds have been extensively explored as anticancer agents in the past decade. Although potent cytotoxic agents, the lack of selectivity towards tumorigenic vs. non-tumorigenic cell lines often hinders further application. Here we explore the cytotoxic effects of a series of (R3P)AuL compounds, evaluating both the effect of the basicity and bulkiness of the carrier phosphine (R = Et or Cy), and the leaving group L (Cl-vs. dmap). [Au(dmap)(Et3P)]+ had an IC50 of 0.32 μM against the CEM cell line, with good selectivity in relation to HUVEC. Flow cytometry indicates reduced G1 population and slight accumulation in G2, as opposed to auranofin, which induces a high population of cells with fragmented DNA. Protein expression profile sets [Au(dmap)(Et3P)]+ further apart from auranofin, with proteolytic degradation of caspase-3 and poly(ADP-ribose)-polymerase (PARP), DNA strand-break induced phosphorylation of Chk2 Thr68 and increased p53 ser15 phosphorylation. The cytoxicity and observable biological effects correlate directly with the reactivity trend observed when using the series of gold(i)-phosphine compounds for targeting a model zinc finger, Sp1 ZnF3.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP 05508-000, Brazil.
| | | | | | | |
Collapse
|
9
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
10
|
Saqib M, Bashir S, Li H, Wang S, Jin Y. Lucigenin-Tris(2-carboxyethyl)phosphine Chemiluminescence for Selective and Sensitive Detection of TCEP, Superoxide Dismutase, Mercury(II), and Dopamine. Anal Chem 2019; 91:3070-3077. [DOI: 10.1021/acs.analchem.8b05486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Shahida Bashir
- Faculty of Science, Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - ShanShan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
11
|
Bui MN, Brockgreitens J, Abbas A. Gold Nanoplate-Enhanced Chemiluminescence and Macromolecular Shielding for Rapid Microbial Diagnostics. Adv Healthc Mater 2018; 7:e1701506. [PMID: 29611632 DOI: 10.1002/adhm.201701506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Indexed: 11/09/2022]
Abstract
With the global rise of antimicrobial resistance, rapid screening and identification of low concentrations of microorganisms in less than 1 h becomes an urgent technological need for evidence-based antibiotic therapy. Although many commercially available techniques are labeled for rapid microbial detection, they often require 24-48 h of cell enrichment to reach detectable levels. Here, it is shown that the widely used reducing agent tris(2-carboxyethyl)phosphine (TCEP) can also act as a powerful oxidant on gold nanoplates and subsequently lead to a strong catalysis of luminol chemiluminescence. The catalytic reaction results in up to 100-fold signal enhancement and unprecedented stable luminescence for up to 10 min. However, when TCEP is exposed to microorganisms, it is oxidized by the microbial surface proteins and loses its catalytic properties, leading to a decrease in chemiluminescence. The competitive interaction of TCEP with Au nanoplates and microorganisms is used to introduce a homogenous rapid detection method that allows microbial screening in less than 10 min with a limit of detection down to 100 cfu mL-1 . Furthermore, the concept of microbial macromolecular shielding using antibody-conjugated polymers is introduced. The combination of TCEP redox activity and macromolecular shielding enables specific microbial identification within 1 h, without preconcentration, cell enrichment, or heavy equipment other than a hand-held luminometer. The technique is demonstrated by specific detection of methicillin-resistant Staphylococcus aureus in environmental and urine samples containing a mixture of microorganisms.
Collapse
Affiliation(s)
- Minh‐Phuong Ngoc Bui
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
| | - John Brockgreitens
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
- Department of Bioproducts and Biosystems Engineering 2004 Folwell Avenue Saint Paul MN 5511 USA
| |
Collapse
|
12
|
Linear gold(I) complex with tris-(2-carboxyethyl)phosphine (TCEP): Selective antitumor activity and inertness toward sulfur proteins. J Inorg Biochem 2018; 186:104-115. [PMID: 29885553 DOI: 10.1016/j.jinorgbio.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-β-lactamase and metallo-β-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-β-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.
Collapse
|
13
|
Yuan S, Ding X, Cui Y, Wei K, Zheng Y, Liu Y. Cisplatin Preferentially Binds to Zinc Finger Proteins Containing C3H1 or C4 Motifs. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siming Yuan
- CAS High Magnetic Field Laboratory; Department of Chemistry; 230026 Hefei Anhui P. R. China
| | - Xin Ding
- CAS High Magnetic Field Laboratory; Department of Chemistry; 230026 Hefei Anhui P. R. China
| | - Yang Cui
- CAS High Magnetic Field Laboratory; Department of Chemistry; 230026 Hefei Anhui P. R. China
| | - Kaiju Wei
- CAS High Magnetic Field Laboratory; Department of Chemistry; 230026 Hefei Anhui P. R. China
| | - Yuchuan Zheng
- Department of Chemistry; Huangshan University; 245041 Huangshan Anhui P. R. China
| | - Yangzhong Liu
- CAS High Magnetic Field Laboratory; Department of Chemistry; 230026 Hefei Anhui P. R. China
| |
Collapse
|
14
|
Shu T, Wang J, Su L, Zhang X. Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine. Anal Chem 2016; 88:11193-11198. [DOI: 10.1021/acs.analchem.6b03418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tong Shu
- Research
Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxing Wang
- Research
Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Su
- Research
Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueji Zhang
- Research
Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
15
|
Pruchnik H, Latocha M, Zielińska A, Pruchnik FP. Rhodium(III) and iridium(III) pentamethylcyclopentadienyl complexes with tris(2-carboxyethyl)phosphine, properties and cytostatic activity. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Chan H, Pearson CS, Green CM, Li Z, Zhang J, Belfort G, Shekhtman A, Li H, Belfort M. Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy. J Biol Chem 2016; 291:22661-22670. [PMID: 27609519 DOI: 10.1074/jbc.m116.747824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/29/2016] [Indexed: 01/10/2023] Open
Abstract
Inteins, self-splicing protein elements, interrupt genes and proteins in many microbes, including the human pathogen Mycobacterium tuberculosis Using conserved catalytic nucleophiles at their N- and C-terminal splice junctions, inteins are able to excise out of precursor polypeptides. The splicing of the intein in the mycobacterial recombinase RecA is specifically inhibited by the widely used cancer therapeutic cisplatin, cis-[Pt(NH3)2Cl2], and this compound inhibits mycobacterial growth. Mass spectrometric and crystallographic studies of Pt(II) binding to the RecA intein revealed a complex in which two platinum atoms bind at N- and C-terminal catalytic cysteine residues. Kinetic analyses of NMR spectroscopic data support a two-step binding mechanism in which a Pt(II) first rapidly interacts reversibly at the N terminus followed by a slower, first order irreversible binding event involving both the N and C termini. Notably, the ligands of Pt(II) compounds that are required for chemotherapeutic efficacy and toxicity are no longer bound to the metal atom in the intein adduct. The lack of ammine ligands and need for phosphine represent a springboard for future design of platinum-based compounds targeting inteins. Because the intein splicing mechanism is conserved across a range of pathogenic microbes, developing these drugs could lead to novel, broad range antimicrobial agents.
Collapse
Affiliation(s)
- Hon Chan
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - C Seth Pearson
- From the Department of Biological Sciences and RNA Institute and.,Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Cathleen M Green
- From the Department of Biological Sciences and RNA Institute and
| | - Zhong Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Jing Zhang
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alex Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222
| | - Hongmin Li
- Laboratory of Computational and Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and.,Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute and
| |
Collapse
|
17
|
Du Z, de Paiva REF, Qu Y, Farrell N. Tuning the reactivity of Sp1 zinc fingers with platinum complexes. Dalton Trans 2016; 45:8712-6. [PMID: 27171123 DOI: 10.1039/c6dt01128d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
cis-DDP presents reactivity towards the transcription factor Sp1-F3, as opposed to previous observations for Sp1-F2. Replacing the ammine ligands with the chelating ethylenediamine increases the reactivity giving a unique dinuclear {Pt(en)}2-bis(cysteine)-bridged product, confirmed by study of the binding sequence ACPECP.
Collapse
Affiliation(s)
- Zhifeng Du
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | | | | | |
Collapse
|
18
|
|
19
|
Pruchnik H, Lis T, Latocha M, Zielińska A, Pruchnik FP. Palladium(II) complexes with tris(2-carboxyethyl)phosphine, structure, reactions and cytostatic activity. J Inorg Biochem 2016; 156:14-21. [DOI: 10.1016/j.jinorgbio.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/25/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
20
|
Platinum(II) complexes with tris(2-carboxyethyl)phosphine, X-ray structure and reactions with polar solvents and glutathione. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.05.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Zhang N, Du Y, Cui M, Liu Z, Liu S. Comprehensive identification of the binding sites of cisplatin in hen egg white lysozyme. Anal Bioanal Chem 2014; 406:3537-49. [PMID: 24748452 DOI: 10.1007/s00216-014-7775-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 01/19/2023]
Abstract
Platinum drugs have become one of the most important kinds of chemotherapy agents, and the interactions of these drugs with proteins play very important roles in their side effects and drug resistance. However, it is still a challenge to determine the binding sites of platinum drugs in proteins with multiple disulfide bonds and stable three-dimensional structures using mass spectrometry. Here, the interaction between cisplatin and hen egg white lysozyme (HEWL), a multi-disulfide-bond-containing protein with a stable three-dimensional structure, was investigated using Fourier transform ion cyclotron resonance mass spectrometry. Typical disulfide bond reduction with dithiothreitol/tris(2-carboxyethyl)phosphine before trypsin digestion destroyed the binding of cisplatin to HEWL, and no platination sites were found. Efficient trypsin digestion methods for HEWL-cisplatin adducts were developed to avoid the loss of platinum binding to protein. At 55 °C, platinated HEWL was digested directly by trypsin in 6 h, and multiple platinated peptides were observed. In 60% acetonitrile, the digestion time of platinated HEWL was shortened to 2 h, and most of the platinated peptides were observed. In addition, the reduction of the disulfide bonds of HEWL greatly accelerated the reaction between HEWL and cisplatin, and the potential binding sites of cisplatin in reduced HEWL could be easily recognized. On the basis of the above-mentioned methods, multiple binding sites of cisplatin in HEWL were first identified by mass spectrometry.
Collapse
Affiliation(s)
- Ningbo Zhang
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | | | | | | | | |
Collapse
|
22
|
Zhang N, Cui M, Du Y, Liu Z, Liu S. Exploring the interaction of cisplatin with β2-microglobulin: new insights into a chemotherapeutic drug. RSC Adv 2014. [DOI: 10.1039/c3ra44096f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
|
24
|
TCEP-based rSDS–PAGE AND nLC–ESI-LTQ-MS/MS for oxaliplatin metalloproteomic analysis. Talanta 2013; 116:581-92. [DOI: 10.1016/j.talanta.2013.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
|
25
|
Wang E, Xi Z, Li Y, Li L, Zhao L, Ma G, Liu Y. Interaction between Platinum Complexes and the C-Terminal Motif of Human Copper Transporter 1. Inorg Chem 2013; 52:6153-9. [DOI: 10.1021/ic400495w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Erqiong Wang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry
and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Zhaoyong Xi
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry
and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Linhong Zhao
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry
and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Guolin Ma
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry
and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry
and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, China
| |
Collapse
|