1
|
Burr SD, Dorroh CC, Stewart JA. Rap1a Activity Elevated the Impact of Endogenous AGEs in Diabetic Collagen to Stimulate Increased Myofibroblast Transition and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23094480. [PMID: 35562872 PMCID: PMC9101126 DOI: 10.3390/ijms23094480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/07/2022] Open
Abstract
Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.
Collapse
|
2
|
Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells 2021; 10:cells10061286. [PMID: 34067282 PMCID: PMC8224555 DOI: 10.3390/cells10061286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is a common diabetic complication that can arise when cardiac fibroblasts transition into myofibroblasts. Myofibroblast transition can be induced by advanced glycated end products (AGEs) present in the extracellular matrix (ECM) activating RAGE (receptor for advanced glycated end products) to elicit intracellular signaling. The levels of AGEs are higher under diabetic conditions due to the hyperglycemic conditions present in diabetics. AGE/RAGE signaling has been shown to alter protein expression and ROS production in cardiac fibroblasts, resulting in changes in cellular function, such as migration and contraction. Recently, a small GTPase, Rap1a, has been identified to overlap the AGE/RAGE signaling cascade and mediate changes in protein expression. While Rap1a has been shown to impact AGE/RAGE-induced protein expression, there are currently no data examining the impact Rap1a has on AGE/RAGE-induced cardiac fibroblast function. Therefore, we aimed to determine the impact of Rap1a on AGE/RAGE-mediated cardiac fibroblast contraction, as well as the influence isolated diabetic ECM has on facilitating these effects. In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
Collapse
|
3
|
Burr SD, Stewart JA. Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells 2021; 10:cells10030557. [PMID: 33806572 PMCID: PMC8000763 DOI: 10.3390/cells10030557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.
Collapse
|
4
|
Chen MC, Lin JA, Lin HT, Chen SY, Yen GC. Potential effect of advanced glycation end products (AGEs) on spermatogenesis and sperm quality in rodents. Food Funct 2019; 10:3324-3333. [PMID: 31095144 DOI: 10.1039/c9fo00240e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to assess whether dietary advanced glycation end products (AGEs) induce testicular dysfunction. Using a BALB/c mouse model, AGE intake and serum levels were found to increase in AGE diet-treated mice relative to the controls. Histopathological damage was detected in the testes and epididymides of the AGE diet-induced mice. The total number of epididymal sperm decreased, and increased abnormal sperm rate was found in the mice. Moreover, the mice testes showed an increased level of the receptor for AGEs (RAGE) and malondialdehyde (MDA). Using a Sprague-Dawley rat model, AGE diet-induced rats showed 3- to 4-fold higher AGE intake than the controls. In these rats, higher serum and sperm MDA levels, decreased epididymal sperm numbers, and increased abnormal sperm rates were also observed. Silymarin, a natural AGE inhibitor, was found to restore these AGE-induced phenomena. Concluding from the above findings, dietary AGEs may promote testicular dysfunction.
Collapse
Affiliation(s)
- Min-Chun Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | | | | | | | | |
Collapse
|
5
|
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2019; 1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. METHODS Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. RESULTS We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. CONCLUSION A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. GENERAL SIGNIFICANCE RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
Collapse
Affiliation(s)
- Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Katja Zunkel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Samiya Al-Robaiy
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
7
|
5-Aminolevulinic Acid-Based Photodynamic Therapy Pretreatment Mitigates Ultraviolet A-Induced Oxidative Photodamage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9420745. [PMID: 30524664 PMCID: PMC6247436 DOI: 10.1155/2018/9420745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023]
Abstract
Aim To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.
Collapse
|
8
|
Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin. Glycoconj J 2017; 34:157-161. [DOI: 10.1007/s10719-017-9762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
|
9
|
de la Cueva SP, Seiquer I, Mesías M, Rufián-Henares JÁ, Delgado-Andrade C. Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells. Foods 2017; 6:E5. [PMID: 28231083 PMCID: PMC5296674 DOI: 10.3390/foods6010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
Bread crust is one of the major contributors to the intake of Maillard reaction products (MRP). MRP improve the organoleptic properties of foods and can provide biological actions such as antioxidant properties. The transport and availability of Amadori compounds (measured as furosine) and hydroxymethylfurfural (HMF)-early and intermediary MRP-from enzymatically digested bread crust (BC) and from its soluble low-molecular weight (LMW) and high-molecular weight (HMW) fractions were investigated in the Caco-2 cell line. The absorption of the early and final MRP pool was tested by measuring the absorbance recovery (280 and 420 nm). The ability of soluble BC or its fractions to lessen the production of reactive oxygen species (ROS) was examined. Amadori compounds (furosine) were transported across Caco-2 cell monolayers from the soluble BC in percentages ranging between 40% and 56%; the lower amount of the compound supplied, the higher transport rate. However, HMF transport rate (35%) was unaffected by the initial amount of the compound. Amadori compounds and HMF contained in the LMW fraction were more efficiently transported than those present in the HMW fraction, suggesting improved absorption when supplied as free forms or linked to LMW compounds. Absorbance recovery at 280 nm was higher from the LMW fraction, whereas higher recovery was detected for the HMW fraction at 420 nm. The digested BC-but not its isolated fractions-was able to significantly reduce ROS production at basal conditions and after subjecting cells to an oxidant. A clear positive action of BC on the antioxidant defence is manifested, seemingly attributable to the combined presence of soluble LMW and HMW products.
Collapse
Affiliation(s)
- Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain.
| | - Isabel Seiquer
- Department of Physiology and Biochemistry of Animal Nutrition (EEZ-CSIC), Camino del Jueves, 18100 Granada, Spain.
| | - Marta Mesías
- Institute of Food Science, Technology and Nutrition, ICTAN-CSIC, 28040 Madrid, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain.
| | - Cristina Delgado-Andrade
- Department of Physiology and Biochemistry of Animal Nutrition (EEZ-CSIC), Camino del Jueves, 18100 Granada, Spain.
| |
Collapse
|
10
|
1,25-dihydroxyvitamin D3 inhibits corneal wound healing in an ex-vivo mouse model. Graefes Arch Clin Exp Ophthalmol 2016; 254:717-24. [PMID: 26794222 DOI: 10.1007/s00417-016-3267-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Impaired healing of corneal injuries can result in ulceration and complete loss of vision, especially in the elderly. Such patients frequently also exhibit vitamin D insufficiency. 1,25-dihydroxyvitamin D3 is the active vitamin D metabolite. As it affects cell proliferation and inflammation, we herein aimed at elucidating its influence on corneal wound healing after alkali burn by using in vitro and ex vivo techniques. METHODS mRNA abundance in human corneal epithelial cells in response to vitamin D3 was determined by RT-PCR. Corneal re-epithelialization after alkaline burn was analyzed using enucleated mouse eyes and fluorescein staining. RESULTS Human corneal epithelial cells (HCEC) expressed the vitamin D receptor (VDR) and retinoid x receptor (RXR) and were responsive to 1,25- dihydroxyvitamin D3, as shown by induction of the 1,25- dihydroxyvitamin D3 responsive gene cyp-24A1 and slightly reduced abundance of IL-6 mRNA. However, no effect on cell vitality and migration was observed. In contrast, re-epithelialization of mouse corneas ex vivo was dose dependently inhibited by 1,25- dihydroxyvitamin D3. CONCLUSIONS These data indicate that topically applied 1,25- dihydroxyvitamin D3 does not seem to be suitable for therapy of corneal lesions.
Collapse
|
11
|
Neves D. Advanced glycation end-products: a common pathway in diabetes and age-related erectile dysfunction. Free Radic Res 2013; 47 Suppl 1:49-69. [PMID: 23822116 DOI: 10.3109/10715762.2013.821701] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive derivatives of non-enzymatic glucose-protein condensation reactions integrate a heterogeneous group of irreversible adducts called advanced glycation end-products (AGEs). Numerous studies have investigated the role of the AGEs in cardiovascular system; however, its contribution to erectile dysfunction (ED) that is an early manifestation of cardiovascular disease has been less intensively investigated. This review summarizes the most recent advances concerning AGEs effects in the cavernous tissue of the penis and in ED onset, particularly on diabetes and aging, conditions that not only favor AGEs formation, but also increase risk of developing ED. The specific contribution of AGE on intra- and extracellular deposition of insoluble complexes, interference in activity of endothelial nitric oxide (NO) synthase, NO bioavailability, endothelial-dependent vasodilatation, as well as molecular pathways activated by receptor of AGEs are presented. Finally, the interventional actions that prevent AGEs formation, accumulation or activity in the cavernous tissue and that include nutritional pattern modulation, nutraceuticals, exercise, therapeutic strategies (statins, anti-diabetics, inhibitors of phosphodiesterase-5, anti-hypertensive drugs) and inhibitors of AGEs formation and crosslink breakers, are discussed. From this review, we conclude that despite the experiments conducted in animal models pointing to the AGE/RAGE axis as a potential interventional target with respect to ED associated with diabetes and aging, the clinical data have been very disappointing and, until now, did not provide evidence of benefits of treatments directed to AGE inactivation.
Collapse
Affiliation(s)
- D Neves
- Department of Experimental Biology, Faculty of Medicine and IBMC of Universidade do Porto, Al. Prof Hernani Monteiro, Porto, Portugal.
| |
Collapse
|
12
|
Nass N, Weissenberg K, Somoza V, Ruhs S, Silber RE, Simm A. Cell culture condition-dependent impact of AGE-rich food extracts on kinase activation and cell survival on human fibroblasts. Int J Food Sci Nutr 2013; 65:219-25. [PMID: 24111510 DOI: 10.3109/09637486.2013.839631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advanced glycation end products (AGEs) are stable end products of the Maillard reaction. Effects of food extracts are often initially analysed in cellular test systems and it is not clear how different cell culture conditions might influence the results. Therefore, we compared the effects of two models for AGE-rich food, bread crust and coffee extract (CE) on WI-38 human lung fibroblasts under different cell culture conditions (sub-confluent versus confluent cells, with and without serum). WI-38 cells responded to coffee and bread crust extract (BCE) with a rapid phosphorylation of PKB (AKT), p42/44 MAPK (ERK 1/2) and p38 MAPK, strongly depending on culture conditions. BCE resulted in increased cell numbers, whereas CE appeared to be cytotoxic. When cell numbers under all culture conditions and treatments were correlated with kinase phosphorylation, the relation between phospho-p38 MAPK and phospho-AKT represented a good, cell culture condition-independent predictor of cell survival.
Collapse
Affiliation(s)
- Norbert Nass
- Department of Cardiothoracic Surgery, Martin Luther University Halle-Wittenberg , Halle/Saale , Germany
| | | | | | | | | | | |
Collapse
|
13
|
Pötzsch S, Blankenhorn A, Navarrete Santos A, Silber RE, Somoza V, Simm A. The effect of an AGE-rich dietary extract on the activation of NF-κB depends on the cell model used. Food Funct 2013; 4:1023-31. [PMID: 23426622 DOI: 10.1039/c3fo30349g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced glycation end products (AGEs) are the results of a chemical reaction of reactive aldehydes, such as sugars, with amino acid side chains. AGEs can be formed by the heating process of the food and taken up with the diet. They are thought to be at least in part responsible for major complications in age-related diseases. The activation of the transcription factor NF-κB plays a prominent role in AGE-induced cell signaling. This study aimed to elucidate the effect of exogenous AGEs on NF-κB activation in different cell models. Therefore a bread crust extract commonly found in a Western diet was chosen as an AGE-rich sample. Using RP-HPLC, 23 fractions from the bread crust extract were obtained. The immunodetection with specific antibodies for N-carboxymethyllysine arg-pyrimidine, pentosidine and 3-deoxyglucosone-imidazolone showed that the majority of the AGEs were located in the late fractions. Three different NF-κB reporter cell lines including NF-κB/293/GFP-Luc™, NF-κB/Jurkat/GFP™ and RAW/NF-κB/SEAPorter™ were stimulated with the 23 fractions. There was no direct correlation between the AGE content in the fractions and the cell activation. Whereas in Jurkat-T-cells, the stimulation seems to correlate at least in part with the AGE content, in HEK-293 epithelial cell nearly all fractions can stimulate NF-κB. In macrophages few fractions stimulate NF-κB whereas some fractions even inhibit the p38 MAP kinase. The highest expression of the AGE receptors like RAGE, AGER-1, AGER-2 and AGER-3 was detected in the macrophage RAW cell line. In conclusion the present study showed a new approach to study bioactive compounds in bread crust extract. The identification of the bioactive compounds is still ongoing.
Collapse
Affiliation(s)
- S Pötzsch
- Department of Cardiothoracic Surgery of the Martin Luther-University Halle-Wittenberg, Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|