1
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. Hum Gene Ther 2024; 35:798-813. [PMID: 39212664 PMCID: PMC11511777 DOI: 10.1089/hum.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
Affiliation(s)
- Santiago R. Castillo
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon W. Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia Devaux
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Department of Molecular Biosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Sakono M, Oya T, Aoki M. Development of a Transcriptional Activator-Like Effector Protein to Accurately Discriminate Single Nucleotide Difference. Chembiochem 2023; 24:e202200486. [PMID: 36409599 DOI: 10.1002/cbic.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Transcriptional activator-like effector (TALE), a DNA-binding protein, is widely used in genome editing. However, the recognition of the target sequence by the TALE is adversely affected by the number of mismatches. Therefore, the association constant of DNA-TALE complex formation can be controlled by appropriately introducing a mismatch into the TALE recognition sequence. This study aimed to construct a TALE that can distinguish a single nucleotide difference. Our results show that a single mismatch present in repeats 2 or 3 of TALE did not interfere with the complex formation with DNA, whereas continuous mismatches present in repeats 2 and 3 significantly reduced association with the target DNA. Based on these findings, we constructed a detection system of the one nucleotide difference in gene with high accuracy and constructed a TALE-nuclease (TALEN) that selectively cleaves DNA with a single mismatch.
Collapse
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-855, Japan
| | - Takuma Oya
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-855, Japan
| | - Mio Aoki
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-855, Japan
| |
Collapse
|
3
|
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. Int J Genomics 2022; 2022:5547231. [PMID: 35465040 PMCID: PMC9033345 DOI: 10.1155/2022/5547231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
The susceptibility of crop plants towards abiotic stresses is highly threatening to assure global food security as it results in almost 50% annual yield loss. To address this issue, several strategies like plant breeding and genetic engineering have been used by researchers from time to time. However, these approaches are not sufficient to ensure stress resilience due to the complexity associated with the inheritance of abiotic stress adaptive traits. Thus, researchers were prompted to develop novel techniques with high precision that can address the challenges connected to the previous strategies. Genome editing is the latest approach that is in the limelight for improving the stress tolerance of plants. It has revolutionized crop research due to its versatility and precision. The present review is an update on the different genome editing tools used for crop improvement so far and the various challenges associated with them. It also highlights the emerging potential of genome editing for developing abiotic stress-resilient crops.
Collapse
|
4
|
TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 2021; 12:606. [PMID: 33504770 PMCID: PMC7840734 DOI: 10.1038/s41467-020-20672-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Genome editing critically relies on selective recognition of target sites. However, despite recent progress, the underlying search mechanism of genome-editing proteins is not fully understood in the context of cellular chromatin environments. Here, we use single-molecule imaging in live cells to directly study the behavior of CRISPR/Cas9 and TALEN. Our single-molecule imaging of genome-editing proteins reveals that Cas9 is less efficient in heterochromatin than TALEN because Cas9 becomes encumbered by local searches on non-specific sites in these regions. We find up to a fivefold increase in editing efficiency for TALEN compared to Cas9 in heterochromatin regions. Overall, our results show that Cas9 and TALEN use a combination of 3-D and local searches to identify target sites, and the nanoscopic granularity of local search determines the editing outcomes of the genome-editing proteins. Taken together, our results suggest that TALEN is a more efficient gene-editing tool than Cas9 for applications in heterochromatin.
Collapse
|
5
|
Samadani AA, Keymoradzdeh A, Shams S, Soleymanpour A, Rashidy-Pour A, Hashemian H, Vahidi S, Norollahi SE. CAR T-cells profiling in carcinogenesis and tumorigenesis: An overview of CAR T-cells cancer therapy. Int Immunopharmacol 2020; 90:107201. [PMID: 33249047 DOI: 10.1016/j.intimp.2020.107201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Immunotherapy of cancer by chimeric antigen receptors (CAR) modified T-cell has a remarkable clinical potential for malignancies. Meaningly, it is a suitable cancer therapy to treat different solid tumors. CAR is a special recombinant protein combination with an antibody targeting structure alongside with signaling domain capacity on order to activate T cells. It is confirmed that the CAR-modified T cells have this ability to terminate and remove B cell malignancies. So, methodologies for investigations the pro risks and also strategies for neutralizing possible off-tumor consequences of are great importance successful protocols and strategies of CAR T-cell therapy can improve the efficacy and safety of this type of cancers. In this review article, we try to classify and illustrate main optimized plans in cancer CAR T-cell therapy.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Arman Keymoradzdeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Houman Hashemian
- Pediatrics Diseases Research Center, 17 Shahrivar Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
|
7
|
Zhang S, Wang J, Wang J. One-Day TALEN Assembly Protocol and a Dual-Tagging System for Genome Editing. ACS OMEGA 2020; 5:19702-19714. [PMID: 32803065 PMCID: PMC7424704 DOI: 10.1021/acsomega.0c02396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/17/2020] [Indexed: 05/04/2023]
Abstract
This study developed a new rapid transcription activator-like effector nuclease (TALEN) preparation protocol by thoroughly redesigning the widely used Golden Gate TALEN and TAL Effector Kit 2.0. The new protocol can be used to prepare any custom 18-bp binding TALENs in just one day (about 12 h), more rapidly than CRISPR. This protocol used a set of linear monomers, a final TALE-FokI backbone plasmid, and a pipeline to assemble the ready-to-use TALEN expression plasmid, which were all newly developed for this study. The set of linear monomers can be easily produced and reproduced by high-fidelity polymerase chain reaction (PCR) amplification in a 96-well plate using a pair of universal primers. Most important of all, our rapid TALEN construction pipeline can easily obtain many positive colonies with high efficiency (over 80%). By preparing five pairs of TALENs targeting five NF-κB genes (RELA, RELB, CREL,NFKB1, and NFKB2) and editing these genes in different cell lines (293T, HepG2, and PANC1), this study demonstrated that the new protocol has high efficiency, reproducibility, reliability, and applicability. Moreover, this study showed that the fabricated TALEN has much higher editing efficiency than CRISPR. Finally, this study developed a dual-tagging system for simultaneously tagging target proteins and successfully edited cells with a streptavidin-binding peptide (SBP) or AviTag via homology-directed repair, which could have wide applications in protein (antigen) preparation, immunoprecipitation, and a transcription factor chromatin immunoprecipitation assay.
Collapse
|
8
|
Cuculis L, Zhao C, Abil Z, Zhao H, Shukla D, Schroeder CM. Divalent cations promote TALE DNA-binding specificity. Nucleic Acids Res 2020; 48:1406-1422. [PMID: 31863586 PMCID: PMC7026652 DOI: 10.1093/nar/gkz1174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in gene editing have been enabled by programmable nucleases such as transcription activator-like effector nucleases (TALENs) and CRISPR–Cas9. However, several open questions remain regarding the molecular machinery in these systems, including fundamental search and binding behavior as well as role of off-target binding and specificity. In order to achieve efficient and specific cleavage at target sites, a high degree of target site discrimination must be demonstrated for gene editing applications. In this work, we studied the binding affinity and specificity for a series of TALE proteins under a variety of solution conditions using in vitro fluorescence methods and molecular dynamics (MD) simulations. Remarkably, we identified that TALEs demonstrate high sequence specificity only upon addition of small amounts of certain divalent cations (Mg2+, Ca2+). However, under purely monovalent salt conditions (K+, Na+), TALEs bind to specific and non-specific DNA with nearly equal affinity. Divalent cations preferentially bind to DNA over monovalent cations, which attenuates non-specific interactions between TALEs and DNA and further stabilizes specific interactions. Overall, these results uncover new mechanistic insights into the binding action of TALEs and further provide potential avenues for engineering and application of TALE- or TALEN-based systems for genome editing and regulation.
Collapse
Affiliation(s)
| | - Chuankai Zhao
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Department of Biochemistry, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, Urbana, IL 61801, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Charles M Schroeder
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
10
|
Zhang S, Chen H, Wang J. Generate TALE/TALEN as Easily and Rapidly as Generating CRISPR. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:310-320. [PMID: 30923728 PMCID: PMC6423989 DOI: 10.1016/j.omtm.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
TALE has always had potential as a gene-editing and regulatory tool. However, with the advent of CRISPR/Cas9, an easier to use tool with the same function, TALE has recently been abandoned because of the time-consuming and low-efficiency process required for its construction. The off-target activity of CRISPR/Cas9 has been a challenge to its in vivo application. By contrast, TALE has been applied in vivo for gene editing and therapy because of its high targeting capability. To overcome the key limitation of the TALE technique, we developed a high-efficiency method for constructing custom TALEs. We created 62 new monomers and developed a new pipeline that enabled assembly of custom TALEs in just 1 day. We verified the new method by assembling nine TALEs targeting the promoters of two transcription factor genes: HNF4α and E47. The expression of the two endogenous genes in two cancer cells, HepG2 and PANC1, was activated by the constructed TALEs, which promoted differentiation of the two cancer cells. Using the new method, custom TALEs can be generated as easily and rapidly as CRISPR, thus promoting the wide application of TALE-based techniques.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Huiting Chen
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Chu C, Yang Z, Yang J, Yan L, Si C, Kang Y, Chen Z, Chen Y, Ji W, Niu Y. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. BMC Biotechnol 2019; 19:7. [PMID: 30646876 PMCID: PMC6334428 DOI: 10.1186/s12896-018-0494-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Non-human primate (NHP) models can closely mimic human physiological functions and are therefore highly valuable in biomedical research. Genome editing is now developing rapidly due to the precision and efficiency offered by engineered site-specific endonuclease-based systems, such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) system. It has been demonstrated that these programmable nucleases can introduce genetic changes in embryos from many species including NHPs. In 2014, we reported the first genetic editing of macaques using TALENs and CRISPR/Cas9. Subsequently, we characterized the phenotype of a methyl CpG binding protein 2 (MECP2)-mutant cynomolgus monkey model of Rett syndrome generated using the TALEN approach. These efforts not only accelerated the advance of modeling genetic diseases in NHPs, but also encouraged us to develop specific gene knock-in monkeys. In this study, we assess the possibility of homologous recombination (HR)-mediated gene replacement using TALENs in monkeys, and generate preimplantation embryos carrying an EmGFP fluorescent reporter constructed in the OCT4 gene. Result We assembled a pair of TALENs specific to the first exon of the OCT4 gene and constructed a donor vector consisting of the homology arms cloned from the monkey genome DNA, flanking an EmGFP cassette. Next, we co-injected the TALENs-coding plasmid and donor plasmid into the cytoplasm of 122 zygotes 6–8 h after fertilization. Sequencing and immunofluorescence revealed that the OCT4-EmGFP knock-in allele had been successfully generated by TALENs-mediated HR at an efficiency of 11.3% (7 out of 62) or 11.1% (1 out of 9), respectively, in monkey embryos. Conclusion We have successfully, for the first time, obtained OCT4-EmGFP knock-in monkey embryos via HR mediated by TALENs. Our results suggest that gene targeting through TALEN-assisted HR is a useful approach to introduce precise genetic modification in NHPs. Electronic supplementary material The online version of this article (10.1186/s12896-018-0494-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu Chu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhaohui Yang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiayin Yang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China
| | - Li Yan
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenyang Si
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhenzhen Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
12
|
Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: An update. Cytotherapy 2018; 20:899-910. [PMID: 29859773 PMCID: PMC6123269 DOI: 10.1016/j.jcyt.2018.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.
Collapse
Affiliation(s)
- Selami Demirci
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
13
|
Kim MS, Kini AG. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research. Mol Cells 2017; 40:533-541. [PMID: 28835021 PMCID: PMC5582299 DOI: 10.14348/molcells.2017.0139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.
Collapse
Affiliation(s)
- Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101,
USA
| | - Anu Ganesh Kini
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101,
USA
| |
Collapse
|
14
|
Geiger-Schuller K, Barrick D. Broken TALEs: Transcription Activator-like Effectors Populate Partly Folded States. Biophys J 2017; 111:2395-2403. [PMID: 27926841 DOI: 10.1016/j.bpj.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Transcription activator-like effector proteins (TALEs) contain large numbers of repeats that bind double-stranded DNA, wrapping around DNA to form a continuous superhelix. Since unbound TALEs retain superhelical structure, it seems likely that DNA binding requires a significant structural distortion or partial unfolding. In this study, we use nearest-neighbor "Ising" analysis of consensus TALE (cTALE) repeat unfolding to quantify intrinsic folding free energies, coupling energies between repeats, and the free energy distribution of partly unfolded states, and to determine how those energies depend on the sequence that determines DNA-specificity (called the "RVD"). We find a moderate level of cooperativity for both the HD and NS RVD sequences (stabilizing interfaces combined with unstable repeats), as has been seen in other linear repeat proteins. Surprisingly, RVD sequence identity influences both the overall stability and the balance of intrinsic repeat stability and interfacial coupling energy. Using parameters from the Ising analysis, we have analyzed the distribution of partly folded states as a function of cTALE length and RVD sequence. We find partly unfolded states where one or more repeats are unfolded to be energetically accessible. Mixing repeats with different RVD sequences increases the population of partially folded states. Local folding free energies plateau for central repeats, suggesting that TALEs access partially folded states where a single internal repeat is unfolded while adjacent repeats remain folded. This breakage should allow TALEs to access superhelically-broken states, and may facilitate DNA binding.
Collapse
Affiliation(s)
- Kathryn Geiger-Schuller
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
15
|
Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 2017; 38:738-753. [PMID: 28392568 PMCID: PMC5520188 DOI: 10.1038/aps.2017.2] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.
Collapse
|
16
|
Cuculis L, Schroeder CM. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9. Annu Rev Chem Biomol Eng 2017; 8:577-597. [PMID: 28489428 DOI: 10.1146/annurev-chembioeng-060816-101603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.
Collapse
Affiliation(s)
- Luke Cuculis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| | - Charles M Schroeder
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; .,Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
17
|
Chao R, Liang J, Tasan I, Si T, Ju L, Zhao H. Fully Automated One-Step Synthesis of Single-Transcript TALEN Pairs Using a Biological Foundry. ACS Synth Biol 2017; 6:678-685. [PMID: 28103009 DOI: 10.1021/acssynbio.6b00293] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcription activator-like effector nuclease (TALEN) is a programmable genome editing tool with wide applications. Since TALENs perform cleavage of DNA as heterodimers, a pair of TALENs must be synthesized for each target genome locus. Conventionally, TALEN pairs are either expressed on separate vectors or synthesized separately and then subcloned to the same vector. Neither approach allows high-throughput construction of TALEN libraries for large-scale applications. Here we present a single-step assembly scheme to synthesize and express a pair of TALENs in a single-transcript format with the help of a P2A self-cleavage sequence. Furthermore, we developed a fully automated platform to custom manufacture TALENs in a versatile biological foundry. 400 pairs of TALENs can be synthesized with over 96.2% success rate at a material cost of $2.1/pair. This platform opens the door to TALEN-based genome-wide studies.
Collapse
Affiliation(s)
- Ran Chao
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jing Liang
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tong Si
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Linyang Ju
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Carl
R. Woese Institute for Genomic Biology, ‡Department of Chemical and Biomolecular
Engineering, §Department of Biochemistry, ∥Department of Microbiology, ⊥Department of Chemistry, and #Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Chimaeric antigen receptor T-cell therapy for tumour immunotherapy. Biosci Rep 2017; 37:BSR20160332. [PMID: 28053197 PMCID: PMC5270315 DOI: 10.1042/bsr20160332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
Chimaeric antigen receptor (CAR) T-cell therapies, as one of the cancer immunotherapies, have heralded a new era of treating cancer. The accumulating data, especially about CAR-modified T cells against CD19 support that CAR T-cell therapy is a highly effective immune therapy for B-cell malignancies. Apart from CD19, there have been many trials of CAR T cells directed other tumour specific or associated antigens (TSAs/TAAs) in haematologic malignancies and solid tumours. This review will briefly summarize basic CAR structure, parts of reported TSAs/TAAs, results of the clinical trials of CAR T-cell therapies as well as two life-threatening side effects. Experiments in vivo or in vitro, ongoing clinical trials and the outlook for CAR T-cell therapies also be included. Our future efforts will focus on identification of more viable cancer targets and more strategies to make CAR T-cell therapy safer.
Collapse
|
19
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
TALE proteins search DNA using a rotationally decoupled mechanism. Nat Chem Biol 2016; 12:831-7. [DOI: 10.1038/nchembio.2152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/27/2022]
|
21
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
22
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
23
|
Niu X, He W, Song B, Ou Z, Fan D, Chen Y, Fan Y, Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J Biol Chem 2016; 291:16576-85. [PMID: 27288406 DOI: 10.1074/jbc.m116.719237] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs.
Collapse
Affiliation(s)
- Xiaohua Niu
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wenyin He
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Bing Song
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhanhui Ou
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Di Fan
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yuchang Chen
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yong Fan
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaofang Sun
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
24
|
Abstract
Transcription activator-like effector nucleases (TALENs) are one of several types of programmable, engineered nucleases that bind and cleave specific DNA sequences. Cellular machinery repairs the cleaved DNA by introducing indels. In this review, we emphasize the potential, explore progress, and identify challenges in using TALENs as a therapeutic tool to treat HIV infection. TALENs have less off-target editing and can be more effective at tolerating HIV escape mutations than CRISPR/Cas-9. Scientists have explored TALEN-mediated editing of host genes such as viral entry receptors (CCR5 and CXCR4) and a protein involved in proviral integration (LEDGF/p75). Viral targets include the proviral DNA, particularly focused on the long terminal repeats. Major challenges with translating gene therapy from bench to bedside are improving cleavage efficiency and delivery, while minimizing off-target editing, cytotoxicity, and immunogenicity. However, rapid improvements in TALEN technology are enhancing cleavage efficiency and specificity. Therapeutic testing in animal models of HIV infection will help determine whether TALENs are a viable HIV treatment therapy. TALENs or other engineered nucleases could shift the therapeutic paradigm from life-long antiretroviral therapy toward eradication of HIV infection.
Collapse
|
25
|
The Use and Development of TAL Effector Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Abstract
Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.
Collapse
|
28
|
Abstract
The rapid advances in the field of genome editing using targeted endonucleases have called considerable attention to the potential of this technology for human gene therapy. Targeted correction of disease-causing mutations could ensure lifelong, tissue-specific expression of the relevant gene, thereby alleviating or resolving a specific disease phenotype. In this review, we aim to explore the potential of this technology for the therapy of β-thalassemia. This blood disorder is caused by mutations in the gene encoding the β-globin chain of hemoglobin, leading to severe anemia in affected patients. Curative allogeneic bone marrow transplantation is available only to a small subset of patients, leaving the majority of patients dependent on regular blood transfusions and iron chelation therapy. The transfer of gene-corrected autologous hematopoietic stem cells could provide a therapeutic alternative, as recent results from gene therapy trials using a lentiviral gene addition approach have demonstrated. Genome editing has the potential to further advance this approach as it eliminates the need for semi-randomly integrating viral vectors and their associated risk of insertional mutagenesis. In the following pages we will highlight the advantages and risks of genome editing compared to standard therapy for β-thalassemia and elaborate on lessons learned from recent gene therapy trials.
Collapse
Affiliation(s)
- Astrid Glaser
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Bradley McColl
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Jim Vadolas
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| |
Collapse
|
29
|
Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep 2015; 5:16031. [PMID: 26558999 PMCID: PMC4642230 DOI: 10.1038/srep16031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
Tal-effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) proteins are genome editing tools with unprecedented potential. However, the ability to deliver optimal amounts of these nucleases into mammalian cells with minimal toxicity poses a major challenge. Common delivery approaches are transfection- and viral-based methods; each associated with significant drawbacks. An alternative method for directly delivering genome-editing reagents into single living cells with high efficiency and controlled volume is microinjection. Here, we characterize a glass microcapillary-based injection system and demonstrate controlled co-injection of TALENs or CRISPR/Cas9 together with donor template into single K562 cells for targeting the human β-globin gene. We quantified nuclease induced insertions and deletions (indels) and found that, with β-globin-targeting TALENs, similar levels of on- and off-target activity in cells could be achieved by microinjection compared with nucleofection. Furthermore, we observed 11% and 2% homology directed repair in single K562 cells co-injected with a donor template along with CRISPR/Cas9 and TALENs respectively. These results demonstrate that a high level of targeted gene modification can be achieved in human cells using glass-needle microinjection of genome editing reagents.
Collapse
|
30
|
Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul 2015; 60:122-134. [PMID: 26433620 DOI: 10.1016/j.jbior.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
31
|
Bao Z, Cobb RE, Zhao H. Accelerated genome engineering through multiplexing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:5-21. [PMID: 26394307 DOI: 10.1002/wsbm.1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022]
Abstract
Throughout the biological sciences, the past 15 years have seen a push toward the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Zehua Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan E Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, Department of Bioengineering, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Cuculis L, Abil Z, Zhao H, Schroeder CM. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat Commun 2015; 6:7277. [PMID: 26027871 PMCID: PMC4458887 DOI: 10.1038/ncomms8277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. TALEs are programmable DNA-binding proteins with practical use in genome engineering and synthetic biology. Here the authors use single-molecule fluorescence microscopy to establish that TALE proteins function using two distinct DNA-interaction modes during sequence-specific target search.
Collapse
Affiliation(s)
- Luke Cuculis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huimin Zhao
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [4] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [5] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [4] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. Damaging the Integrated HIV Proviral DNA with TALENs. PLoS One 2015; 10:e0125652. [PMID: 25946221 PMCID: PMC4422436 DOI: 10.1371/journal.pone.0125652] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs) to target a highly conserved sequence in the transactivation response element (TAR) of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.
Collapse
Affiliation(s)
- Christy L. Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Horacio P. Guerra
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Kiran R. Mathew
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Lacy R. Simpson
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
- * E-mail:
| |
Collapse
|
34
|
Nicholson SA, Moyo B, Arbuthnot PB. Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World J Hepatol 2015; 7:859-873. [PMID: 25937863 PMCID: PMC4411528 DOI: 10.4254/wjh.v7.i6.859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world. The hepatic illnesses, which include inherited metabolic disorders, hemophilias and viral hepatitides, are complex and currently difficult to treat. The maturation of gene therapy has heralded new avenues for developing effective intervention for these diseases. DNA modification using gene therapy is now possible and available technology may be exploited to achieve long term therapeutic benefit. The ability to edit DNA sequences specifically is of paramount importance to advance gene therapy for application to liver diseases. Recent development of technologies that allow for this has resulted in rapid advancement of gene therapy to treat several chronic illnesses. Improvements in application of derivatives of zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs), homing endonucleases (HEs) and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated (Cas) systems have been particularly important. These sequence-specific technologies may be used to modify genes permanently and also to alter gene transcription for therapeutic purposes. This review describes progress in development of ZFPs, TALEs, HEs and CRISPR/Cas for application to treating liver diseases.
Collapse
|
35
|
Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, Li X, Tu J. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS One 2015; 10:e0122755. [PMID: 25856577 PMCID: PMC4391873 DOI: 10.1371/journal.pone.0122755] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Although several site-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT) in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs), including different strand composition such as RNA/DNA (C1) or DNA/RNA (C2) but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP), we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19) as well as co-transformation of TELAN with either HRP (5/30) or C1 (2/25) or C2 (5/31). Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.
Collapse
Affiliation(s)
- Mugui Wang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yujun Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cuicui Zhang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianping Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xin Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liangchao Wang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wenyi Wang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hao Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chuchu Wei
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiufen Ye
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xinyuan Li
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jumin Tu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
36
|
Si T, Luo Y, Bao Z, Zhao H. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol 2015; 4:283-91. [PMID: 24758359 DOI: 10.1021/sb500074a] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fundamental challenge in basic and applied biology is to reprogram cells with improved or novel traits on a genomic scale. However, the current ability to reprogram a cell on the genome scale is limited to bacterial cells. Here, we report RNA interference (RNAi)-assisted genome evolution (RAGE) as a generally applicable method for genome-scale engineering in the yeast Saccharomyces cerevisiae. Through iterative cycles of creating a library of RNAi induced reduction-of-function mutants coupled with high throughput screening or selection, RAGE can continuously improve target trait(s) by accumulating multiplex beneficial genetic modifications in an evolving yeast genome. To validate the RNAi library constructed with yeast genomic DNA and convergent-promoter expression cassette, we demonstrated RNAi screening in Saccharomyces cerevisiae for the first time by identifying two known and three novel suppressors of a telomerase-deficient mutation yku70Δ. We then showed the application of RAGE for improved acetic acid tolerance, a key trait for microbial production of chemicals and fuels. Three rounds of iterative RNAi screening led to the identification of three gene knockdown targets that acted synergistically to confer an engineered yeast strain with substantially improved acetic acid tolerance. RAGE should greatly accelerate the design and evolution of organisms with desired traits and provide new insights on genome structure, function, and evolution.
Collapse
Affiliation(s)
- Tong Si
- Department
of Chemical and Biomolecular Engineering, ‡Department of Biochemistry, §Departments of Chemistry
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yunzi Luo
- Department
of Chemical and Biomolecular Engineering, ‡Department of Biochemistry, §Departments of Chemistry
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zehua Bao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Biochemistry, §Departments of Chemistry
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Biochemistry, §Departments of Chemistry
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. PLANT & CELL PHYSIOLOGY 2015; 56:389-400. [PMID: 25416289 DOI: 10.1093/pcp/pcu170] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology.
Collapse
Affiliation(s)
- Yuriko Osakabe
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Keishi Osakabe
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
38
|
Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A, Blobel GA. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014; 158:849-860. [PMID: 25126789 DOI: 10.1016/j.cell.2014.05.050] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/26/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
Abstract
Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts β-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the β-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total β-globin synthesis, with a reciprocal reduction in adult β-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.
Collapse
Affiliation(s)
- Wulan Deng
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jeremy W Rupon
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Breda
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Irene Motta
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kristen S Jahn
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Stefano Rivella
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA; Division of Hematology-Oncology, Department of Cell and Biology Development, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Si T, Xiao H, Zhao H. Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 2014; 33:1420-32. [PMID: 25450192 DOI: 10.1016/j.biotechadv.2014.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories.
Collapse
Affiliation(s)
- Tong Si
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Han Xiao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
40
|
Moore R, Chandrahas A, Bleris L. Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth Biol 2014; 3:708-16. [PMID: 24933470 PMCID: PMC4210167 DOI: 10.1021/sb400137b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Transcription
activator-like effectors (TALEs) are proteins secreted
by Xanthomonas bacteria to aid the infection of plant
species. TALEs assist infections by binding to specific DNA sequences
and activating the expression of host genes. Recent results show that
TALE proteins consist of a central repeat domain, which determines
the DNA targeting specificity and can be rapidly synthesized de novo. Considering the highly modular nature of TALEs,
their versatility, and the ease of constructing these proteins, this
technology can have important implications for synthetic biology applications.
Here, we review developments in the area with a particular focus on
modifications for custom and controllable gene regulation.
Collapse
Affiliation(s)
- Richard Moore
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| | - Anita Chandrahas
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| | - Leonidas Bleris
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080 United States
- Electrical
Engineering Department, The University of Texas at Dallas, 800
West Campbell Road, Richardson, Texas 75080 United States
- Center
for Systems Biology, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, Texas 75080 United States
| |
Collapse
|
41
|
Abstract
Xanthomonas phytopathogenic bacteria produce unique transcription activator-like effector (TALE) proteins that recognize and activate specific plant promoters through a set of tandem repeats. A unique TALE-DNA-binding code uses two polymorphic amino acids in each repeat to mediate recognition of specific nucleotides. The order of repeats determines effector’s specificity toward the cognate nucleotide sequence of the sense DNA strand. Artificially designed TALE-DNA-binding domains fused to nuclease or activation and repressor domains provide an outstanding toolbox for targeted gene editing and gene regulation in research, biotechnology and gene therapy. Gene editing with custom-designed TALE nucleases (TALENs) extends the repertoire of targeted genome modifications across a broad spectrum of organisms ranging from plants and insect to mammals.
Collapse
|
42
|
Luo Y, Rao M, Zou J. Generation of GFP Reporter Human Induced Pluripotent Stem Cells Using AAVS1 Safe Harbor Transcription Activator-Like Effector Nuclease. ACTA ACUST UNITED AC 2014; 29:5A.7.1-18. [PMID: 24838915 DOI: 10.1002/9780470151808.sc05a07s29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Generation of a fluorescent GFP reporter line in human induced pluripotent stem cells (hiPSCs) provides enormous potentials in both basic stem cell research and regenerative medicine. A protocol for efficiently generating such an engineered reporter line by gene targeting is highly desired. Transcription activator-like effector nucleases (TALENs) are a new class of artificial restriction enzymes that have been shown to significantly promote homologous recombination by >1000-fold. The AAVS1 (adeno-associated virus integration site 1) locus is a "safe harbor" and has an open chromatin structure that allows insertion and stable expression of transgene. Here, we describe a step-by-step protocol from determination of TALENs activity, hiPSC culture, and delivery of a donor into AAVS1 targeting site, to validation of targeted integration by PCR and Southern blot analysis using hiPSC line, and a pair of open-source AAVS1 TALENs.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Medicine, Bethesda, Maryland
| | | | | |
Collapse
|
43
|
Schreiber T, Bonas U. Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 2014; 42:7160-9. [PMID: 24792160 PMCID: PMC4066769 DOI: 10.1093/nar/gku341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD ('rep1 effect'). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Ulla Bonas
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
44
|
Rivera-Torres N, Strouse B, Bialk P, Niamat RA, Kmiec EB. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides. PLoS One 2014; 9:e96483. [PMID: 24788536 PMCID: PMC4006861 DOI: 10.1371/journal.pone.0096483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Bryan Strouse
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Pawel Bialk
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Rohina A. Niamat
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Eric B. Kmiec
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| |
Collapse
|
45
|
Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 2014; 3:e01911. [PMID: 24843011 PMCID: PMC3996624 DOI: 10.7554/elife.01911] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in ‘all-in-one’ lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases. DOI:http://dx.doi.org/10.7554/eLife.01911.001 Altering the genetic code of a living organism to produce certain desirable outcomes is the goal of genetic engineering. The field builds on a long history of human attempts to alter genetics, from selective breeding of crops and livestock to genetically modified organisms and gene therapies. Researchers routinely use gene editing to create ‘knock-out’ mice in which a particular gene is turned off: the researchers can learn more about the function of this gene by watching what happens when it is absent. As gene editing techniques have grown more sophisticated, they have become an increasingly promising tool for treating diseases that are caused by gene mutations. The aim of this work is to replace faulty genes with genes that work properly. However, it has been difficult to adapt genetic engineering techniques so that they can be used safely in humans. Scientists have created customized enzymes called nucleases that can remove specific genes, but it has been a challenge to get these nucleases into cells in the first place. A virus can be used to deliver the genes that encode these nucleases into the DNA of a cell, but this approach can lead to the production of too many nucleases and to the removal of more genes than intended. Now Cai et al. have developed a ‘hit-and-run’ method for getting the nucleases into cells and making them active only for a short period of time. This method involves using a virus to deliver two different nucleases to a cell. Once inside the cell, the viruses released the nucleases, which were able to remove up to one-quarter of their gene targets, with relatively few errors, in the time that they were active. Next, Cai et al. added gene patches—new genes to replace those removed by the nucleases—to the viruses. This ‘cut and patch’ strategy was successful in up to 8% of the treated cells. The results also suggest that this approach is safer than other gene-editing techniques. DOI:http://dx.doi.org/10.7554/eLife.01911.002
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
46
|
Abstract
Programmable nucleases - including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided engineered nucleases (RGENs) derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system - enable targeted genetic modifications in cultured cells, as well as in whole animals and plants. The value of these enzymes in research, medicine and biotechnology arises from their ability to induce site-specific DNA cleavage in the genome, the repair (through endogenous mechanisms) of which allows high-precision genome editing. However, these nucleases differ in several respects, including their composition, targetable sites, specificities and mutation signatures, among other characteristics. Knowledge of nuclease-specific features, as well as of their pros and cons, is essential for researchers to choose the most appropriate tool for a range of applications.
Collapse
Affiliation(s)
- Hyongbum Kim
- Graduate School of Biomedical Science and Engineering, and College of Medicine, Hanyang University, Wangsimni-ro 222, Sungdong-gu, Seoul 133-791, South Korea
| | - Jin-Soo Kim
- 1] Center for Genome Engineering, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea. [2] Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea
| |
Collapse
|
47
|
|
48
|
Liang J, Chao R, Abil Z, Bao Z, Zhao H. FairyTALE: a high-throughput TAL effector synthesis platform. ACS Synth Biol 2014; 3:67-73. [PMID: 24237314 DOI: 10.1021/sb400109p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recombinant transcription activator-like effectors (TALEs) have been effectively used for genome editing and gene regulation applications. Due to their remarkable modularity, TALEs can be tailored to specifically target almost any user-defined DNA sequences. Here, we introduce fairyTALE, a liquid phase high-throughput TALE synthesis platform capable of producing TALE-nucleases, activators, and repressors that recognize DNA sequences between 14 and 31 bp. It features a highly efficient reaction scheme, a flexible functionalization platform, and fully automated robotic liquid handling that enable the production of hundreds of expression-ready TALEs within a single day with over 98% assembly efficiency at a material cost of just $5 per TALE. As proof of concept, we synthesized and tested 90 TALEs, each recognizing 27 bp, without restrictions on their sequence composition. 96% of these TALEs were found to be functional, while sequencing confirmation revealed that the nonfunctional constructs were all correctly assembled.
Collapse
Affiliation(s)
- Jing Liang
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States of America
| | - Ran Chao
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States of America
| | - Zhanar Abil
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States of America
| | - Zehua Bao
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States of America
| | - Huimin Zhao
- Department of Chemical and Biomolecular
Engineering, ‡Institute for Genomic Biology, §Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States of America
| |
Collapse
|
49
|
Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014; 11:429-35. [PMID: 24531420 PMCID: PMC4010127 DOI: 10.1038/nmeth.2845] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/11/2014] [Indexed: 12/26/2022]
Abstract
Although transcription activator-like effector nucleases (TALENs) can be designed to cleave chosen DNA sequences, TALENs have activity against related off-target sequences. To better understand TALEN specificity, we profiled 30 unique TALENs with different target sites, array length and domain sequences for their abilities to cleave any of 10(12) potential off-target DNA sequences using in vitro selection and high-throughput sequencing. Computational analysis of the selection results predicted 76 off-target substrates in the human genome, 16 of which were accessible and modified by TALENs in human cells. The results suggest that (i) TALE repeats bind DNA relatively independently; (ii) longer TALENs are more tolerant of mismatches yet are more specific in a genomic context; and (iii) excessive DNA-binding energy can lead to reduced TALEN specificity in cells. Based on these findings, we engineered a TALEN variant that exhibits equal on-target cleavage activity but tenfold lower average off-target activity in human cells.
Collapse
Affiliation(s)
- John P Guilinger
- 1] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vikram Pattanayak
- 1] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Deepak Reyon
- 1] Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shengdar Q Tsai
- 1] Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffry D Sander
- 1] Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - J Keith Joung
- 1] Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David R Liu
- 1] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
A two-plasmid bacterial selection system for characterization and engineering of homing endonucleases. Methods Mol Biol 2014. [PMID: 24510262 DOI: 10.1007/978-1-62703-968-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Homing endonucleases recognize long DNA sequences and generate site-specific DNA double-stranded breaks. They can serve as a powerful genomic modification tool in various industrial and biomedical applications. Here, we describe a two-plasmid bacterial selection system for characterization and engineering of homing endonucleases. This selection system couples the DNA cleavage activity of a homing endonuclease with the survival of host cells. Therefore, it can be used for assaying in vivo activity of homing endonucleases. Moreover, due to its high sensitivity, it can be applied for directed evolution of homing endonucleases with altered sequence specificity.
Collapse
|