1
|
López R, Suárez D. Pyrolytic conversion of glucose into hydroxymethylfurfural and furfural: Benchmark quantum-chemical calculations. J Comput Chem 2024; 45:2991-3003. [PMID: 39252435 DOI: 10.1002/jcc.27503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Quantum chemical methods have been intensively applied to study the pyrolytic conversion of glucose into hydroxymethylfurfural (HMF) and furfural (FF). Herein, we collect the most relevant mechanistic proposals from the recent literature and organize them into a single reaction network. All the transition structures (TSs) and intermediates are characterized using highly accurate ab initio methods and the possible reaction pathways are assessed in terms of the Gibbs energies of the TSs and intermediates with respect to β-glucopyranose, selecting a 2D ideal-gas standard state at 773 K to represent the pyrolysis conditions. Several pathways can lead to the formation of both HMF and FF passing through rate-determining TSs that have ΔG‡ values of ~49-50 kcal/mol. Both water-assisted mechanisms and nonspecific environmental effects have a minor impact on the Gibbs energy profiles. We find that the HMF → FF + CH2O fragmentation has a small ΔrxnG value and an accessible ΔG‡ barrier. Our computational results, which are in consonance with the kinetic parameters derived from lumped models, the results of isotopic labeling experiments and the reported HMF/FF molecular ratios, could be useful for modeling studies including on nonequilibrium kinetic effects that may render more information about product yields and the relevance of the various pathways.
Collapse
Affiliation(s)
- Roberto López
- Departamento de Química y Física Aplicadas, Universidad de León, León, Spain
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
3
|
Zhu H, Guo X, Si Y, Du Q, Cheng Y, Wang L, Li X. Insights into pathways and solvent effects of fructose dehydration to 5-hydroxymethylfurfural in acetone-water solvent. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kar AK, Srivastava R. Improving the Glucose to Fructose Isomerization via Epitaxial‐Grafting of Niobium in UIO‐66 framework. ChemCatChem 2022. [DOI: 10.1002/cctc.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Rajendra Srivastava
- Indian Institute of Technology Ropar Chemistry Nangal RoadRupnagar 140001 Rupnagar INDIA
| |
Collapse
|
5
|
Shan H, Li L, Bai W, Liu L. Evolution Process of Humins Derived from Glucose. ChemistrySelect 2022. [DOI: 10.1002/slct.202201237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haozhe Shan
- Dalian University of Technology Dalian 116024 China
| | - Lei Li
- Dalian University of Technology Dalian 116024 China
| | - Wei Bai
- Dalian University of Technology Dalian 116024 China
| | - Li Liu
- Inner Mongolia University Hohhot 010020 China
| |
Collapse
|
6
|
Sadiq U, Gill H, Chandrapala J. Temperature and pH Stability of Anthraquinones from Native Aloe vera Gel, Spray-Dried and Freeze-Dried Aloe vera Powders during Storage. Foods 2022; 11:foods11111613. [PMID: 35681363 PMCID: PMC9180388 DOI: 10.3390/foods11111613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
The present study explored the stability of extracted anthraquinones (aloin, aloe-emodin and rhein) from whole-leaf Aloe vera gel (WLAG), its freeze-dried powder (FDP) and spray-dried powder (SDP) under varying pH and temperature conditions during storage. Each anthraquinone behaved differently under different processing parameters. The amount of anthraquinones present in the gel was higher than in FDP and SDP. The aloin contents decreased by more than 50% at 50 °C and 70 °C, while at 25 °C and 4 °C, the decrease was moderate. A substantial reduction in aloin concentration was noticed at pH 6.7, whereas it remained unaffected at pH 3.5. The temperature and pH had no significant effect on the stability of aloe-emodin. Interestingly, a small quantity of rhein was detected during storage due to the oxidative degradation of aloin into aloe-emodin and rhein. These findings can provide significant insight into retaining anthraquinones during processing while developing functional foods and nutraceuticals to obtain maximum health benefits.
Collapse
|
7
|
Abstract
The presence of inorganic salts either as part of the substrate or added to the reaction medium are known to significantly affect the reaction pathways during hydrothermal carbonisation (HTC) of biomass. This work aims to understand the influence of salts on hydrothermal carbonisation by processing cellulose in the presence of one or more inorganic salts with different valency. Batch experiments and Differential Scanning Calorimetry were used to investigate the change in reaction pathways during hydrothermal conversion. The effect of salts on the rate of HTC of cellulose can be correlated with the Lewis acidity of the cation and the basicity of the anion. The effect of the anion was more pH-dependent than the cation because it can protonate during the HTC process as organic acids are produced. The introduction of salts with Lewis acidity increases the concentration of low molecular weight compounds in the process water. The addition of a second salt can influence the catalytic effect of the first salt resulting in greater levulinic acid yields at the expense of hydrochar formation. Salts also play an important role in cellulose dissolution and can be used to modify the yield and composition of the hydrochars.
Collapse
|
8
|
Divya PS, Nair S, Kunnikuruvan S. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions. Chemphyschem 2022; 23:e202200057. [PMID: 35285118 DOI: 10.1002/cphc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.
Collapse
Affiliation(s)
- P S Divya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Swetha Nair
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Sooraj Kunnikuruvan
- IISER Thiruvananthapuram: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala PO, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
9
|
Modugno P, Titirici MM. Influence of Reaction Conditions on Hydrothermal Carbonization of Fructose. CHEMSUSCHEM 2021; 14:5271-5282. [PMID: 34542237 DOI: 10.1002/cssc.202101348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonization is a powerful way to convert cellulosic waste into valuable platform chemicals and carbonaceous materials. In this study, to optimize the process, fructose was chosen as the carbon precursor and the influence of reaction time, acid catalysis, feed gas and pressure on the conversion products is evaluated. 5-hydroxymethylfurfural (HMF) is produced in high amounts in relatively short time. Both strong and weak acids accelerate fructose conversion. Levulinic acid (LevA) formation is faster than that of hydrothermal (HT) carbon in acidic conditions. Strong acid catalysts should be considered to target preferentially LevA production, whereas milder conditions should be preferred for HMF production. Moreover, a slight initial overpressure of the reactor is always beneficial in terms of conversion. FT-IR and 13 C ss-NMR spectroscopy and SEM showed that HT carbon evolves through time from a furanic-based structure with alkylic linkers to an increasingly cross-linked condensed structure. MALDI-ToF mass spectrometry showed the existence of a series of oligomers in a mass range within 650 Da and 1500 Da formed by condensation of repeating units.
Collapse
Affiliation(s)
- Pierpaolo Modugno
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E14NS, London, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SE7 2AZ, London, UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aobaku, 980-8577, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Yıldırım A, Kaya Y, Göker M. Screening of simple carbohydrates as a renewable organocatalyst for the efficient construction of 1,3-benzoxazine scaffold. Carbohydr Res 2021; 510:108458. [PMID: 34634551 DOI: 10.1016/j.carres.2021.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
A convenient protocol for the two component preparation of 1,3-benzoxazines by using several protected and unprotected carbohydrate molecules as organocatalysts have been developed which is broadly applicable to condensation reaction between variety of Mannich bases and paraformaldehyde. This study revealed that fructose have much higher catalytic activity than the other carbohydrates and can be an alternative to metal-containing catalysts as a green renewable organocatalyst for efficient and rapid construction of 1,3-benzoxazine skeleton. In this context, 21 benzoxazine compounds were successfully synthesized and spectral characterizations of these compounds were carried out by spectroscopic methods and elemental analysis. Furthermore, density functional theory (DFT) calculations have been performed to study the detailed mechanism of organocatalyst assisted synthesis of the benzoxazine monomers. The results obtained from these calculations showed that the more realistic reaction pathway involves formation of a phenolate based intermediate which loses a water molecule to form benzenaminium ion. Subsequently, this ion provides the formation of the corresponding benzoxazines with good yields through the intramolecular ring closure step.
Collapse
Affiliation(s)
- Ayhan Yıldırım
- Department of Chemistry, Faculty of Arts and Sciences, Bursa Uludağ University, P. O. Box 16059, Bursa, Turkey.
| | - Yunus Kaya
- Department of Chemistry, Faculty of Natural Sciences, Architecture and Engineering, Bursa Technical University, Bursa, 16310, Turkey
| | - Mustafa Göker
- Department of Chemistry, Faculty of Arts and Sciences, Bursa Uludağ University, P. O. Box 16059, Bursa, Turkey
| |
Collapse
|
11
|
Herraiz T, Vera F. Occurrence, Formation from d-Fructose and 3-Deoxyglucosone, and Activity of the Carbohydrate-Derived β-Carbolines in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6650-6664. [PMID: 34080840 PMCID: PMC8480784 DOI: 10.1021/acs.jafc.1c02281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
β-Carbolines are naturally occurring bioactive alkaloids. In this work, carbohydrate-derived β-carbolines (βCs), 1-(1,3,4,5-tetrahydroxypent-1-yl)-β-carboline isomers (1a/b), 1-(1,4,5-trihydroxypent-1-yl)-β-carboline (2), 1-(1,5-dihydroxypent-3-en-1-yl)-β-carboline (3), and 1-(1,2,3,4,5-pentahydroxypent-1-yl)-β-carboline (4) were identified and analyzed in commercial foods. The concentrations of βCs 1-4 in foods ranged from undetectable to 11.4 μg/g levels, suggesting their intake in the diet. Processed foods contained higher amounts than fresh or unprocessed foods, and the highest content was found in processed tomato and fruit products, sauces, and baked foods. βCs 1-3 were formed in foods during heating, and 1a/b were the main compounds. The formation of carbohydrate-derived βCs was studied in model reactions of tryptophan and carbohydrates. They formed in reactions of tryptophan with glucose under acidic conditions at temperatures higher than 80 °C. The formation of 1a/b was favored, but 2-3 increased at high temperatures. Noticeably, the βCs 1-3 formed in the reactions of tryptophan with fructose or sucrose, and the formation from fructose was much higher than from glucose. Thus, fructose was the main carbohydrate involved in the formation of 1-3, whereas sucrose gave these βCs after acid hydrolysis. It is shown for the first time that the mechanism of formation of βCs 1-3 occurs from the sugar intermediate 3-deoxyglucosone that reacts with tryptophan affording these carbohydrate-derived βCs. A mechanism of reaction to give βCs 1-3 is proposed that relies on the tautomerism (keto-enediol or enamine-imine) of intermediates involved in the reaction. Carbohydrate βCs 1-4 were assessed as inhibitors of monoamine oxidase (MAO), as antioxidants, and for their interaction with DNA. They were not good inhibitors of MAO-A or -B, were poor antioxidants, and did not appreciably interact with DNA.
Collapse
|
12
|
Shi S, Wu Y, Liu P, Zhang M, Zhang Z, Gao L, Xiao G. Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03693-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Marefat Seyedlar R, Imani M, Mirabedini SM. Bio-based furan coatings: adhesion, mechanical and thermal properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03124-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang T, Wei H, Xiao H, Li W, Jin Y, Wei W, Wu S. Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kim Y, Mittal A, Robichaud DJ, Pilath HM, Etz BD, St. John PC, Johnson DK, Kim S. Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yeonjoon Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Ashutosh Mittal
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Heidi M. Pilath
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Brian D. Etz
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Peter C. St. John
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David K. Johnson
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Seonah Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| |
Collapse
|
16
|
Meneses-Olmedo LM, Cuesta Hoyos S, Salgado Moran G, Cardona Villada W, Gerli Candia L, Mendoza-Huizar LH. Insights on the mechanism, reactivity and selectivity of fructose and tagatose dehydration into 5-hydroxymethylfurfural: A DFT study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhao X, Zhang X, Ye B, Yan H, Zhao Y, Liu L. Effect of unsaturated fatty acids on glycation product formation pathways (Ⅰ) the role of oleic acid. Food Res Int 2020; 136:109560. [PMID: 32846604 DOI: 10.1016/j.foodres.2020.109560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Research on advanced glycation end-products (AGEs) and their formation pathways in food processing has gradually increased because AGEs are associated with human health, especially with involvement of lipids. In this study, radicals and glycation products were detected via electron spin resonance (ESR) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) respectively. The correlation of important intermediates was used to explain the effect of oleic acid (OA) on the glycation products and pathways. The results indicated OA participation decreased the content of stable radicals and glycosyl compounds in Maillard Reaction (MR). The oxidation of OA produced active radicals, and electron transfer caused lysine to transform radical form. These radicals participated in the formation of fructosyllysine (FL) with glucose (Glc) via the MR. The participation of OA is acted as inhibiting the way of Glc autoxidation and promoting the glycation pathway from FL to 3-deoxyglucosone (3-DG) to fluorescent-AGEs. Orthogonal projection to latent structures discriminant analysis results indicated that 3-DG, D-glucosone and methylglyoxal are key products in discriminating the glycation reaction.
Collapse
Affiliation(s)
- Xin Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Xiaoyu Zhang
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No. 39, 110031 Shenyang, China
| | - Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Yingbo Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China.
| |
Collapse
|
18
|
Istasse T, Richel A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Adv 2020; 10:23720-23742. [PMID: 35517323 PMCID: PMC9055118 DOI: 10.1039/d0ra03892j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
The conversion of abundant hexoses (e.g. glucose, mannose and galactose) and pentoses (e.g. xylose and arabinose) to 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) is subject to intensive research in the hope of achieving competitive production of diverse materials from renewable resources. However, the abundance of literature on this topic as well as the limited number of studies systematically comparing numerous monosaccharides hinder progress tracking. Herein, we compare and rationalize reactivities of different ketoses and aldoses. Dehydration mechanisms of both monosaccharide types are reviewed regarding the existing experimental evidence. Ketose transformation to furan derivatives likely proceeds through cyclic intermediates and is hindered by side-reactions such as isomerization, retro-aldol reactions and polymerization. Different strategies can improve furan derivative synthesis from ketoses: limiting the presence of water, improving the dehydration rate, protecting 5-HMF and 2-F reactive moieties with derivatization or solvent interactions and extracting 5-HMF and 2-F from the reaction medium. In contrast to ketoses, aldose conversion to furan derivatives is not favored compared to polymerization reactions because it involves their isomerization or a ring contraction. Enhancing aldose isomerization is possible with metal catalysts (e.g. CrCl3) promoting a hydride shift mechanism or with boric/boronic acids promoting an enediol mechanism. This catalysis is however far more challenging than ketose dehydration because catalyst activity depends on numerous factors: Brønsted acidity of the medium, catalyst ligands, catalyst affinity for monosaccharides and their accessibility to several chemical species simultaneously. Those aspects are methodically addressed to support the design of new monosaccharide dehydration systems.
Collapse
Affiliation(s)
- Thibaut Istasse
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| |
Collapse
|
19
|
Qi T, Si ZB, Liu LJ, Yang HM, Huang Z, Yang HQ, Hu CW. Mechanistic study of cellobiose conversion to 5-hydroxymethylfurfural catalyzed by a Brønsted acid with counteranions in an aqueous solution. Phys Chem Chem Phys 2020; 22:9349-9361. [PMID: 32309835 DOI: 10.1039/c9cp06944e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fundamental understanding of the cooperativity of a Brønsted acid together with its anion for cellulose conversion in an aqueous solution is limited at present, in which cellobiose has usually been regarded as a bridge that connects monosaccharides and cellulose. The mechanism of β-cellobiose conversion to 5-hydroxymethylfurfural (HMF) catalyzed by a Brønsted acid (H3O+) accompanied by counteranions in an aqueous solution has been studied using quantum chemical calculations at the M06-2X/6-311++G(d,p) level under a polarized continuum model (PCM-SMD). For the formation of the first HMF from cellobiose, there are three reaction pathways, i.e., through cellobiulose and glycosyl-HMF (C/H), through cellobiulose and fructose (C/F/H), and through glucose (C/G/H). For these three reaction pathways, the rate-determining steps are associated with the intramolecular [1,2]-H shift in the aldose-ketose tautomerization. C/H is the thermodynamically predominant pathway, while C/G/H is the kinetically dominant pathway. From cellobiose, the origin of the first HMF results kinetically from a small proportion of both C/H and C/F/H and from a large proportion of C/G/H. For the role of the counteranion in the catalytic activity of H3O+, the halide anions (Cl- and Br-) act as promoters, whereas both NO3- anions and carboxylate-containing anions behave as inhibitors. The roles of these anions in β-cellobiose conversion to HMF can be correlated with their electrostatic potential and atomic number, which may cause a decrease in the relative enthalpy energy and the value of entropy on interacting with the cation moiety. These insights may advance the novel design of sustainable conversion systems for cellulose conversion into HMF.
Collapse
Affiliation(s)
- Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jia L, Qiao Y, Pedersen CM, Jia S, Ma H, Zhang Z, Wang Y, Hou X. Mechanistic study on the conversion of d-fructose into deoxyfructosazine: Insights from NMR and DFT study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Rihko-Struckmann LK, Oluyinka O, Sahni A, McBride K, Fachet M, Ludwig K, Sundmacher K. Transformation of remnant algal biomass to 5-HMF and levulinic acid: influence of a biphasic solvent system. RSC Adv 2020; 10:24753-24763. [PMID: 35517433 PMCID: PMC9055234 DOI: 10.1039/d0ra02784g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
The primary commercial product from the green microalgae Dunaliella salina is β-carotene. After extracting the lipophilic fraction containing this red-orange pigment, an algal residue remains. As the carotenogenesis is induced by light stress with simultaneous nitrogen depletion, the protein content is low and the remnant is comprised largely of storage carbohydrates. In this work, we transformed the defatted remnant directly to the platform chemicals, 5-hydroxy methyl furfural (5-HMF) and levulinic acid (LA), without previous purification or any pretreatment. The batch experiments were carried out in an autoclave under biphasic solvent conditions at 453 K for 1 h using acidic ZSM-5 zeolite as a heterogeneous catalyst. Mixtures of methyl isobutyl ketone (MIBK/H2O) or tetrahydrofuran (THF/H2O/NaCl) with water were used to create the biphasic reactor conditions. The biphasic reaction mixtures helped to increase the 5-HMF yield and simultaneously mitigated the formation of insoluble humins. The carbon yields of 5-HMF and of LA in the MIBK/H2O biphasic system without NaCl were 13.9% and 3.7%, respectively. The highest carbon yield of 5-HMF (34.4%) was achieved by adding NaCl to the reaction mixture containing THF/H2O. The experimentally measured partition ratios of 5-HMF between the two liquid phases were compared to the predictions calculated by the computational method COSMO-RS, which is a quantum chemistry-based method to predict the thermodynamic equilibria of liquid mixtures and the solubilities. The COSMO-RS predicted partition ratios of 5-HMF were in line with the experimentally measured ones. Defatted algal remnant is transformed to 5-HMF and LA.![]()
Collapse
Affiliation(s)
| | - Olalekan Oluyinka
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
| | - Aditya Sahni
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
| | - Kevin McBride
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
| | - Melanie Fachet
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
| | - Kristin Ludwig
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems
- D-39106 Magdeburg
- Germany
- Otto-von-Guericke University Magdeburg
- Universitätsplatz 2
| |
Collapse
|
22
|
Körner P, Jung D, Kruse A. Influence of the pH Value on the Hydrothermal Degradation of Fructose. ChemistryOpen 2019; 8:1109-1120. [PMID: 31463172 PMCID: PMC6709427 DOI: 10.1002/open.201900225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 11/07/2022] Open
Abstract
The hydrothermal treatment of sugars features a promising technology for the production of fine and platform chemicals from renewable resources. In this work the hydrothermal decomposition of fructose was studied in a buffered medium at a pH range between 2.2 and 8.0. It is demonstrated that at lower pH values mainly 5-hydroxymethylfurfural (HMF), levulinic acid and humin are generated, while lactic acid and acetic acid are produced at higher pH values. The work shows that the use of moderate acidic conditions may have advantages for the hydrothermal HMF production over the use of strongly acidic conditions, as especially the degradation into levulinic acid is suppressed. Besides, this study deals with a rather complex reaction network, hence limitations and need for adaption of the kinetic model are discussed.
Collapse
Affiliation(s)
- Paul Körner
- University of HohenheimConversion Technologies of Renewable ResourcesGarbenstrasse 970599StuttgartGermany
| | - Dennis Jung
- University of HohenheimConversion Technologies of Renewable ResourcesGarbenstrasse 970599StuttgartGermany
| | - Andrea Kruse
- University of HohenheimConversion Technologies of Renewable ResourcesGarbenstrasse 970599StuttgartGermany
| |
Collapse
|
23
|
Kunnikuruvan S, Nair NN. Mechanistic Insights into the Brønsted Acid-Catalyzed Dehydration of β-d-Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sooraj Kunnikuruvan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
24
|
Šivec R, Grilc M, Huš M, Likozar B. Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00898] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
25
|
Kammoun M, Istasse T, Ayeb H, Rassaa N, Bettaieb T, Richel A. Hydrothermal Dehydration of Monosaccharides Promoted by Seawater: Fundamentals on the Catalytic Role of Inorganic Salts. Front Chem 2019; 7:132. [PMID: 30968011 PMCID: PMC6440317 DOI: 10.3389/fchem.2019.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
In biorefining, the conversion of carbohydrates under subcritical water conditions is a field of extensive studies. In particular, the hydrothermal decomposition of benchmark C6- and C5-monosaccharides, i.e., D-glucose and D-xylose, into furanics and/or organic acids is fully considered. Herein, we propose to establish the fundamentals of the decomposition of D-glucose and D-xylose under subcritical water conditions in the presence of specific salts (i.e., NaCl and KI) and in seawater. Our results demonstrated that the introduction of inorganic salts was found to modify sugars dehydration yields. Different NaCl concentrations from 0.21 to 1.63 mol L-1 promoted the conversion of D-xylose to 2-furfural (2-F) from 28 to 44% (molar yield). NaCl also improved 5-hydroxymethylfurfural (5-HMF) generation from D-glucose as well as rehydration of 5-HMF to levulinic and formic acid. KI favored other pathways toward formic acid production from D-glucose, reaching 20% in the upper concentration. Compared to a solution of equivalent NaCl concentration, seawater enhanced selectivity toward lactic acid which was raised by 10% for both monosaccharides, and sugars conversion, especially for D-glucose whose conversion was increased by 20%. 5-HMF molar yield around 30% were achieved from D-glucose in seawater at 211°C and 20 bars after 15 min.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Gembloux Agro Bio-Tech, Gembloux, Belgium
| | - Thibaut Istasse
- Laboratory of Biomass and Green Technologies, University of Liege Gembloux Agro Bio-Tech, Gembloux, Belgium
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology, University of Louvain, Louvain-la-Neuve, Belgium
| | - Neila Rassaa
- Laboratory of Agricultural Production Systems Sustainability in Northern Region of Tunisia, University of Jendouba, Le kef, Tunisia
| | - Taoufik Bettaieb
- Laboratory of Horticultural Sciences, University of Carthage National Agronomic Institute of Tunis, Tunis, Tunisia
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Gembloux Agro Bio-Tech, Gembloux, Belgium
| |
Collapse
|
26
|
Xie H, Qi T, Lyu YJ, Zhang JF, Si ZB, Liu LJ, Zhu LF, Yang HQ, Hu CW. Molecular mechanism comparison of decarbonylation with deoxygenation and hydrogenation of 5-hydroxymethylfurfural catalyzed by palladium acetate. Phys Chem Chem Phys 2019; 21:3795-3804. [PMID: 30714064 DOI: 10.1039/c8cp07723a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The selective removal of oxygen from 5-hydroxymethylfurfural (HMF) is challenging for the effective utilization of biomass. The catalytic mechanisms of palladium acetate toward the conversion of HMF to furfuryl alcohol (FFA), 5-methylfurfural (5-MF) and 2,5-dihydroxymethyl furan (DHMF) have been theoretically investigated. The decarbonylation of HMF to FFA includes (i) migratory extrusion, (ii) metal-acetate-co-assisted deprotonation, (iii) decarbonylation, (iv) metal-assisted deprotonation, and (v) migratory extrusion and catalyst regeneration. Both hydrogenation and deoxidation of HMF with HCOOH as the H-source involve (i) migratory extrusion, (ii) oxidative addition, (iii) reductive elimination, (iv) metal-assisted deprotonation, and (v) migratory extrusion and catalyst regeneration. The C-H bond cleavage is the crucial reaction step, in which the metal-acetate-co-assisted deprotonation is kinetically more preferable than the oxidative addition. Both FFA and DHMF are kinetically superior to 5-MF. In terms of selectivity, increasing the temperature is beneficial to decarbonylation and decreasing the temperature is advantageous to hydrogenation. The present finding provides molecular-level insight into the functions of both the metal-center and coordinated-ligand in the Pd(OAc)2 catalyst, which may drive the novel design of catalytic systems toward both decarbonylation and hydrogenation reactions.
Collapse
Affiliation(s)
- Hong Xie
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Murugesan K, Alshammari AS, Sohail M, Beller M, Jagadeesh RV. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. J Catal 2019. [DOI: 10.1016/j.jcat.2018.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Wang ZM, Liu LJ, Xiang B, Wang Y, Lyu YJ, Qi T, Si ZB, Yang HQ, Hu CW. The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02291g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.
Collapse
Affiliation(s)
- Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Bo Xiang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Yue Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ya-Jing Lyu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Ting Qi
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
29
|
Körner P, Beil S, Kruse A. Effect of salt on the formation of 5-hydroxymethylfurfural from ketohexoses under aqueous conditions. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00300a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dehydration of ketohexoses to 5-hydroxymethylfurfural (HMF), a valuable platform chemical, is catalysed by anions via intermediate substitution reactions.
Collapse
Affiliation(s)
- Paul Körner
- University of Hohenheim
- Department Conversion Technologies of Biobased Resources
- 70599 Stuttgart
- Germany
| | - Stephan Beil
- Technische Universität Dresden
- Chair of Hydrochemistry and Water Technology
- 01069 Dresden
- Germany
| | - Andrea Kruse
- University of Hohenheim
- Department Conversion Technologies of Biobased Resources
- 70599 Stuttgart
- Germany
| |
Collapse
|
30
|
Ghosh MK, Howard MS, Dussan K, Dooley S. Mechanism and theory of d-glucopyranose homogeneous acid catalysis in the aqueous solution phase. Phys Chem Chem Phys 2019; 21:17993-18011. [PMID: 31386704 DOI: 10.1039/c8cp07224h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A detailed systematic theoretical study of the mechanism of the homogeneous Brønsted-acid catalysis of d-glucose in aqueous solution phase ("acid hydrolysis") is reported. G4MP2 with the SMD solvation model at B3LYP/6-31G(2df,p) are employed to compute the free energies of the molecular and ionic species pertaining to the isomerization, protonation, hydrogen cation transfer and decomposition processes of d-glucopyranose in aqueous solution phase. This information is used to hypothesise a reaction mechanism that is of improved accuracy and completeness from the existing art. It is found that rotation of the d-glucose alkyl carbon-carbon bond is a facile process and is very important to the subsequent catalytic mechanism. This rotation produces two rotameric isomers which are of notably different thermodynamic stability and reactivity, even with regard to the products of this acid catalysis. As a low energy process (ΔG‡ = ∼3.8-6.7 kcal mol-1), the alkyl carbon-carbon bond may rotate toward the hydroxyl group at the adjacent "4" position reducing the energy required to protonate that position by 3.0-7.2 kcal mol-1 (or 15-30%). The combination of two rotomeric isomers with the six structural isomers owing to the oxygen atoms, means that protonated d-glucose cations embark on a complex competition of interconversion and decomposition that is both thermodynamically and kinetically influenced. The calculations support the hypothesis that the acid-catalysed hydrolysis of d-glucose may yield a number of platform chemicals that have not previously been suggested. These include the prospect of three isomers of 5-hydroxymethylfurfural (HMF); 5-(hydroxymethyl)furan-2-carbaldehyde, 5-(hydroxymethyl)furan-3-carbaldehyde and 5-(hydroxymethyl)furan-4-carbaldehyde. Vibrational spectra of these HMF isomers are also computed and compared to experimentally determined infrared spectra of "humins". On this basis, it is cautiously speculated that the alternative HMF isomers, may be monomeric constituent of the polymeric "humins".
Collapse
|
31
|
Keturakis CJ, Lapina OB, Shubin AA, Terskikh VV, Papulovskiy E, Yudaev IV, Paukshtis EA, Wachs IE. Pyrolysis of the Cellulose Fraction of Biomass in the Presence of Solid Acid Catalysts: An Operando Spectroscopy and Theoretical Investigation. CHEMSUSCHEM 2018; 11:4044-4059. [PMID: 30338653 DOI: 10.1002/cssc.201802073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Biomass pyrolysis by solid acid catalysts is one of many promising technologies for sustainable production of hydrocarbon liquid fuels and value-added chemicals, but these complex chemical transformations are still poorly understood. A series of well-defined model SiO2 -supported alumina catalysts were synthesized and molecularly characterized, under dehydrated conditions and during biomass pyrolysis, with the aim of establishing fundamental catalyst structure-activity/selectivity relationships. The nature and corresponding acidity of the supported AlOx nanostructures on SiO2 were determined with 27 Al/1 H NMR and IR spectroscopy of chemisorbed CO, and DFT calculations. Operando time-resolved IR-Raman-MS spectroscopy studies revealed the molecular transformations taking place during biomass pyrolysis. The molecular transformations during biomass pyrolysis depended on both the domain size of the AlOx cluster and molecular nature of the biomass feedstock. These new insights allowed the establishment of fundamental structure-activity/selectivity relationships during biomass pyrolysis.
Collapse
Affiliation(s)
- Christopher J Keturakis
- Operando Molecular Spectroscopy & Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA, 18015, USA
- Current address: Cummins Emission Solutions, Stoughton, WI, 53589, USA
| | - Olga B Lapina
- Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
| | - Aleksandr A Shubin
- Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| | - Evgeniy Papulovskiy
- Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia
| | - Ivan V Yudaev
- Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia
| | - Eugenii A Paukshtis
- Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
| | - Israel E Wachs
- Operando Molecular Spectroscopy & Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
32
|
|
33
|
Adams RD, Kiprotich EJ, Smith MD. Multiple cluster CH activations and transformations of furan by triosmium carbonyl complexes. Chem Commun (Camb) 2018; 54:3464-3467. [PMID: 29561037 DOI: 10.1039/c8cc01532e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reaction of Os3(CO)10(NCMe)2 with the triosmium furyne complex Os3(CO)9(μ3,η2-C4H2O)(μ-H)2, 1 yielded the bis-triosmium complex 2 containing a bridging furyenyl ligand by CH activation at the uncoordinated C-C double bond. Heating 2 led to additional CH activation with formation of the first furdiyne C4O ligand in the complex Os3(CO)9(μ-H)2(μ3-η2-2,3-μ3-η2-4,5-C4O)Os3(CO)9(μ-H)2, 3. The furdiyne ligand in 3 was subsequently ring-opened and decarbonylated to yield products 4 and 5 containing novel bridging C3 ligands. Complex 2 also undergoes ring opening to yield an intermediate Os3(CO)9(μ-H)(μ3-η2-μ-η2-CH-C-CH-C[double bond, length as m-dash]O)Os3(CO)10(μ-H), 6 which was also decarbonylated thermally to yield 4 and 5. All products were characterized by a combination of IR, NMR, mass spec and single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Emmanuel J Kiprotich
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
34
|
|
35
|
Krishna SH, Assary RS, Rashke QA, Schmidt ZR, Curtiss LA, Dumesic JA, Huber GW. Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siddarth H. Krishna
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Rajeev S. Assary
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Quinn A. Rashke
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Zachary R. Schmidt
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Larry A. Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
36
|
Maiti S, Gallastegui G, Suresh G, Sarma SJ, Brar SK, Drogui P, LeBihan Y, Buelna G, Verma M, Soccol CR. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. BIORESOURCE TECHNOLOGY 2018; 249:673-683. [PMID: 29091853 DOI: 10.1016/j.biortech.2017.09.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate.
Collapse
Affiliation(s)
- Sampa Maiti
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada
| | - Gorka Gallastegui
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada; University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, University College of Engineering of Vitoria/Gasteiz, Nieves Cano 12, 01006 Vitoria/Gasteiz, Spain
| | - Gayatri Suresh
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada
| | - Saurabh Jyoti Sarma
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada.
| | - Patrick Drogui
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec G1K 9A9 Canada
| | - Yann LeBihan
- Centre de recherche industrielle du Québec (CRIQ), Québec, Canada
| | - Gerardo Buelna
- University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, University College of Engineering of Vitoria/Gasteiz, Nieves Cano 12, 01006 Vitoria/Gasteiz, Spain
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, Usina Piloto B, CEP 81531-990 Curitiba, Paraná, Brazil
| |
Collapse
|
37
|
Zhou S, Schlipf DM, Guilfoil EC, Rankin SE, Knutson BL. Lipid Pore-Filled Silica Thin-Film Membranes for Biomimetic Recovery of Dilute Carbohydrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14156-14166. [PMID: 29131638 DOI: 10.1021/acs.langmuir.7b03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Selectively permeable biological membranes containing lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. The recovery of glucose, which can reversibly bind to boronic acid (BA) carriers, is examined in lipid pore-filled silica thin-film composite membranes with accessible mesopores. The successful incorporation of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and BA carriers (4-((N-Boc-amino)methyl)phenylboronic acid, BAMP-BA) in the pores of mesoporous silica (∼10 nm pore diameter) through evaporation deposition is verified by confocal microscopy and differential scanning calorimetry. In the absence of BA carriers, lipids confined inside the pores of silica thin films (∼200 nm thick) provide a factor of 14 increase in diffusive transport resistance to glucose, relative to traditional supported lipid bilayers formed by vesicle fusion on the porous surface. The addition of lipid-immobilized BAMP-BA (59 mol % in DPPC) facilitates the transport of glucose through the membrane; glucose flux increases from 45 × 10-8 to 225 × 10-8 mol/m2/s in the presence of BAMP-BA. Furthermore, the transport can be improved by environmental factors including pH gradient (to control the binding and release of glucose) and temperature (to adjust lipid bilayer fluidity). The successful development of biomimetic nanocomposite membranes demonstrated here is an important step toward the efficient dilute aqueous solute upgrading or separations, such as the processing of carbohydrates from lignocellulose hydrolysates, using engineered carrier/catalyst/support systems.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Daniel M Schlipf
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Emma C Guilfoil
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|
38
|
Greatrex BW, Meisner J, Glover SA, Raverty W. Support for a Dioxyallyl Cation in the Mechanism Leading to (−)-Levoglucosenone. J Org Chem 2017; 82:12294-12299. [DOI: 10.1021/acs.joc.7b02109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ben W. Greatrex
- School
of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Jan Meisner
- Institute
for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Stephen A. Glover
- School
of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Warwick Raverty
- Circa
Group, Bio-21 Institute, Melbourne, Victoria 3052, Australia
| |
Collapse
|
39
|
Affiliation(s)
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Xiang B, Wang Y, Qi T, Yang HQ, Hu CW. Promotion catalytic role of ethanol on Brønsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Billès E, Coma V, Peruch F, Grelier S. Water-soluble cellulose oligomer production by chemical and enzymatic synthesis: a mini-review. POLYM INT 2017. [DOI: 10.1002/pi.5398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Billès
- Laboratoire de Chimie des Polymères Organiques; Université de Bordeaux; Pessac France
| | - Véronique Coma
- Laboratoire de Chimie des Polymères Organiques; Université de Bordeaux; Pessac France
| | - Frédéric Peruch
- Laboratoire de Chimie des Polymères Organiques; Université de Bordeaux; Pessac France
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques; Université de Bordeaux; Pessac France
| |
Collapse
|
42
|
Ren LK, Zhu LF, Qi T, Tang JQ, Yang HQ, Hu CW. Performance of Dimethyl Sulfoxide and Brønsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catal 2017. [DOI: 10.1021/acscatal.6b01802] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-Ke Ren
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Liang-Fang Zhu
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Ting Qi
- College
of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Jin-Qiang Tang
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Hua-Qing Yang
- College
of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Chang-Wei Hu
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| |
Collapse
|
43
|
Verma AM, Kishore N. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1269962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anand Mohan Verma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, India
| | - Nanda Kishore
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, India
| |
Collapse
|
44
|
Billès E, Onwukamike KN, Coma V, Grelier S, Peruch F. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds. Carbohydr Polym 2016; 154:121-8. [DOI: 10.1016/j.carbpol.2016.07.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
|
45
|
Soussy S, El-Hellani A, Baalbaki R, Salman R, Shihadeh A, Saliba NA. Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tob Control 2016; 25:ii88-ii93. [PMID: 27798321 DOI: 10.1136/tobaccocontrol-2016-053220] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/05/2016] [Indexed: 11/04/2022]
Abstract
SIGNIFICANCE The wide availability of sweet flavours has been hypothesised as a factor in the popularity of electronic cigarette (ECIG), especially among youth. Saccharides, which are commonly used to impart a sweet flavour to ECIG liquids, thermally degrade to produce toxic compounds, like aldehydes and furans. This study investigates the formation of furanic compounds in aerosols when ECIG liquid solutions of varying sweetener concentrations are vaped under different power and puff duration. METHODS Liquids are prepared by mixing aqueous sucrose, glucose or sorbitol solutions to a 70/30 propylene glycol/glycerin solution. Aerosols are generated and trapped on filter pads using a commercially available ECIG operating at 4.3 and 10.8 W and 4 and 8 s puff duration. Extraction, elimination of matrix interference and quantification are achieved using novel solid phase extraction and gas chromatography tandem mass spectrometry methods (GC-MS). RESULTS Well-resolved GC peaks of 5-hydroxymethylfurfural (HMF) and furfural (FA) are detected. Both HMF and FA are quantified in the aerosols of sweet-flavoured e-liquids under various vaping conditions. Levels of furan emissions are significantly correlated with electric power and sweetener concentration and not with puff duration. Unlike saccharides, the formation of HMF and FA from a sugar alcohol is negligible. CONCLUSIONS The addition of sweeteners to ECIG liquids exposes ECIG user to furans, a toxic class of compounds. Under certain conditions, the per-puff yield of HMF and FA in ECIG emissions is comparable to values reported for combustible cigarettes.
Collapse
Affiliation(s)
- Sarah Soussy
- Faculty of Arts and Sciences, Chemistry Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ahmad El-Hellani
- Faculty of Arts and Sciences, Chemistry Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rima Baalbaki
- Faculty of Arts and Sciences, Chemistry Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rola Salman
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA.,Faculty of Engineering and Architecture, Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
| | - Alan Shihadeh
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA.,Faculty of Engineering and Architecture, Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Faculty of Arts and Sciences, Chemistry Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
46
|
Marefat Seyedlar R, Imani M, Mirabedini SM. Curing of poly(furfuryl alcohol) resin catalyzed by a homologous series of dicarboxylic acid catalysts: Kinetics and pot life. J Appl Polym Sci 2016. [DOI: 10.1002/app.44009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - M. Imani
- Iran Polymer and Petrochemical Institute; P.O. Box 14965-115 Tehran Iran
| | | |
Collapse
|
47
|
Li J, Li J, Zhang D, Liu C. Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a SO3H-Functionalized Ionic Liquid. J Phys Chem B 2015; 119:13398-406. [DOI: 10.1021/acs.jpcb.5b07773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Li
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China
| | - Jinghua Li
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dongju Zhang
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China
| | - Chengbu Liu
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
48
|
Arifin, Puripat M, Yokogawa D, Parasuk V, Irle S. Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study. J Comput Chem 2015; 37:327-35. [PMID: 26453901 DOI: 10.1002/jcc.24214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022]
Abstract
Isomerization and transformation of glucose and fructose to 5-hydroxymethylfurfural (HMF) in both ionic liquids (ILs) and water has been studied by the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method coupled with ab initio electronic structure theory, namely coupled cluster single, double, and perturbative triple excitation (CCSD(T)). Glucose isomerization to fructose has been investigated via cyclic and open chain mechanisms. In water, the calculations support the cyclic mechanism of glucose isomerization; with the predicted activation free energy is 23.8 kcal mol(-1) at experimental condition. Conversely, open ring mechanism is more favorable in ILs with the energy barrier is 32.4 kcal mol(-1) . Moreover, the transformation of fructose into HMF via cyclic mechanism is reasonable; the calculated activation barriers are 16.0 and 21.5 kcal mol(-1) in aqueous and ILs solutions, respectively. The solvent effects of ILs could be explained by the decomposition of free energies and radial distribution functions of solute-solvent that are produced by RISM-SCF-SEDD.
Collapse
Affiliation(s)
- Arifin
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan
| | - Maneeporn Puripat
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daisuke Yokogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya Univesity, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Vudhichai Parasuk
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Stephan Irle
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya Univesity, Chikusa-Ku, Nagoya, 464-8602, Japan
| |
Collapse
|
49
|
Zhang M, Su K, Song H, Li Z, Cheng B. The excellent performance of amorphous Cr2O3, SnO2, SrO and graphene oxide–ferric oxide in glucose conversion into 5-HMF. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
50
|
Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG. Mechanism of Brønsted acid-catalyzed glucose dehydration. CHEMSUSCHEM 2015; 8:1334-1341. [PMID: 25572774 DOI: 10.1002/cssc.201403264] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 06/04/2023]
Abstract
We present the first DFT-based microkinetic model for the Brønsted acid-catalyzed conversion of glucose to 5-hydroxylmethylfurfural (HMF), levulinic acid (LA), and formic acid (FA) and perform kinetic and isotopic tracing NMR spectroscopy mainly at low conversions. We reveal that glucose dehydrates through a cyclic path. Our modeling results are in excellent agreement with kinetic data and indicate that the rate-limiting step is the first dehydration of protonated glucose and that the majority of glucose is consumed through the HMF intermediate. We introduce a combination of 1) automatic mechanism generation with isotopic tracing experiments and 2) elementary reaction flux analysis of important paths with NMR spectroscopy and kinetic experiments to assess mechanisms. We find that the excess formic acid, which appears at high temperatures and glucose conversions, originates from retro-aldol chemistry that involves the C6 carbon atom of glucose.
Collapse
Affiliation(s)
- Liu Yang
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716 (USA)
| | | | | | | |
Collapse
|