1
|
Ahmed A, Aziz M, Ejaz SA, Channar PA, Saeed A, Zargar S, Wani TA, Hamad A, Abbas Q, Raza H, Kim SJ. Design, Synthesis, Kinetic Analysis and Pharmacophore-Directed Discovery of 3-Ethylaniline Hybrid Imino-Thiazolidinone as Potential Inhibitor of Carbonic Anhydrase II: An Emerging Biological Target for Treatment of Cancer. Biomolecules 2022; 12:1696. [PMID: 36421710 PMCID: PMC9687900 DOI: 10.3390/biom12111696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
Carbonic anhydrases (CA), having Zn2+ metal atoms, are responsible for the catalysis of CO2 and water to bicarbonate and protons. Any abnormality in the functioning of these enzymes may lead to morbidities such as glaucoma and different types of cancers including brain, renal and pancreatic carcinomas. To cope with the lack of presence of a promising therapeutic agent against these cancers, searching for an efficient and suitable carbonic anhydrase inhibitor is crucial. In the current study, ten novel 3-ethylaniline hybrid imino-thiazolidinones were synthesized and characterized by FTIR, NMR (1H, 13C), and mass spectrometry. Synthesis was carried out by diethyl but-2-ynedioate cyclization and different acyl thiourea substitutions of 3-ethyl amine. The CA (II) enzyme inhibition profile for all synthesized derivatives was determined. It was observed that compound 6e demonstrated highest inhibition of CA-II with an IC50 value of 1.545 ± 0.016 µM. In order to explore the pharmacophoric properties and develop structure activity relationship, in silico screening was performed. In silico investigations included density functional theory (DFT) studies, pharmacophore-guided model development, molecular docking, molecular dynamic (MD) simulations, and prediction of drug likeness scores. DFT investigations provided insight into the electronic characteristics of compounds, while molecular docking determined the binding orientation of derivatives within the CA-II active site. Compounds 6a, 6e, and 6g had a reactive profile and generated stable protein-ligand interactions with respective docking scores of -6.12, -6.99, and -6.76 kcal/mol. MD simulations were used to evaluate the stability of the top-ranked complex. In addition, pharmacophore-guided modeling demonstrated that compound 6e produced the best pharmacophore model (HHAAARR) compared to standard brinzolamide. In vitro and in silico investigations anticipated that compound 6e would be an inhibitor of carbonic anhydrase II with high efficacy. Compound 6e may serve as a potential lead for future synthesis that can be investigated at the molecular level, and additional in vivo studies are strongly encouraged.
Collapse
Affiliation(s)
- Atteeque Ahmed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Asad Hamad
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot 51310, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Hussain Raza
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
2
|
Ahmed A, Saeed A, Ejaz SA, Aziz M, Hashmi MZ, Channar PA, Abbas Q, Raza H, Shafiq Z, El-Seedi HR. Novel adamantyl clubbed iminothiazolidinones as promising elastase inhibitors: design, synthesis, molecular docking, ADMET and DFT studies. RSC Adv 2022; 12:11974-11991. [PMID: 35481107 PMCID: PMC9016748 DOI: 10.1039/d1ra09318e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Porcine Pancreatic Elastase (PPE) is a serine protease that is homologous to trypsin and chymotrypsin that are involved in various pathologies like inflammatory disease, Chronic Obstructive Pulmonary Disease (COPD), acute respiratory distress syndrome, cystic fibrosis, and atherosclerosis. PPE if remained uninhibited would lead to digestion of important connective tissue. We developed new structurally diverse series of adamantyl-iminothiazolidinone hybrids to divulge elastase inhibition assay. To identify potent derivatives, in silico screening was conducted and in vitro studies disclosed that the compounds 5a, 5f, 5g, and 5h showed excellent binding energies and low IC50 values. In silico studies including molecular docking, DFT studies (using the B3LYP/SVP basis set in the gas phase) drug likeness scores and molecular dynamic simulation studies were conducted to evaluate protein–ligand interactions and to determine the stability of top ranked conformation. In silico studies further supported the results of in vitro experiments and suggest these derivatives as novel inhibitors of elastase enzyme. Structurally diverse adamantyl-iminothiazolidinone conjugates were synthesized, evaluated for elastase inhibition, and subjected to in silico ADMET prediction. The inhibition studies revealed compounds 5a, 5f, 5g, and 5h to show significant activity.![]()
Collapse
Affiliation(s)
- Atteeque Ahmed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | | | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan +92-51-9064-2241 +92-51-9064-2128.,Department of Basic Sciences, Mathematics and Humanities, Dawood University of Engineering and Technology Karachi 74800 Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain Sakhir Kingdom of Bahrain
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University 56 Gongjudehak-Ro Gongju Chungnam 314-701 Republic of Korea
| | - Zahid Shafiq
- Department of Chemistry, Bahauddin Zakariya University Bosan Road Multan Pakistan
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University Zhenjiang China.,Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| |
Collapse
|
3
|
Non-acidic bifunctional benzothiazole-based thiazolidinones with antimicrobial and aldose reductase inhibitory activity as a promising therapeutic strategy for sepsis. Med Chem Res 2021; 30:1837-1848. [PMID: 34366640 PMCID: PMC8335715 DOI: 10.1007/s00044-021-02778-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Sepsis is a life-threatening disease that affects millions of people worldwide. Microbial infections that lead to sepsis syndrome are associated with an increased production of inflammatory molecules. Aldose reductase has recently emerged as a molecular target that is involved in various inflammatory diseases, including sepsis. Herein, a series of previously synthesized benzothiazole-based thiazolidinones that exhibited strong antibacterial and antifungal activities has been evaluated for inhibition efficacy against aldose reductase and selectivity toward aldehyde reductase under in vitro conditions. The most promising inhibitor 5 was characterized with IC50 value of 3.99 μM and a moderate selectivity. Molecular docking simulations revealed the binding mode of compounds at the active site of human aldose reductase. Moreover, owning to the absence of an acidic pharmacophore, good membrane permeation of the novel aldose reductase inhibitors was predicted. Excellent “drug-likeness” was assessed for most of the compounds by applying the criteria of Lipinski’s “rule of five”. ![]()
Collapse
|
4
|
Synthesis of indole-substituted thiosemicarbazones as an aldose reductase inhibitor: an in vitro, selectivity and in silico study. Future Med Chem 2021; 13:1185-1201. [PMID: 34148377 DOI: 10.4155/fmc-2020-0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Indole is an important component of many drug molecules, and its conjugation with thiosemicarbazone moiety would be advantageous in finding lead compounds for the development of diabetic complications. Methodology: We have designed, synthesized and evaluated a series of 17 indole-thiosemicarbazones (3a-q) as aldose reductase (ALR2) and aldehyde reductase (ALR1) inhibitors. Results: After in vitro evaluation, all indole-thiosemicarbazones showed significant inhibition against both enzyme ALR1 and ALR2 with IC50 in range of 0.42-20.7 and 1.02-19.1 μM, respectively. The docking study was also carried out to consider the putative binding of molecules with the target enzymes. Conclusion: Compound 3f was found to be most active and selective for ALR2. The indole-thiosemicarbazones series described here has selective hits for diabetes-mellitus-associated complications.
Collapse
|
5
|
Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem 2020; 102:104110. [PMID: 32739480 DOI: 10.1016/j.bioorg.2020.104110] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose to sorbitol in the polyol pathway, which plays an important role in the development of diabetic complications including cataract, retinopathy, nephropathy, and neuropathy. AR has been considered as an important target to heal these long-term diabetic complications and for this reason the development of new AR inhibitors is an important approach in modern medicinal chemistry. In the current study, new 4-aryl-2-[2-((3,4-dihydro-2H-1,5-benzodioxepine-7-yl)methylene)hydrazinyl]thiazole derivatives (1-12) were synthesized and screened for their inhibitory effects on AR which was purified by diverse chromatographic methods with a yield of 1.40% and a specific activity of 2.00 EU/mg. All compounds were determined as promising AR inhibitors with the Ki values in the range of 0.018 ± 0.005 μM-3.746 ± 1.321 μM compared to the quercetin (Ki = 7.025 ± 1.780 μM). In particular, 4-(4-cyanophenyl)-2-[2-((3,4-dihydro-2H-1,5-benzodioxepin-7-yl)methylene)hydrazinyl]thiazole (3) was detected as the most potential AR inhibitor in this series with the Ki value of 0.018 ± 0.005 µM and the compound showed competitive AR inhibition. The cytotoxic effects of compounds 1-12 were investigated on L929 mouse fibroblast (healthy) cells using MTT assay and all these compounds were defined as non-cytotoxic agents against L929 cells. Molecular docking studies, which were employed to determine the affinity of compounds 1-12 into the active site of AR, highlighted that the thiazole scaffold of all these compounds presented π-π stacking interactions with Trp20 and Phe122. According to both in vitro and in silico assays, these potential AR inhibitors may have great importance in the prevention of diabetic microvascular conditions.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; The Rectorate of Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
6
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
7
|
Exploiting oxadiazole-sulfonamide hybrids as new structural leads to combat diabetic complications via aldose reductase inhibition. Bioorg Chem 2020; 99:103852. [DOI: 10.1016/j.bioorg.2020.103852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023]
|
8
|
Bangade VM, Mali PR, Shirsat PK, Meshram HM. Microwave‐Assisted Rapid Regioselective One‐Pot Synthesis of Novel 2‐Oxothiazolidine Dicarboxylate. ChemistrySelect 2019. [DOI: 10.1002/slct.201901143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vikas Madhukar Bangade
- Medicinal Chemistry and pharmacology DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 Institution
- Department of ChemistryThe Institute of Science 15, Madame Cama Road Mumbai- 32 India
| | - Prakash Rambhau Mali
- Medicinal Chemistry and pharmacology DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 Institution
| | - Prashishkumar Kishan Shirsat
- Medicinal Chemistry and pharmacology DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 Institution
| | - Harshadas Mitaram Meshram
- Medicinal Chemistry and pharmacology DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 Institution
| |
Collapse
|
9
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
10
|
Larik FA, Saeed A, Channar PA, Muqadar U, Abbas Q, Hassan M, Seo SY, Bolte M. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Eur J Med Chem 2017; 141:273-281. [DOI: 10.1016/j.ejmech.2017.09.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
|
11
|
Ibrar A, Zaib S, Khan I, Shafique Z, Saeed A, Iqbal J. New prospects for the development of selective inhibitors of α -glucosidase based on coumarin-iminothiazolidinone hybrids: Synthesis, in-vitro biological screening and molecular docking analysis. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Andleeb H, Tehseen Y, Jabeen F, Khan I, Iqbal J, Hameed S. Exploration of thioxothiazolidinone–sulfonate conjugates as a new class of aldehyde/aldose reductase inhibitors: A synthetic and computational investigation. Bioorg Chem 2017; 75:1-15. [DOI: 10.1016/j.bioorg.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
|
13
|
Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: Synthesis, in vitro biological evaluation and molecular modelling analysis. Bioorg Chem 2017; 70:17-26. [DOI: 10.1016/j.bioorg.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 01/18/2023]
|
14
|
Duan XE, Li R, Tong HB, Li YQ, Bai SD, Guo YJ, Liu DS. Synthesis and structural characterization of electrochemically reversible bisferrocenes containing bis(acyl-thiourea)s: enantiomers and conformers. NEW J CHEM 2017. [DOI: 10.1039/c6nj03539f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enantiomeric and conformational isomers of chiral bisferrocenyl-modified bis(acyl-thiourea)s; their crystal packing and electrochemically reversible redox reaction properties.
Collapse
Affiliation(s)
- Xin-E Duan
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
- Institute of Applied Chemistry
| | - Hong-Bo Tong
- Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Ying-Qi Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Sheng-Di Bai
- Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yu-Jing Guo
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Dian-Sheng Liu
- Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
15
|
Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorg Chem 2016; 68:177-86. [PMID: 27544072 DOI: 10.1016/j.bioorg.2016.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/23/2022]
Abstract
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a-o) and coumarin-oxadiazole 11(a-h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16±0.06μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50=2.94±1.23μM for ARL1 and 0.12±0.05μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50=1.71±0.01μM for ARL1 and 0.11±0.001μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50=0.459±0.001μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.
Collapse
|
16
|
Andleeb H, Tehseen Y, Ali Shah SJ, Khan I, Iqbal J, Hameed S. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv 2016. [DOI: 10.1039/c6ra14531k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel pyrazole–rhodanine derivatives was designed, synthesized, and biologically evaluated for their potential inhibitory effect on both aldehyde reductase (ALR1) and aldose reductase (ALR2).
Collapse
Affiliation(s)
- Hina Andleeb
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Yildiz Tehseen
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| |
Collapse
|
17
|
Saeed A, Qasim M, Hussain M. Novel Bis(2-(5-((5-phenyl-1 H-tetrazol-1-yl)methyl)-4 H-1,2,4-triazol-3-yl)phenoxy)Alkanes: Synthesis and Characterization. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Muhammad Qasim
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Majid Hussain
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
18
|
Wagh YB, Kuwar A, Sahoo SK, Gallucci J, Dalal DS. Highly selective fluorimetric sensor for Cu2+and Hg2+using a benzothiazole-based receptor in semi-aqueous media and molecular docking studies. RSC Adv 2015. [DOI: 10.1039/c5ra03146j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new chemosensor (Z)-ethyl 2-((Z)-2-(benzo[d]thiazol-2-ylimino)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (receptor1) was designed and synthesized under catalyst-free conditions.
Collapse
Affiliation(s)
- Yogesh B. Wagh
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| | - Anil Kuwar
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| | - Suban K. Sahoo
- Department of Applied Chemistry
- SV National Institute Technology
- Surat-395007
- India
| | - Judith Gallucci
- Departments of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| | - Dipak S. Dalal
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| |
Collapse
|
19
|
Maccari R, Ottanà R. Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. J Med Chem 2014; 58:2047-67. [DOI: 10.1021/jm500907a] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento
di Scienze del
Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Rosaria Ottanà
- Dipartimento
di Scienze del
Farmaco e dei Prodotti per la Salute, Università degli Studi di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| |
Collapse
|
20
|
Khan I, Ibrar A, Abbas N, Saeed A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur J Med Chem 2014; 76:193-244. [DOI: 10.1016/j.ejmech.2014.02.005] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/14/2023]
|
21
|
Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem 2014; 71:53-66. [DOI: 10.1016/j.ejmech.2013.10.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/13/2013] [Indexed: 02/05/2023]
|
22
|
Saeed A, Tehseen Y, Rafique H, Furtmann N, Bajorath J, Flörke U, Iqbal J. Benzothiazolyl substituted iminothiazolidinones and benzamido-oxothiazolidines as potent and partly selective aldose reductase inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00206g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new series of oxothiazolidine benzoate and acetate derivatives were synthesized and evaluated as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry
- Quaid-i-Azam University
- 1slamabad, Pakistan
| | - Yildiz Tehseen
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad, Pakistan
| | - Hummera Rafique
- Department of Chemistry
- Quaid-i-Azam University
- 1slamabad, Pakistan
| | - Norbert Furtmann
- Department of Life Science Informatics
- B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry
- Rheinische Friedrich-Wilhelms-Universität
- D-53113 Bonn, Germany
- Pharmaceutical Institute
| | - Jürgen Bajorath
- Department of Life Science Informatics
- B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry
- Rheinische Friedrich-Wilhelms-Universität
- D-53113 Bonn, Germany
| | - Ulrich Flörke
- Department Chemie
- Fakultät für Naturwissenschaften
- Universität Paderborn
- D-33098 Paderborn, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad, Pakistan
| |
Collapse
|
23
|
Saeed A, Flörke U, Erben MF. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. J Sulphur Chem 2013. [DOI: 10.1080/17415993.2013.834904] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Abstract
Treatment of diabetes mellitus requires, at a certain stage of its course, drug intervention. This article reviews the properties of available antidiabetic medications and highlights potential targets for developing newer and safer drugs. Antidiabetic agents are grouped in the article as parts I, II and III according to the history of development. Part I groups early developed drugs, during the 20th century, including insulin, sulfonylureas, the metiglinides, insulin sensitizers, biguanides and α-glucosidase inhibitors. Part II groups newer drugs developed during the early part of the 21st century, the past decade, including GLP-1 analogs, DPP-VI inhibitors, amylin analogs and SGLT2 inhibitors. Part III groups potential targets for future design of newer antidiabetic agents with less adverse effects than the currently available antidiabetic drugs.
Collapse
|