1
|
Stroh AL, Radziun D, Korczyk M, Crucianelli L, Ehrsson HH, Szwed M. Blind individuals' enhanced ability to sense their own heartbeat is related to the thickness of their occipital cortex. Cereb Cortex 2024; 34:bhae324. [PMID: 39152673 PMCID: PMC11329624 DOI: 10.1093/cercor/bhae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Maksymilian Korczyk
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Department of Biological and Experimental Psychology, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
2
|
Parfenov EA, Duncan NW. Increasing familiarity with the heartbeat counting task does not affect performance. Biol Psychol 2023; 183:108662. [PMID: 37598881 DOI: 10.1016/j.biopsycho.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Interoception is typically defined as the processing and perception of internal signals. A common evaluation of interoceptive abilities is the heartbeat counting task, during which participants count their heartbeats over a period of time. It has been argued recently, however, that performance in this task may reflect processes other than cardiac sensation. OBJECTIVE This study aimed to: 1) observe heartbeat counting task performance changes across multiple repetitions of the task; and 2) compare performance in the heartbeat counting task with that for a visual counting task to investigate generalised propensities for how uncertain stimuli are reported. METHODS Seventy-nine healthy participants performed seven blocks each of the heartbeat and visual counting tasks. Scores for each of the tasks were compared across blocks to identify any change in performance. Performance in the two tasks was then correlated. The study was preregistered at https://doi.org/10.17605/OSF.IO/GWAB7. RESULTS Heartbeat counting task performance did not change over blocks. In contrast, scores for the visual counting task reduced over time. A positive correlation was seen between performance in the two tasks (ρ(79) = .27). CONCLUSION Heartbeat counting task performance is stable across repetitions of the task, not changing with increasing familiarity. This suggests that non-interoceptive factors, such as beliefs, may be involved. The correlation between the heartbeat and visual counting tasks may point to a general propensity in counting uncertain stimuli across sensory domains. Together, these results raise questions about the interpretation of the heartbeat counting task as a measure of interoception.
Collapse
Affiliation(s)
- Evgeny A Parfenov
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Radziun D, Crucianelli L, Ehrsson HH. Limits of Cross-modal Plasticity? Short-term Visual Deprivation Does Not Enhance Cardiac Interoception, Thermosensation, or Tactile Spatial Acuity. Biol Psychol 2021; 168:108248. [PMID: 34971758 DOI: 10.1016/j.biopsycho.2021.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the effect of short-term visual deprivation on discriminative touch, cardiac interoception, and thermosensation by asking 64 healthy volunteers to perform four behavioral tasks. The experimental group contained 32 subjects who were blindfolded and kept in complete darkness for 110minutes, while the control group consisted of 32 volunteers who were not blindfolded but were otherwise kept under identical experimental conditions. Both groups performed the required tasks three times: before and directly after deprivation (or control) and after an additional washout period of 40minutes, in which all participants were exposed to normal light conditions. Our results showed that short-term visual deprivation had no effect on any of the senses tested. This finding suggests that short-term visual deprivation does not modulate basic bodily senses and extends this principle beyond tactile processing to the interoceptive modalities of cardiac and thermal sensations.
Collapse
Affiliation(s)
- Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Pizzey FK, Tourula E, Pearson J. Tolerance to Central Hypovolemia Is Greater Following Caffeinated Coffee Consumption in Habituated Users. Front Physiol 2020; 11:50. [PMID: 32116762 PMCID: PMC7013032 DOI: 10.3389/fphys.2020.00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
We investigated the influence of caffeinated coffee consumption on cardiovascular responses and tolerance to central hypovolemia in individuals habituated to caffeine. Thirteen participants completed three trials, consuming caffeinated coffee, decaffeinated coffee or water before exposure to central hypovolemia via lower body negative pressure (LBNP) to pre syncope. Tolerance to central hypovolemia was quantified as cumulative stress index (CSI: LBNP level multiplied by time; mmHg × min). Prior to the consumption of caffeinated coffee, decaffeinated coffee, and water, heart rate (HR: 62 ± 10, 63 ± 9 and 61 ± 8 BPM, respectively), stroke volume (SV: 103 ± 23, 103 ± 17 and 102 ± 18 mL/beat, respectively), and total peripheral resistance (TPR: 14.2 ± 3.0, 14.0 ± 3.0, and 14.3 ± 2.7 mmHg/L/min, respectively), were not different between trials (all P > 0.05). Mean arterial pressure (MAP) increased following consumption of all drinks (Post Drink) (Caffeinated coffee: from 86 ± 8 to 97 ± 7; Decaffeinated coffee: from 88 ± 10 to 94 ± 7; and Water: from 87 ± 10 to 96 ± 6 mmHg; all P = 0.0001) but was not different between trials (P = 0.247). During LBNP, HR increased (P = 0.000) while SV decreased (P = 0.000) relative to post drink values and TPR as unchanged (P = 0.109). HR, SV, and TPR were not different between trials (all P > 0.05). MAP decreased at pre syncope in all trials (60 ± 5, 60 ± 7, and 61 ± 6 mmHg; P < 0.001). LBNP tolerance was greater following caffeinated coffee (914 ± 309 mmHg × min) relative to decaffeinated coffee and water (723 ± 336 and 769 ± 337 mmHg × min, respectively, both P < 0.05). Tolerance to central hypovolemia was greater following consumption of caffeinated coffee in habituated users.
Collapse
Affiliation(s)
- Faith K. Pizzey
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Erica Tourula
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - James Pearson
- Department of Human Physiology and Nutrition, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
5
|
Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc Natl Acad Sci U S A 2017; 114:E6260-E6269. [PMID: 28696284 DOI: 10.1073/pnas.1703728114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine's bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH.
Collapse
|
6
|
Han JY, Moon YJ, Han JH, Kim JH, Woo JH, Yoo HS, Hong JT, Ahn HY, Hong JM, Oh KW. (-)-Epigallocatechin-3-O-gallate (EGCG) attenuates the hemodynamics stimulated by caffeine through decrease of catecholamines release. Arch Pharm Res 2016; 39:1307-12. [PMID: 27457068 DOI: 10.1007/s12272-016-0757-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
A human study of the effects on hemodynamics of caffeine and epigallocatechin-3-O-gallate (EGCG) was performed. Caffeine tablets (200 mg) were orally administered to healthy males aged between 25 and 35 years 30 min after oral administration of EGCG tablets (100 and 200 mg). The increase in BP induced by caffeine was inhibited when co-administrated with EGCG. We found that caffeine slightly decreased heart rate (HR) in the volunteers. Although EGCG enhanced HR reduction, the effect was not significant. In addition, caffeine increased blood catecholamine levels, but EGCG inhibited the increase in noradrenaline, adrenaline and dopamine levels induced by caffeine. Whether EGCG decreases the elevated HR and systolic perfusion pressure, and ventricular contractility induced by adrenergic agonists in the isolated rat heart was investigated. The modified Krebs-Henseleit solution was perfused through a Langendorff apparatus to the isolated hearts of rats. HR, systolic perfusion pressure, and developed maximal rates of contraction (+dP/dtmax) and relaxation (-dP/dtmax) were increased by epinephrine (EP) and isoproterenol (IP). In contrast, EGCG decreased the elevated HR, systolic perfusion pressure, and left ventricular ±dp/dtmax induced by EP and/or IP. In conclusion, EGCG could attenuate the hemodynamics stimulated by caffeine through decreasing catecholamine release.
Collapse
Affiliation(s)
- Jin-Yi Han
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 362-763, Republic of Korea
| | - Yong-Jin Moon
- College of Oriental Medicine, Wonkwang University, Iksan, 579-749, Republic of Korea
| | - Jong-Hyun Han
- College of Oriental Medicine, Wonkwang University, Iksan, 579-749, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 579-749, Republic of Korea
| | - Jae-Hoon Woo
- College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hee-Yul Ahn
- College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Myeon Hong
- College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center (MRC), Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
7
|
Bitters: Time for a New Paradigm. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:670504. [PMID: 26074998 PMCID: PMC4446506 DOI: 10.1155/2015/670504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm.
Collapse
|
8
|
McMullen MK, Whitehouse JM, Whitton PA, Towell A. Bitter tastants alter gastric-phase postprandial haemodynamics. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:719-727. [PMID: 24802704 DOI: 10.1016/j.jep.2014.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/20/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Since Greco-Roman times bitter tastants have been used in Europe to treat digestive disorders, yet no pharmacological mechanism has been identified which can account for this practice. This study investigates whether the bitter tastants, gentian root (Gentian lutea L.) and wormwood herb (Artemisia absinthium L.), stimulate cephalic and/or gut receptors to alter postprandial haemodynamics during the gastric-phase of digestion. MATERIALS AND METHODS Normal participants ingested (1) 100 mL water plus capsules containing either cellulose (placebo-control) or 1000 mg of each tastant (n=14); or (2) 100mL of water flavoured with 500 or 1500 mg of each tastant (a) gentian (n=12) and (b) wormwood (n=12). A single beat-to-beat cardiovascular recording was obtained for the entire session. Pre/post-ingestion contrasts with the control were analysed for (1) the encapsulated tastants, in the "10 to 15" minute post-ingestion period, and (2) the flavoured water in the "5 to 10" minute post-ingestion period. RESULTS Water, the placebo-control, increased cardiac contraction force and blood pressure notwithstanding heart rate decreases. Encapsulated tastants did not further alter postprandial haemodynamics. In contrast gentian (500 and 1500 mg) and wormwood (1500 mg) flavoured water elicited increased peripheral vascular resistance and decreased cardiac output, primarily by reducing stroke volume rather than heart rate. CONCLUSIONS Drinking 100mL water elicits a pressor effect during the gastric-phase of digestion due to increased cardiac contraction force. The addition of bitter tastants to water elicits an additional and parallel pressor effect due to increased peripheral vascular resistance; yet the extent of the post-prandial blood pressure increases are unchanged, presumably due to baroreflex buffering. The vascular response elicited by bitter tastants can be categorised as a sympathetically-mediated cephalic-phase response. A possible mechanism by which bitter tastants could positively influence digestion is altering gastric-phase postprandial haemodynamics and supporting postprandial hyperaemia.
Collapse
Affiliation(s)
- Michael K McMullen
- Division of Complementary Medicine, University of Westminster, London, UK.
| | - Julie M Whitehouse
- Division of Complementary Medicine, University of Westminster, London, UK
| | | | - Anthony Towell
- Department of Psychology, University of Westminster, Westminster, UK
| |
Collapse
|
9
|
McMullen MK. Evidence does not support the suggestion that gustatory exposure to bitter tastants reduces cardiac activity. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:838-839. [PMID: 23933498 DOI: 10.1016/j.jep.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
|