1
|
García Alcaraz A, Rey Planells A, Espinosa Ferao A, Streubel R. A "phosphorus derivative" of aziridines: on the importance of ring strain energy and three heteropolar bonds in azaphosphiridines. Dalton Trans 2025; 54:2783-2792. [PMID: 39804023 DOI: 10.1039/d4dt03117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE. While methyl groups have little influence on the RSE, complexation with different metal moieties increases the RSE in all cases, and an increase was also found upon oxidation to the corresponding P-oxides and other σ5λ5-P derivatives. The highest RSE was found for the P-protonated azaphosphiridinium cation and azaphosphiridines with exocyclic double bonds. A correlation of the RSEs with the relaxed force constants of the endocyclic ring bonds and AIM-derived parameters in the ring critical points, such as the electron density, ρ(r), and the Lagrangian of the kinetic energy, G(r), was found. A relatively low barrier to P-C bond cleavage via nucleophilic attack of MeNH2 on phosphorus points to the possibility of ring-opening polymerisation.
Collapse
Affiliation(s)
- Antonio García Alcaraz
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Alicia Rey Planells
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain.
- Faculty of Pharmacy. University of Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, 02008 Albacete, Spain
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Rainer Streubel
- Institut für Anorganische Chemie. Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Tao Z, Duston T, Pei Z, Shao Y, Rawlinson J, Littlejohn R, Subotnik JE. An electronic phase-space Hamiltonian approach for electronic current density and vibrational circular dichroism. J Chem Phys 2024; 161:204107. [PMID: 39588829 DOI: 10.1063/5.0233618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
The Born-Oppenheimer framework stipulates that chemistry and physics occur on potential energy surfaces VBO(X) parameterized by a nuclear coordinate X, which are built by diagonalizing a BO Hamiltonian ĤBO(X). However, such a framework cannot recover many measurable chemical and physical features, including vibrational circular dichroism spectra. In this article, we show that a phase-space electronic Hamiltonian ĤPS(X,P), parameterized by both nuclear position X and momentum P, with a similar computational cost as solving ĤBO(X), can recover not just experimental vibrational circular dichroism signals but also a meaningful electronic current density that explains the features of the vibrational circular dichroism rotational strengths. Combined with earlier demonstrations that such Hamiltonians can also recover qualitatively correct electronic momenta with electronic densities that approximately satisfy a continuity equation, the data would suggest that, if one looks closely enough, chemistry in fact occurs on potential energy surfaces parameterized by both X and P, EPS(X, P). While the dynamical implications of such a phase-space electronic Hamiltonian are not yet known, we hypothesize that, by offering classical trajectories that explicitly offer nonzero electronic momentum while also conserving the total angular momentum (unlike Born-Oppenheimer theory), this new phase-space electronic structure Hamiltonian may well explain some fraction of the chiral-induced spin selectivity effect.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Titouan Duston
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Zheng Pei
- Department of Chemistry, The University of Oklahoma, Norman, Oklahoma 73104, USA
| | - Yihan Shao
- Department of Chemistry, The University of Oklahoma, Norman, Oklahoma 73104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Heidar-Zadeh F, Castillo-Orellana C, van Zyl M, Pujal L, Verstraelen T, Bultinck P, Vöhringer-Martinez E, Ayers PW. Variational Hirshfeld Partitioning: General Framework and the Additive Variational Hirshfeld Partitioning Method. J Chem Theory Comput 2024; 20:9939-9953. [PMID: 39514699 DOI: 10.1021/acs.jctc.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We introduce the general mathematical framework of variational Hirshfeld partitioning, wherein the best possible approximation to a molecule's electron density is obtained by minimizing the f-divergence between the molecular density and a non-negative linear combination of (normalized) basis functions. This framework subsumes several existing methods that variationally optimize their pro-atoms, like (Gaussian) iterative stockholder analysis (ISA and GISA) and minimal basis iterative stockholder partitioning (MBIS), and provides a solid foundation for developing mathematically rigorous partitioning schemes. In this paper, we delve into the mathematical underpinnings of Hirshfeld-inspired partitioning schemes and show that among all the valid f-divergence measures only the extended Kullback-Leibler is a suitable choice. This led us to develop a novel partitioning scheme, called additive variational Hirshfeld (AVH), which constructs the pro-molecular density as a convex linear combination of the densities from selected states of isolated atoms and atomic ions. The AVH method is size-consistent with a unique solution and provides a straightforward approach for adding constraints for fragment properties. It also results in an intuitively appealing valence-bond-like decomposition of the molecular density as a weighted average of the densities of the atomic states in the molecule; that is, the AVH atomic density is a minimal deformation of the corresponding isolated atomic reference state's density. Compared to other variational Hirshfeld variants, our numerical results show that AVH yields chemically interpretable and sensible atomic charges that are not excessively large and demonstrate computational robustness.
Collapse
Affiliation(s)
- Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Carlos Castillo-Orellana
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070371, Chile
| | - Maximilian van Zyl
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Leila Pujal
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, Ghent B-9000, Belgium
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070371, Chile
| | - Paul W Ayers
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
4
|
Esquivel RO, Carrera E. The Separability Problem in Molecular Quantum Systems: Information-Theoretic Framework for Atoms in Molecules. Chemphyschem 2024; 25:e202400030. [PMID: 38646938 DOI: 10.1002/cphc.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Even though molecules are fundamentally quantum entities, the concept of a molecule retains certain classical attributes concerning its constituents. This includes the empirical separability of a molecule into its three-dimensional, rigid structure in Euclidean space, a framework often obtained through experimental methods like X-Ray crystallography. In this work, we delve into the mathematical implications of partitioning a molecule into its constituent parts using the widely recognized Atoms-In-Molecules (AIM) schemes, aiming to establish their validity within the framework of Information Theory concepts. We have uncovered information-theoretical justifications for employing some of the most prevalent AIM schemes in the field of Chemistry, including Hirshfeld (stockholder partitioning), Bader's (topological dissection), and the quantum approach (Hilbert's space definition). In the first approach we have applied the generalized principle of minimum relative entropy derived from the Sharma-Mittal two-parameter functional, avoiding the need for an arbitrary selection of reference promolecular atoms. Within the ambit of topological-information partitioning, we have demonstrated that the Fisher information of Bader's atoms conform to a comprehensive theory based on the Principle of Extreme Physical Information avoiding the need of employing the Schwinger's principle, which has been proven to be problematic. For the quantum approach we have presented information-theoretic justifications for conducting Löwdin symmetric transformations on the density matrix to form atomic Hilbert spaces generating orthonormal atomic orbitals with maximum occupancy for a given wavefunction.
Collapse
Affiliation(s)
- Rodolfo O Esquivel
- Departamento de Química, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P., 09310, Ciudad de México, Mexico
- Instituto "Carlos I" de Física Teórica y Computacional, Universidad de Granada, Calle Dr. Severo Ochoa, 18071, Granada, Spain
| | - Edmundo Carrera
- Departamento de Química, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P., 09310, Ciudad de México, Mexico
| |
Collapse
|
5
|
Luchini G, Paton RS. Bottom-Up Atomistic Descriptions of Top-Down Macroscopic Measurements: Computational Benchmarks for Hammett Electronic Parameters. ACS PHYSICAL CHEMISTRY AU 2024; 4:259-267. [PMID: 38800724 PMCID: PMC11117679 DOI: 10.1021/acsphyschemau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 05/29/2024]
Abstract
The ability to relate substituent electronic effects to chemical reactivity is a cornerstone of physical organic chemistry and Linear Free Energy Relationships. The computation of electronic parameters is increasingly attractive since they can be obtained rapidly for structures and substituents without available experimental data and can be applied beyond aromatic substituents, for example, in studies of transition metal complexes and aliphatic and radical systems. Nevertheless, the description of "top-down" macroscopic observables, such as Hammett parameters using a "bottom-up" computational approach, poses several challenges for the practitioner. We have examined and benchmarked the performance of various computational charge schemes encompassing quantum mechanical methods that partition charge density, methods that fit charge to physical observables, and methods enhanced by semiempirical adjustments alongside NMR values. We study the locations of the atoms used to obtain these descriptors and their correlation with empirical Hammett parameters and rate differences resulting from electronic effects. These seemingly small choices have a much more significant impact than previously imagined, which outweighs the level of theory or basis set used. We observe a wide range of performance across the different computational protocols and observe stark and surprising differences in the ability of computational parameters to capture para- vs meta-electronic effects. In general, σm predictions fare much worse than σp. As a result, the choice of where to compute these descriptors-for the ring carbons or the attached H or other substituent atoms-affects their ability to capture experimental electronic differences. Density-based schemes, such as Hirshfeld charges, are more stable toward unphysical charge perturbations that result from nearby functional groups and outperform all other computational descriptors, including several commonly used basis set based schemes such as Natural Population Analysis. Using attached atoms also improves the statistical correlations. We obtained general linear relationships for the global prediction of experimental Hammett parameters from computed descriptors for use in statistical modeling studies.
Collapse
Affiliation(s)
- Guilian Luchini
- Department
of Chemistry, Colorado State University, 1301 Center Ave., Ft. Collins, Colorado 80523-1872, United States
| | - Robert S. Paton
- Department
of Chemistry, Colorado State University, 1301 Center Ave., Ft. Collins, Colorado 80523-1872, United States
| |
Collapse
|
6
|
Mehta N, Martin JML. On the sensitivity of computed partial charges toward basis set and (exchange-)correlation treatment. J Comput Chem 2024; 45:1017-1032. [PMID: 38216516 DOI: 10.1002/jcc.27294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/14/2024]
Abstract
Partial charges are a central concept in general chemistry and chemical biology, yet dozens of different computational definitions exist. In prior work [Cho et al., ChemPhysChem 21, 688-696 (2020)], we showed that these can be reduced to at most three 'principal components of ionicity'. The present study addressed the dependence of computed partial charges q on 1-particle basis set and (for WFT methods) n -particle correlation treatment or (for DFT methods) exchange-correlation functional, for several representative partial charge definitions such as QTAIM, Hirshfeld, Hirshfeld-I, HLY (electrostatic), NPA, and GAPT. Our findings show that semi-empirical double hybrids can closely approach the CCSD(T) 'gold standard' for this property. In fact, owing to an error compensation in MP2, CCSD partial charges are further away from CCSD(T) than is MP2. The nonlocal correlation is important, especially when there is a substantial amount of nonlocal exchange. Employing range separation proves to be "mostly" not advantageous, while global hybrids perform optimally for 20%-30% Hartree-Fock exchange across all charge types. Basis set convergence analysis shows that an augmented triple-zeta heavy-aug-cc-pV(T+d)Z basis set or a partially augmented jun-cc-pV(T+d)Z basis set is sufficient for Hirshfeld, Hirshfeld-I, HLY, and GAPT charges. In contrast, QTAIM and NPA display slower basis set convergence. It is noteworthy that for both NPA and QTAIM, HF exhibits markedly slower basis set convergence than the correlation components of MP2 and CCSD. Triples corrections in CCSD(T), denoted as CCSD(T)-CCSD, exhibit even faster basis set convergence.
Collapse
Affiliation(s)
- Nisha Mehta
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot, Israel
| |
Collapse
|
7
|
Roos G, Murray JS. Probing intramolecular interactions using molecular electrostatic potentials: changing electron density contours to unveil both attractive and repulsive interactions. Phys Chem Chem Phys 2024; 26:7592-7601. [PMID: 38362927 DOI: 10.1039/d3cp06005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We focus on intramolecular interactions, using the electrostatic potential plotted on iso-density surfaces to lead the way. We show that plotting the electrostatic potential on varying iso-density envelopes much closer to the nuclei than the commonly used 0.001 a.u. contour can reveal the driving forces for such interactions, whether they be stabilizing or destabilizing. Our approach involves optimizing the structures of molecules exhibiting intramolecular interactions and then finding the contour of the electronic density which allows the interacting atoms to be separated; we call this the nearly-touching contour. The electrostatic potential allows then to identify the intramolecular interactions as either attractive or repulsive. The discussed 1,5- and 1,6-intramolecular interactions in o-bromophenol and o-nitrophenol are attractive, while the interactions between terminal methyl hydrogens in diethyl disulfides (as shown recently) and those between the closest hydrogens in planar biphenyl and phenanthrene are clearly repulsive in nature. For the attractive 1,4-interactions in trinitromethane and chlorotrinitromethane, and the 1,3-S⋯N and the 1,4-Si⋯N interactions in the ClH2Si(CH2)nNH2 series, the lack of (3,-1) bond critical points has often been cited as reason to not identify such interactions as attractive in nature. Here, by looking at the nearly-touching contours we see that bond critical points are neither necessary nor sufficient for attractive interactions, as others have pointed out, and in some instances also pointing to repulsive interactions, as the examples of planar biphenyl and phenanthrene discussed in this work show.
Collapse
Affiliation(s)
- Goedele Roos
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
8
|
Fokin AA. Long but Strong C-C Single Bonds: Challenges for Theory. CHEM REC 2024; 24:e202300170. [PMID: 37358335 DOI: 10.1002/tcr.202300170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Theoretical challenges in describing molecules with anomalously long single C-C bonds are analyzed in terms of the relative contributions of stabilizing and destabilizing intramolecular interactions. Diamondoid dimers that are stable despite the presence of C-C bonds up to 1.7 Å long, as well as other bulky molecules stabilized due to intramolecular noncovalent interactions (London dispersions) are discussed. The unexpected stability of highly crowded molecules, such as diamondoid dimers and tert-butyl-substituted hexaphenylethanes, calls for reconsideration of the "steric effect" traditionally thought to destabilize the molecule. Alternatively, "steric attraction" helps to understand bonding in sterically overloaded molecules, whose structural and energetic analysis requires a proper theoretical description of noncovalent interactions.
Collapse
Affiliation(s)
- Andrey A Fokin
- Department of Organic Chemistry, Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi Ave 37, Kyiv, Ukraine
| |
Collapse
|
9
|
Jablonka KM, Ai Q, Al-Feghali A, Badhwar S, Bocarsly JD, Bran AM, Bringuier S, Brinson LC, Choudhary K, Circi D, Cox S, de Jong WA, Evans ML, Gastellu N, Genzling J, Gil MV, Gupta AK, Hong Z, Imran A, Kruschwitz S, Labarre A, Lála J, Liu T, Ma S, Majumdar S, Merz GW, Moitessier N, Moubarak E, Mouriño B, Pelkie B, Pieler M, Ramos MC, Ranković B, Rodriques SG, Sanders JN, Schwaller P, Schwarting M, Shi J, Smit B, Smith BE, Van Herck J, Völker C, Ward L, Warren S, Weiser B, Zhang S, Zhang X, Zia GA, Scourtas A, Schmidt KJ, Foster I, White AD, Blaiszik B. 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. DIGITAL DISCOVERY 2023; 2:1233-1250. [PMID: 38013906 PMCID: PMC10561547 DOI: 10.1039/d3dd00113j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023]
Abstract
Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines.
Collapse
Affiliation(s)
- Kevin Maik Jablonka
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Qianxiang Ai
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | | | | - Joshua D Bocarsly
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andres M Bran
- Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | | | | | - Kamal Choudhary
- Material Measurement Laboratory, National Institute of Standards and Technology Maryland 20899 USA
| | - Defne Circi
- Mechanical Engineering and Materials Science, Duke University USA
| | - Sam Cox
- Department of Chemical Engineering, University of Rochester USA
| | - Wibe A de Jong
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Matthew L Evans
- Institut de la Matière Condensée et des Nanosciences (IMCN), UCLouvain Chemin des Étoiles 8 Louvain-la-Neuve 1348 Belgium
- Matgenix SRL 185 Rue Armand Bury 6534 Gozée Belgium
| | - Nicolas Gastellu
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Jerome Genzling
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - María Victoria Gil
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC Francisco Pintado Fe 26 33011 Oviedo Spain
| | - Ankur K Gupta
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Zhi Hong
- Department of Computer Science, University of Chicago Chicago Illinois 60637 USA
| | - Alishba Imran
- Computer Science, University of California Berkeley CA 94704 USA
| | - Sabine Kruschwitz
- Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany
| | - Anne Labarre
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Jakub Lála
- Francis Crick Institute 1 Midland Rd London NW1 1AT UK
| | - Tao Liu
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Steven Ma
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Sauradeep Majumdar
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Garrett W Merz
- American Family Insurance Data Science Institute, University of Wisconsin-Madison Madison WI 53706 USA
| | | | - Elias Moubarak
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Beatriz Mouriño
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Brenden Pelkie
- Department of Chemical Engineering, University of Washington Seattle WA 98105 USA
| | | | | | - Bojana Ranković
- Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | | | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Marcus Schwarting
- Department of Computer Science, University of Chicago Chicago IL 60490 USA
| | - Jiale Shi
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Ben E Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Joren Van Herck
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Christoph Völker
- Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany
| | - Logan Ward
- Data Science and Learning Division, Argonne National Lab USA
| | - Sean Warren
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Benjamin Weiser
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Sylvester Zhang
- Department of Chemistry, McGill University Montreal Quebec Canada
| | - Xiaoqi Zhang
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Sion Valais Switzerland
| | - Ghezal Ahmad Zia
- Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany
| | - Aristana Scourtas
- Globus, University of Chicago, Data Science and Learning Division, Argonne National Lab USA
| | - K J Schmidt
- Globus, University of Chicago, Data Science and Learning Division, Argonne National Lab USA
| | - Ian Foster
- Department of Computer Science, University of Chicago, Data Science and Learning Division, Argonne National Lab USA
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester USA
| | - Ben Blaiszik
- Globus, University of Chicago, Data Science and Learning Division, Argonne National Lab USA
| |
Collapse
|
10
|
Abstract
The field of aromaticity has grown five-fold in the last two decades as revealed by Merino et al. in their Perspective "Aromaticity: Quo Vadis" where they ask where the field is heading (Chem. Sci., 2023, https://doi.org/10.1039/D2SC04998H). Numerous computational tools for aromaticity analysis have been introduced and novel classes of molecules that exhibit aromatic (or antiaromatic) features have been explored experimentally. Hence, the aromaticity concept is broader and possibly fuzzier than ever. Yet, earlier it also triggered vigorous debates after periods when new analysis tools emerged, and it survived. Today's debate reveals that the field is vital and that new knowledge is produced. Yet, as much as we ask where the field is moving, we should ask "Aromaticity: Cui Bono?"; who utilizes the aromaticity concept and who benefits from it? Especially, who benefits from it being overly fuzzy and who does the opposite? It is an exciting debate. We should get out of it with a better understanding of the chemical-bonding phenomenon labelled aromaticity.
Collapse
Affiliation(s)
- Henrik Ottosson
- Department of Chemistry - Ångström, Uppsala University Box 523 Uppsala 751 20 Sweden
| |
Collapse
|
11
|
Zhao J, Zhu ZW, Zhao DX, Yang ZZ. Atomic charges in molecules defined by molecular real space partition into atomic subspaces. Phys Chem Chem Phys 2023; 25:9020-9030. [PMID: 36928882 DOI: 10.1039/d2cp05428k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Atomic charge (AC), which is the charge distribution of a molecule, is an important property that is closely associated with structures, reactivities, and intra- and inter-molecular interactions among molecules. Several theoretical models or methods can be used to obtain the magnitudes of AC with different characteristics. These models can be classified into fuzzy-atoms models and models partitioning a molecule into individual atoms with sharp boundaries. The first category includes Mulliken, natural population analysis (NPA), Hirshfeld, Merz-Kollman-Singh (MK), CHELPG, the electronegativity equalization method (EEM), the atom-bond electronegativity equalization method (ABEEM), and atomic polar tensor (APT). The second category is derived from quantum chemical topology (QCT) and includes the quantum theory of atoms in molecules (QTAIM) and QCT analysis based on the potential acting on one electron in a molecule (PAEMQCT). Herein, after giving a bird's-eye view of the population methods of the first category, we specifically describe some features of the second category. We only present the basic framework of QCT for obtaining ACs from QTAIM and PAEMQCT and show their important characteristics. QCT establishes the basis of the following chemical concept: a molecule is spatially partitioned into individual atoms with sharp boundaries. The ACs from QTAIM are close to the atomic valence in chemistry, and ACs from PAEMQCT may be practically suitable for modeling intra- and inter-molecular interactions.
Collapse
Affiliation(s)
- Jian Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning province, 116023, China
| | - Zun-Wei Zhu
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan province, 455000, China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China.
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China.
| |
Collapse
|
12
|
Wang Y, Walker BD, Liu C, Ren P. An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules. Molecules 2022; 27:8567. [PMID: 36500658 PMCID: PMC9738817 DOI: 10.3390/molecules27238567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Accurate conformational energetics of molecules are of great significance to understand maby chemical properties. They are also fundamental for high-quality parameterization of force fields. Traditionally, accurate conformational profiles are obtained with density functional theory (DFT) methods. However, obtaining a reliable energy profile can be time-consuming when the molecular sizes are relatively large or when there are many molecules of interest. Furthermore, incorporation of data-driven deep learning methods into force field development has great requirements for high-quality geometry and energy data. To this end, we compared several possible alternatives to the traditional DFT methods for conformational scans, including the semi-empirical method GFN2-xTB and the neural network potential ANI-2x. It was found that a sequential protocol of geometry optimization with the semi-empirical method and single-point energy calculation with high-level DFT methods can provide satisfactory conformational energy profiles hundreds of times faster in terms of optimization.
Collapse
Affiliation(s)
| | | | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Krenn M, Ai Q, Barthel S, Carson N, Frei A, Frey NC, Friederich P, Gaudin T, Gayle AA, Jablonka KM, Lameiro RF, Lemm D, Lo A, Moosavi SM, Nápoles-Duarte JM, Nigam A, Pollice R, Rajan K, Schatzschneider U, Schwaller P, Skreta M, Smit B, Strieth-Kalthoff F, Sun C, Tom G, Falk von Rudorff G, Wang A, White AD, Young A, Yu R, Aspuru-Guzik A. SELFIES and the future of molecular string representations. PATTERNS (NEW YORK, N.Y.) 2022; 3:100588. [PMID: 36277819 PMCID: PMC9583042 DOI: 10.1016/j.patter.2022.100588] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings-most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.
Collapse
Affiliation(s)
- Mario Krenn
- Max Planck Institute for the Science of Light (MPL), Erlangen, Germany
| | - Qianxiang Ai
- Department of Chemistry, Fordham University, The Bronx, NY, USA
| | - Senja Barthel
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nessa Carson
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire, UK
| | - Angelo Frei
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
| | - Nathan C. Frey
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pascal Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Théophile Gaudin
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- IBM Research Europe, Zürich, Switzerland
| | | | - Kevin Maik Jablonka
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Valais, Switzerland
| | - Rafael F. Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Dominik Lemm
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Alston Lo
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Seyed Mohamad Moosavi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - AkshatKumar Nigam
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Robert Pollice
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Philippe Schwaller
- IBM Research Europe, Zürich, Switzerland
- Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Skreta
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Valais, Switzerland
| | - Felix Strieth-Kalthoff
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Chong Sun
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Gary Tom
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Andrew Wang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Solar Fuels Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Adamo Young
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Rose Yu
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, ON, Canada
| |
Collapse
|
14
|
Zhao J, Chi CX, Meng LY, Jiang XL, Grunenberg J, HU HS, Zhou M, Li J, Schwarz W. Cis- and Trans-Binding Influences in [NUO · (N2)n]+ . J Chem Phys 2022; 157:054301. [DOI: 10.1063/5.0098068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2) n]+ ( n=1-7), were synthesized in the gas phase. Mass-selected infrared photo-dissociation spectroscopy and quantum-chemical calculations confirm [NUO·(N2)5]+ as the sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The short N-U bond distances and high stretching modes, with slightly elongated U-O bond distances and lowered stretching modes, are rationalized as due to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through the flexible electronic U-5f6d7sp valence shell, and the linearly increasing perturbation by an increasing number of equatorial dative N2 ligands are rationalized. It highlights the bonding and distinctiveness of uranium chemistry.
Collapse
Affiliation(s)
| | | | - Lu-Yan Meng
- East China University of Technology, Nanchang, China
| | - Xue-Lian Jiang
- Southern University of Science and Technology, Shenzhen, China
| | | | | | | | - Jun Li
- Tsinghua University, China
| | | |
Collapse
|
15
|
Silvi B, Alikhani ME. Electron group localization in atoms and molecules. J Chem Phys 2022; 156:244305. [DOI: 10.1063/5.0090142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Partitioning atomic and molecular charge densities in non overlapping chemically significant regions is a challenging problem for quantum chemists. The present method aims to build a tool enabling the determination of ``good boundaries' with the help of elementary statistical methods or information theory. This is done by minimizing an objective function with respect to the boundaries of the localization regions, the choice of this function being guided by a clarity requirement. With the sum of the indexes ofdispersion ($\Sigma D$) or the mutual information ($MI$) as objective function,the method yield partitions in good agreement with the Aufbau rules for Li-Rn atoms and with Lewis's pairing model for molecules.
Collapse
Affiliation(s)
- Bernard Silvi
- Laboratoire de Chimie Théorique, Sorbonne Université Faculté des Sciences et Ingénierie, France
| | | |
Collapse
|
16
|
Pujal L, van Zyl M, Vöhringer-Martinez E, Verstraelen T, Bultinck P, Ayers PW, Heidar-Zadeh F. Constrained iterative Hirshfeld charges: A variational approach. J Chem Phys 2022; 156:194109. [PMID: 35597660 DOI: 10.1063/5.0089466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a variational procedure for the iterative Hirshfeld (HI) partitioning scheme. The main practical advantage of having a variational framework is that it provides a formal and straightforward approach for imposing constraints (e.g., fixed charges on certain atoms or molecular fragments) when computing HI atoms and their properties. Unlike many other variants of the Hirshfeld partitioning scheme, HI charges do not arise naturally from the information-theoretic framework, but only as a reverse-engineered construction of the objective function. However, the procedure we use is quite general and could be applied to other problems as well. We also prove that there is always at least one solution to the HI equations, but we could not prove that its self-consistent equations would always converge for any given initial pro-atom charges. Our numerical assessment of the constrained iterative Hirshfeld method shows that it satisfies many desirable traits of atoms in molecules and has the potential to surpass existing approaches for adding constraints when computing atomic properties.
Collapse
Affiliation(s)
- Leila Pujal
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7N 3N6, Canada
| | - Maximilian van Zyl
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7N 3N6, Canada
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052 Zwijnaarde, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7N 3N6, Canada
| |
Collapse
|
17
|
MacDonell RJ, Patchkovskii S, Schuurman MS. A Comparison of Partial Atomic Charges for Electronically Excited States. J Chem Theory Comput 2022; 18:1061-1071. [PMID: 35015528 DOI: 10.1021/acs.jctc.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partial atomic charges are a useful and intuitive concept for understanding molecular properties and chemical reaction mechanisms, showing how changes in molecular geometry can affect the flow of electronic charge within a molecule. However, the use of partial atomic charges remains relatively uncommon in the characterization of excited-state electronic structure. Here, we show how well-established partial atomic charge methods perform for interatomic, intermolecular, and interbond electron transfer in electronically excited states. Our results demonstrate the utility of real-space partial atomic charges for interpreting the electronic structures that arise in excited-state processes. Furthermore, we show how this analysis can be used to demonstrate that analogous electronic structures arise near photochemically relevant conical intersection regions for several conjugated polyenes. On the basis of our analysis, we find that charges computed using the iterative Hirshfeld approach provide results which are consistent with chemical intuition and are transferable between homologous molecular systems.
Collapse
Affiliation(s)
- Ryan J MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Serguei Patchkovskii
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.,National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
18
|
Galabov B, Popov VA, Cheshmedzhieva D, Ilieva S, Schaefer III HF. Hydrogen Bonding as a Probe of Electron Density Variations: Substituted Pyridines. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tandiana R, Sicard-Roselli C, Van-Oanh NT, Steinmann S, Clavaguéra C. In-depth theoretical understanding of the chemical interaction of aromatic compounds with a gold nanoparticle. Phys Chem Chem Phys 2022; 24:25327-25336. [DOI: 10.1039/d2cp02654f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The orientations of aromatic molecules at the surface of gold nanoparticles are probed and characterized by a combination of several topological analyses, energy decomposition analyses, and infrared spectroscopy.
Collapse
Affiliation(s)
- Rika Tandiana
- Institut de Chimie Physique, Université Paris-Saclay – CNRS, UMR 8000, 91405 Orsay, France
| | - Cécile Sicard-Roselli
- Institut de Chimie Physique, Université Paris-Saclay – CNRS, UMR 8000, 91405 Orsay, France
| | - Nguyen-Thi Van-Oanh
- Institut de Chimie Physique, Université Paris-Saclay – CNRS, UMR 8000, 91405 Orsay, France
| | | | - Carine Clavaguéra
- Institut de Chimie Physique, Université Paris-Saclay – CNRS, UMR 8000, 91405 Orsay, France
| |
Collapse
|
20
|
Abstract
One challenge in chemistry is the plethora of often disparate models for rationalizing the electronic structure of molecules. Chemical concepts abound, but their connections are often frail. This work describes a quantum-mechanical framework that enables a combination of ideas from three approaches common for the analysis of chemical bonds: energy decomposition analysis (EDA), quantum chemical topology, and molecular orbital (MO) theory. The glue to our theory is the electron energy density, interpretable as one part electrons and one part electronegativity. We present a three-dimensional analysis of the electron energy density and use it to redefine what constitutes an atom in a molecule. Definitions of atomic partial charge and electronegativity follow in a way that connects these concepts to the total energy of a molecule. The formation of polar bonds is predicted to cause inversion of electronegativity, and a new perspective of bonding in diborane and guanine-cytosine base-pairing is presented. The electronegativity of atoms inside molecules is shown to be predictive of pKa .
Collapse
Affiliation(s)
- Stefano Racioppi
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 441258GothenburgSweden
| | - Martin Rahm
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 441258GothenburgSweden
| |
Collapse
|
21
|
Tarannam N, Shukla R, Kozuch S. Yet another perspective on hole interactions. Phys Chem Chem Phys 2021; 23:19948-19963. [PMID: 34514473 DOI: 10.1039/d1cp03533a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hole interactions are known by different names depending on the key atom of the bond (halogen bond, chalcogen bond, hydrogen bond, etc.), and the geometry of the interaction (σ if in line, π if perpendicular to the Lewis acid plane). However, its origin starts with the creation of a Lewis acid by an underlying covalent bond, which forms an electrostatic depletion and a virtual antibonding orbital, which can create non-covalent interactions with Lewis bases. In this (maybe subjective) perspective, we will claim that hole interactions must be defined via the molecular orbital origin of the molecule. Under this premise we can better explore the richness of such bonding patterns. For that, we will study old, recent and new systems, trying to pinpoint some misinterpretations that are often associated with them. We will use as exemplars the triel bonds, a couple of metal complexes, a discussion on convergent σ-holes, and many cases of anti-electrostatic hole interactions.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Rahul Shukla
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| |
Collapse
|
22
|
Alabugin IV, Kuhn L, Krivoshchapov NV, Mehaffy P, Medvedev MG. Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chem Soc Rev 2021; 50:10212-10252. [PMID: 34542133 DOI: 10.1039/d1cs00564b] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interplay of multiple components (steric, electrostatic, stereoelectronic, dispersive, etc.) that define the overall energy, structure, and reactivity of organic molecules can be a daunting task. The task becomes even more difficult when multiple approaches based on different physical premises disagree in their analysis of a multicomponent molecular system. Herein, we will use a classic conformational "oddity", the anomeric effect, to discuss the value of identifying the key contributors to reactivity that can guide chemical predictions. After providing the background related to the relevant types of hyperconjugation and a brief historic outline of the origins of the anomeric effect, we outline variations of its patterns and provide illustrative examples for the role of the anomeric effect in structure, stability, and spectroscopic properties. We show that the complete hyperconjugative model remains superior in explaining the interplay between structure and reactivity. We will use recent controversies regarding the origin of the anomeric effect to start a deeper discussion relevant to any electronic effect. Why are such questions inherently controversial? How to describe a complex quantum system using a model that is "as simple as possible, but no simpler"? What is a fair test for such a model? Perhaps, instead of asking "who is right and who is wrong?" one should ask "why do we disagree?". Stereoelectronic thinking can reconcile quantum complexity with chemical intuition and build the conceptual bridge between structure and reactivity. Even when many factors contribute to the observed structural and conformational trends, electron delocalization is a dominating force when the electronic demand is high (i.e., bonds are breaking as molecules distort from their equilibrium geometries). In these situations, the role of orbital interactions increases to the extent where they can define reactivity. For example, negative hyperconjugation can unleash the "underutilized" stereoelectronic power of unshared electrons (i.e., the lone pairs) to stabilize a developing positive charge at an anomeric carbon. This analysis paves the way for the broader discussion of the omnipresent importance of negative hyperconjugation in oxygen-containing functional groups. From that point of view, the stereoelectronic component of the anomeric effect plays a unique role in guiding reaction design.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| |
Collapse
|
23
|
Cheshmedzhieva D, Ilieva S, Hadjieva B, Galabov B. Hydrogen bonding probes electron density variations at the basic center in substituted alkyl benzoates: Theory and experiment. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sonia Ilieva
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Boris Galabov
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| |
Collapse
|
24
|
Pablo‐García S, García‐Muelas R, Sabadell‐Rendón A, López N. Dimensionality reduction of complex reaction networks in heterogeneous catalysis: From l
inear‐scaling
relationships to statistical learning techniques. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio Pablo‐García
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Rodrigo García‐Muelas
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Albert Sabadell‐Rendón
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Núria López
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| |
Collapse
|
25
|
Lozynski M, Rusinska-Roszak D. Finding the direct energy-structure correlations in intramolecular aromaticity assisted hydrogen bonding (AAHB). J Mol Graph Model 2021; 105:107884. [PMID: 33725643 DOI: 10.1016/j.jmgm.2021.107884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
A predictive model for intramolecular hydrogen bond energy (EHB) calculation of polyaromatic ortho-hydroxyaldehydes based on a set of small, functionalized hydrocarbons is developed. The complete data set of 18 compounds was used for this study. The model is based on one of four optional categories of molecular descriptors: geometric, spectroscopic, bond order and topological indices. The model of Wiberg bond indices (WBIs) as descriptors of the CC involved bond based on stepwise regression has acceptable prediction abilities for 14 structures of ortho-hydroxyformylobenzo[a]pyrene derivatives already at the semiempirical level. The presented correlation enables a significantly more rapid and quantitative description of the hydrogen bonding strength than the much more time-consuming MTA method. Thus, WBIs are shown to provide a reliable means for fast prescreening of the energy of chelate hydrogen bonds potentially for any polyaromatic derivatives.
Collapse
Affiliation(s)
- Marek Lozynski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Danuta Rusinska-Roszak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| |
Collapse
|
26
|
Sessa F, Olsson M, Söderberg F, Wang F, Rahm M. Experimental Quantum Chemistry: A Hammett-inspired Fingerprinting of Substituent Effects. Chemphyschem 2021; 22:569-576. [PMID: 33502056 PMCID: PMC8049055 DOI: 10.1002/cphc.202001053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Indexed: 01/20/2023]
Abstract
The quantum mechanically calculable Q descriptor is shown to be a potent quantifier of chemical reactivity in complex molecules - it shows a strong correlation to experimentally derived field effects in non-aromatic substrates and Hammett σm and σp parameters. Models for predicting substituent effects from Q are presented and applied, including on the elusive pentazolyl substituent. The presented approach enables fast computational estimation of substituent effects, and, in extension, medium-throughput screening of molecules and compound design. An experimental dataset is suggested as a candidate benchmark for aiding the general development and comparison of electronic structure analyses. It is here used to evaluate the experimental quantum chemistry (EQC) framework for chemical bonding analysis in larger molecules.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE-412 96GothenburgSweden
| | - Martina Olsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE-412 96GothenburgSweden
| | - Fredrik Söderberg
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE-412 96GothenburgSweden
| | - Fang Wang
- Department of ChemistryUniversity of Rhode Island140 Flagg RoadKingstonRhode Island02881USA
| | - Martin Rahm
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE-412 96GothenburgSweden
| |
Collapse
|
27
|
Piras A, Ehlert C, Gryn'ova G. Sensing and sensitivity: Computational chemistry of
graphene‐based
sensors. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Piras
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH) and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| |
Collapse
|
28
|
Gupta R, Rezabal E, Hasrack G, Frison G. Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case*. Chemistry 2020; 26:17230-17241. [PMID: 32780465 DOI: 10.1002/chem.202001945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Quantum chemical calculations and NBO, ETS-NOCV, QTAIM and ELF interpretative approaches have been carried out on C-donor ligand-stabilized dihydrido borenium cations. Numerous descriptors of the C-B π-bond strength obtained from orbital localization, energy partitioning or topological methods as well as from structural and chemical parameters have been calculated for 39 C-donor ligands including N-heterocyclic carbenes and carbones. Comparison of the results allows the identification of relative and absolute descriptors of the π interaction. For both families of descriptors excellent correlations are obtained. This enables the establishment of a π-donation capability scale and shows that the interpretative methods, despite their conceptual differences, describe the same chemical properties. These results also reveal noticeable shortcomings in these popular methods, and some precautions that need to be taken to interpret their results adequately.
Collapse
Affiliation(s)
- Radhika Gupta
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Elixabete Rezabal
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Faculty of Chemistry, Donostia International Physics Center (DIPC), University of the Basque Country UPV/EHU, 20018, Donostia, Spain
| | - Golshid Hasrack
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gilles Frison
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
29
|
Lin KH, Corminboeuf C. FB-ECDA: Fragment-based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. J Phys Chem A 2020; 124:10624-10634. [DOI: 10.1021/acs.jpca.0c09743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Espinosa Ferao A, Rey Planells A, Streubel R. Between Oxirane and Phosphirane: The Spring‐loaded Oxaphosphirane Ring. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Arturo Espinosa Ferao
- Department of Organic Chemistry Faculty of Chemistry University of Murcia Campus de Espinardo 30100 Murcia
| | - Alicia Rey Planells
- Department of Organic Chemistry Faculty of Chemistry University of Murcia Campus de Espinardo 30100 Murcia
| | - Rainer Streubel
- Institute of Inorganic Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1
| |
Collapse
|
31
|
|
32
|
Zhao DX, Zhao J, Yang ZZ. Partitioning a Molecule into the Atomic Basins and the Resultant Atomic Charges from Quantum Chemical Topology Analysis of the Kohn-Sham Potential. J Phys Chem A 2020; 124:5023-5032. [PMID: 32423212 DOI: 10.1021/acs.jpca.0c01289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum chemical topology (QCT) solidifies the chemical basic concepts demonstrating how a molecular system is intrinsically partitioned into its components and what the interaction lines between them are. Here, QCT analysis using a Kohn-Sham one-electron potential (KSpot) in KS equation as a scalar function is initiated and explored, showing KSpot and its resultant electron force lines have novel spatial features which reveal that an atom in a molecule is a spatial basin governed by its nucleus as a 3D-attractor that terminates all the electron force lines defined by the negative gradient of KSpot and that a chemical bond line is just a minimum path of KSpot for the electron motion. Particularly, the atomic charges from this KSpot QCT analysis are moderate and good, having much lower dependence on basis sets chosen for computation. This may provide a platform for the study of molecular structures and properties, intra- and intermolecular electrostatic interaction, energy decomposition, and construction of force field.
Collapse
Affiliation(s)
- Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
33
|
Cho M, Sylvetsky N, Eshafi S, Santra G, Efremenko I, Martin JML. The Atomic Partial Charges Arboretum: Trying to See the Forest for the Trees. Chemphyschem 2020; 21:688-696. [PMID: 32052532 PMCID: PMC7317385 DOI: 10.1002/cphc.202000040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Indexed: 11/20/2022]
Abstract
Atomic partial charges are among the most commonly used interpretive tools in quantum chemistry. Dozens of different 'population analyses' are in use, which are best seen as proxies (indirect gauges) rather than measurements of a 'general ionicity'. For the GMTKN55 benchmark of nearly 2,500 main-group molecules, which span a broad swathe of chemical space, some two dozen different charge distributions were evaluated at the PBE0 level near the 1-particle basis set limit. The correlation matrix between the different charge distributions exhibits a block structure; blocking is, broadly speaking, by charge distribution class. A principal component analysis on the entire dataset suggests that nearly all variation can be accounted for by just two 'principal components of ionicity': one has all the distributions going in sync, while the second corresponds mainly to Bader QTAIM vs. all others. A weaker third component corresponds to electrostatic charge models in opposition to the orbital-based ones. The single charge distributions that have the greatest statistical similarity to the first principal component are iterated Hirshfeld (Hirshfeld-I) and a minimal-basis projected modification of Bickelhaupt charges. If three individual variables, rather than three principal components, are to be identified that contain most of the information in the whole dataset, one representative for each of the three classes of Corminboeuf et al. is needed: one based on partitioning of the density (such as QTAIM), a second based on orbital partitioning (such as NPA), and a third based on the molecular electrostatic potential (such as HLY or CHELPG).
Collapse
Affiliation(s)
- Minsik Cho
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
- Present Address: Department of ChemistryBrown UniversityProvidenceRhode Island02912USA
| | - Nitai Sylvetsky
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
| | - Sarah Eshafi
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
- Present Address: Integrated Science ProgramMcMaster UniversityHamiltonOntarioL8S 4 M1Canada
| | - Golokesh Santra
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
| | - Irena Efremenko
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
| | - Jan M. L. Martin
- Department of Organic ChemistryWeizmann Institute of Science76100RehovotIsrael
| |
Collapse
|
34
|
Ohno T, Kubicki JD. Adsorption of Organic Acids and Phosphate to an Iron (Oxyhydr)oxide Mineral: A Combined Experimental and Density Functional Theory Study. J Phys Chem A 2020; 124:3249-3260. [PMID: 32227955 DOI: 10.1021/acs.jpca.9b12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of soil organic matter with mineral surfaces is a critical reaction involved in many ecosystem services, including stabilization of organic matter in the terrestrial carbon pool and bioavailability of plant nutrients. Using model organic acids typically present in soil solutions, this study couples laboratory adsorption studies with density functional theory (DFT) to provide physical insights into the nature of the chemical bonding between carboxylate functional groups and a model FeOOH cluster. Topological determination of electron density at bond critical points using quantum theory of atoms in molecules (QTAIM) analysis revealed that the presence of multiple bonding paths between the organic acid and the FeOOH cluster is essential in determining the competitive adsorption of organic acids and phosphate for FeOOH surface adsorption sites. The electron density and Laplacian parameter values from QTAIM indicated that the primary carboxylate-FeOOH bond was more ionic than covalent in nature. The experimental and computational results provide molecular-level evidence of the important role of electrostatic forces in the bonding between carboxylic acids and Fe-hydroxides. This knowledge may assist in the formulation of management studies to meet the challenges of maintaining ecosystems services in the face of a changing climate.
Collapse
Affiliation(s)
- Tsutomu Ohno
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - James D Kubicki
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
35
|
Affiliation(s)
- Ashim Nandi
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Sebastian Kozuch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
36
|
Galabov B, Koleva G, Hadjieva B, Schaefer HF. π‐Hydrogen Bonding Probes Chemical Reactivity: Bromination of a CC Double Bond and Electrophilic Aromatic Benzylation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Boris Galabov
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Gergana Koleva
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Henry F. Schaefer
- Center for Computational Quantum ChemistryUniversity of Georgia 1004 Cedar Street, Athens Georgia 30602 USA
| |
Collapse
|
37
|
Nikolaienko TY, Chuiko VS, Bulavin LA. The dataset of covalent bond lengths resulting from the first-principle calculations. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Carvalho LC, Bueno MA, de Oliveira BG. The interplay and strength of the π⋯HF, C⋯HF, F⋯HF and F⋯HC hydrogen bonds upon the formation of multimolecular complexes based on C 2H 2⋯HF and C 2H 4⋯HF small dimers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:438-455. [PMID: 30738351 DOI: 10.1016/j.saa.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The conception of this theoretical research was idealized aiming to unveil the intermolecular structures of complexes formed by acetylene or ethylene and hydrofluoric acid. At light of computational calculations by using the B3LYP/6-311++G(d,p) method, the geometries of the C2H2⋯(HF), C2H2⋯2(HF), C2H2⋯4(HF), C2H4⋯(HF), C2H4⋯2(HF) and C2H4⋯4(HF) hydrogen-bonded complexes were fully optimized. Moreover, the Post-Hartree-Fock calculations MP2/6-311++G(d,p), MP2/aug-cc-pVTZ, MP4(SDQ)/6-311++G(d,p) and CCSD/6-311++G(d,p) also were also used. The infrared spectra were analyzed in order to identify the new vibrational modes and frequencies of the proton donors shifted to red region. Through the modeling of charge-fluxes on the basis of the Quantum Theory of Atoms In Molecules (QTAIM) and, by contradicting the expectation of the hydrofluorination mechanisms of acetylene or ethylene, C⋯HF was recognized as a new type of hydrogen bond instead of the already well known π⋯H. The calculations of the Natural Bonding Orbital (NBO) and Charges derived from the Electrostatic Potential Grid-based (ChElPG) were also applied to interpret the shifting frequencies as well as measuring of the punctual charge-transfer after the formation of the complexes. Finally, the determination of the stabilization energy was carried out through the arguments of the Fock matrix in NBO basis and through the supermolecule approach. Also it is worthwhile to notice that some algebraic formulations were used for determining the electronic cooperative effect (CE).
Collapse
|
39
|
Nikolova V, Cheshmedzhieva D, Ilieva S, Galabov B. Atomic Charges in Describing Properties of Aromatic Molecules. J Org Chem 2019; 84:1908-1915. [PMID: 30620875 DOI: 10.1021/acs.joc.8b02908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance of four frequently employed population analysis methods is assessed by comparisons with experimentally derived properties of monosubstituted benzene derivatives. The analysis is based on the expected dependence between site reactivities and electron densities at the respective ring carbon atoms. The correspondence between charges obtained from Mulliken, NPA, Hirshfeld, and QTAIM approaches and the σ0m and σ0p aromatic substituent constants is examined. The series of molecules investigated includes benzene and 18 monosubstituted derivatives. The atomic charges are derived using the B3LYP, ωB97X-D density functional, and MP2 MO methods combined with the 6-311++G(3df,2pd) basis set. A quantitative correspondence between Hirshfeld charges and σ0 constants is established. Application of Møller-Plesset second-order perturbation theory (MP2) wave functions appears to be essential in obtaining a more realistic electron density distribution. NPA and QTAIM charges provide in most cases a satisfactory description of the substituent effects. The net transfer of charges between substituents and the aromatic ring is assessed.
Collapse
Affiliation(s)
- Valia Nikolova
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Diana Cheshmedzhieva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Sonia Ilieva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Boris Galabov
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| |
Collapse
|
40
|
Grisafi A, Fabrizio A, Meyer B, Wilkins DM, Corminboeuf C, Ceriotti M. Transferable Machine-Learning Model of the Electron Density. ACS CENTRAL SCIENCE 2019; 5:57-64. [PMID: 30693325 PMCID: PMC6346381 DOI: 10.1021/acscentsci.8b00551] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 05/24/2023]
Abstract
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.
Collapse
Affiliation(s)
- Andrea Grisafi
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Alberto Fabrizio
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin Meyer
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - David M. Wilkins
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Morgante P, Peverati R. Statistically representative databases for density functional theory via data science. Phys Chem Chem Phys 2019; 21:19092-19103. [DOI: 10.1039/c9cp03211h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster analysis applied to quantum chemistry: a new broad database of chemical properties with a reasonable computational cost.
Collapse
|
42
|
Staub R, Iannuzzi M, Khaliullin RZ, Steinmann SN. Energy Decomposition Analysis for Metal Surface-Adsorbate Interactions by Block Localized Wave Functions. J Chem Theory Comput 2018; 15:265-275. [PMID: 30462497 DOI: 10.1021/acs.jctc.8b00957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The energy decomposition analysis based on block localized wave functions (BLW-EDA) allows one to gain physical insight into the nature of chemical bonding, decomposing the interaction energy in (1) a "frozen" term, accounting for the attraction due to electrostatic and dispersion interactions, modulated by Pauli repulsion, (2) the variationally assessed polarization energy, and (3) the charge transfer. This method has so far been applied to gas- and condensed-phase molecular systems. However, its standard version is not compatible with fractionally occupied orbitals (i.e., electronic smearing) and, as a consequence, cannot be applied to metallic surfaces. In this work, we propose a simple and practical extension of BLW-EDA to fractionally occupied orbitals, termed Ensemble BLW-EDA. As illustrative examples, we have applied the developed method to analyze the nature of the interaction of various adsorbates on Pt(111), ranging from physisorbed water to strongly chemisorbed ethylene. Our results show that polarization and charge transfer both contribute significantly at the adsorption minimum for all studied systems. The energy decomposition analysis provides details with respect to competing adsorption sites (e.g., CO on atop vs hollow sites) and elucidates the respective importance of polarization and charge transfer for the increased adsorption energy of H2S compared to H2O. Our development will enable a deeper understanding of the impact of charge transfer on catalytic processes in general.
Collapse
Affiliation(s)
- Ruben Staub
- Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS Université Lyon 1 , Laboratoire de Chimie UMR 5182 , 46 allée d'Italie , Lyon , F-69364 , France
| | - Marcella Iannuzzi
- Institut für Chemie , University of Zurich , Winterthurerstrasse 190 , Zurich , CH-8057 , Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Québec H3A 0B8 , Canada
| | - Stephan N Steinmann
- Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS Université Lyon 1 , Laboratoire de Chimie UMR 5182 , 46 allée d'Italie , Lyon , F-69364 , France
| |
Collapse
|
43
|
Gryn'ova G, Lin KH, Corminboeuf C. Read between the Molecules: Computational Insights into Organic Semiconductors. J Am Chem Soc 2018; 140:16370-16386. [PMID: 30395466 PMCID: PMC6287891 DOI: 10.1021/jacs.8b07985] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
performance and key electronic properties of molecular organic
semiconductors are dictated by the interplay between the chemistry
of the molecular core and the intermolecular factors of which manipulation
has inspired both experimentalists and theorists. This Perspective
presents major computational challenges and modern methodological
strategies to advance the field. The discussion ranges from insights
and design principles at the quantum chemical level, in-depth atomistic
modeling based on multiscale protocols, morphological prediction and
characterization as well as energy-property maps involving data-driven
analysis. A personal overview of the past achievements and future
direction is also provided.
Collapse
Affiliation(s)
- Ganna Gryn'ova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.,Laboratory for Computational Molecular Design and National Center for Computational Design and Discovery of Novel Materials (MARVEL) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
44
|
Pecher L, Tonner R. Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Pecher
- Fachbereich Chemie Philipps‐Universität Marburg Marburg Germany
| | - Ralf Tonner
- Fachbereich Chemie and Material Sciences Center Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
45
|
Jara-Cortés J, Landeros-Rivera B, Hernández-Trujillo J. Unveiling the role of intra and interatomic interactions in the energetics of reaction schemes: a quantum chemical topology analysis. Phys Chem Chem Phys 2018; 20:27558-27570. [PMID: 30371704 DOI: 10.1039/c8cp03775b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work we present a detailed analysis of selected reaction schemes in terms of the atomic components of the electronic energy defined by the quantum theory of atoms in molecules and the interacting quantum atoms method. The aim is to provide an interpretation tool for the energy change involved in a chemical reaction by means of the atomic and interaction contributions to the energies of the molecules involved. Ring strain in cyclic alkanes, the resonance energy of aromatic and antiaromatic molecules, local aromaticity in polycyclic aromatic hydrocarbons, intermolecular bonding in hydrogen fluoride clusters, and hydration of d-block metal dications were selected for the study. It was found that in addition to the changes in the strong C-C interactions in the carbon skeleton of the organic molecular rings, other contributions not usually considered to be important such as those between C and H atoms (either bonded or not) need to be considered in order to account for the net energy changes. The analysis unveils the role of the ionic and covalent contributions to the hydrogen bonding in HF clusters and the energetic origin and extent of cooperative effects involved. Moreover, the "double-hump" behavior observed for the hydration energy trend of [M(H2O)6]2+ complexes is explained in terms of the deformation energy of the metal cation and the increasingly covalent metal-water interactions. In addition, proper comparisons with the description provided by other methodologies are briefly discussed. The topological approach proposed in this contribution proves to be useful for the description of energy changes of apposite reaction schemes in chemically meaningful terms.
Collapse
Affiliation(s)
- Jesús Jara-Cortés
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, México City, 04510, Mexico.
| | | | | |
Collapse
|
46
|
Vannay L, Meyer B, Petraglia R, Sforazzini G, Ceriotti M, Corminboeuf C. Analyzing Fluxional Molecules Using DORI. J Chem Theory Comput 2018; 14:2370-2379. [PMID: 29570294 DOI: 10.1021/acs.jctc.7b01176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Density Overlap Region Indicator (DORI) is a density-based scalar field that reveals covalent bonding patterns and noncovalent interactions in the same value range. This work goes beyond the traditional static quantum chemistry use of scalar fields and illustrates the suitability of DORI for analyzing geometrical and electronic signatures in highly fluxional molecular systems. Examples include a dithiocyclophane, which possesses multiple local minima with differing extents of π-stacking interactions and a temperature dependent rotation of a molecular rotor, where the descriptor is employed to capture fingerprints of CH-π and π-π interactions. Finally, DORI serves to examine the fluctuating π-conjugation pathway of a photochromic torsional switch (PTS). Attention is also placed on postprocessing the large amount of generated data and juxtaposing DORI with a data-driven low-dimensional representation of the structural landscape.
Collapse
|
47
|
Nikolaienko TY, Bulavin LA. Atomic charges for conformationally rich molecules obtained through a modified principal component regression. Phys Chem Chem Phys 2018; 20:2890-2903. [PMID: 29327000 DOI: 10.1039/c7cp05703b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modification of the principal component regression model is proposed for obtaining a fixed set of atomic charges (referred to as dipole-derived charges) optimized for reproducing the dipole moment of a conformationally rich molecule, i.e., a molecule with multiple local minima on the potential energy surface. The method does not require any adjustable parameters and requires the geometries of conformers, their dipole moments and atomic polar tensor (APT) charges as the only input data. The fixed atomic charges generated by the method not only reproduce the molecular dipole moment in all the conformers accurately, but are also numerically close to the APT charges, thereby ensuring accurate reproduction of the dipole moment variations caused by small geometrical distortions (e.g., by vibrations) of the conformers. The proposed method has been applied to canonical 2'-deoxyribonucleotides, the model DNA monomers, and the dipole-derived charges have been shown to outperform both the averaged APT and RESP charges in reproducing the dipole moments of large sets of conformers, thus demonstrating a potential usefulness of the dipole-derived charges as a 'reference point' for modeling polarization effects in conformationally rich molecules.
Collapse
Affiliation(s)
- Tymofii Yu Nikolaienko
- Taras Shevchenko National University of Kyiv, Faculty of Physics, 64/13, Volodymyrska Street, City of Kyiv, 01601, Ukraine.
| | | |
Collapse
|
48
|
Andrés J, González-Navarrete P, Safont VS, Silvi B. Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Phys Chem Chem Phys 2018; 19:29031-29046. [PMID: 29077108 DOI: 10.1039/c7cp06108k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the usefulness of curly arrows in chemistry, their relationship with real electron density flows is still imprecise, and even their direct connection to quantum chemistry is still controversial. The paradigmatic description - from first principles - of the mechanistic aspects of a given chemical process is based mainly on the relative energies and geometrical changes at the stationary points of the potential energy surface along the reaction pathway; however, it is not sufficient to describe chemical systems in terms of bonding aspects. Probing the electron density distribution during a chemical reaction can provide important insights, enabling us to understand and control chemical reactions. This aim has required an extension of the relationships between the concepts of traditional chemistry and those of quantum mechanics. Bonding evolution theory (BET), which combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT), provides a powerful method that offers insight into the molecular mechanism of chemical rearrangements. In agreement with the laws of physical and aspects of quantum theory, BET can be considered an appropriate tool to tackle chemical reactivity with a wide range of possible applications. In this work, BET is applied to address a long-standing problem: the ability to monitor the flow of electron density. BET analysis shows a connection between quantum mechanics and bond making/forming processes. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds and provides detailed physical grounds for this type of representation. We demonstrate this procedure using the test set of prototypical examples of thermal ring apertures, and the degenerated Cope rearrangement of semibullvalene.
Collapse
Affiliation(s)
- Juan Andrés
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain.
| | | | | | | |
Collapse
|
49
|
Osman HH, Salvadó MA, Pertierra P, Engelkemier J, Fredrickson DC, Recio JM. Chemical Pressure Maps of Molecules and Materials: Merging the Visual and Physical in Bonding Analysis. J Chem Theory Comput 2018; 14:104-114. [PMID: 29211959 DOI: 10.1021/acs.jctc.7b00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of bonding interactions in molecules and materials is one of the major applications of quantum mechanical calculations. Numerous schemes have been devised to identify and visualize chemical bonds, including the electron localization function, quantum theory of atoms in molecules, and natural bond orbital analysis, whereas the energetics of bond formation are generally analyzed in qualitative terms through various forms of energy partitioning schemes. In this Article, we illustrate how the chemical pressure (CP) approach recently developed for analyzing atomic size effects in solid state compounds provides a basis for merging these two approaches, in which bonds are revealed through the forces of attraction and repulsion acting between the atoms. Using a series of model systems that include simple molecules (H2, CO2, and S8), extended structures (graphene and diamond), and systems exhibiting intermolecular interactions (ice and graphite), as well as simple representatives of metallic and ionic bonding (Na and NaH, respectively), we show how CP maps can differentiate a range of bonding phenomena. The approach also allows for the partitioning of the potential and kinetic contributions to the interatomic interactions, yielding schemes that capture the physical model for the chemical bond offered by Ruedenberg and co-workers.
Collapse
Affiliation(s)
- Hussien H Osman
- MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo , E-33006 Oviedo, Spain.,Department of Chemistry, Faculty of Science, Helwan University , Ain-Helwan, 11795 Cairo, Egypt
| | - Miguel A Salvadó
- MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo , E-33006 Oviedo, Spain
| | - Pilar Pertierra
- MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo , E-33006 Oviedo, Spain
| | - Joshua Engelkemier
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel C Fredrickson
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo , E-33006 Oviedo, Spain.,Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
50
|
Abstract
With molecular orbital theory it is possible to distinguish and design σ, π and the elusive δ electrostatic holes.
Collapse
Affiliation(s)
- V. Angarov
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 841051
- Israel
| | - S. Kozuch
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 841051
- Israel
| |
Collapse
|