1
|
Nguyen TQ, Nicolet Y. Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel) 2022; 12:1732. [PMID: 36362886 PMCID: PMC9692996 DOI: 10.3390/life12111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/14/2023] Open
Abstract
Methyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5'-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5'-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations.
Collapse
Affiliation(s)
| | - Yvain Nicolet
- Metalloproteins Unit, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
2
|
York A, Everhart A, Vitek MP, Gottschalk KW, Colton CA. Metabolism-Based Gene Differences in Neurons Expressing Hyperphosphorylated AT8- Positive (AT8+) Tau in Alzheimer's Disease. ASN Neuro 2021; 13:17590914211019443. [PMID: 34121475 PMCID: PMC8207264 DOI: 10.1177/17590914211019443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metabolic adaptations in the brain are critical to the establishment and maintenance of normal cellular functions and to the pathological responses to disease processes. Here, we have focused on specific metabolic pathways that are involved in immune-mediated neuronal processes in brain using isolated neurons derived from human autopsy brain sections of normal individuals and individuals diagnosed as Alzheimer's disease (AD). Laser capture microscopy was used to select specific cell types in immune-stained thin brain sections followed by NanoString technology to identify and quantify differences in mRNA levels between age-matched control and AD neuronal samples. Comparisons were also made between neurons isolated from AD brain sections expressing pathogenic hyperphosphorylated AT8- positive (AT8+) tau and non-AT8+ AD neurons using double labeling techniques. The mRNA expression data showed unique patterns of metabolic pathway expression between the subtypes of captured neurons that involved membrane based solute transporters, redox factors, and arginine and methionine metabolic pathways. We also identified the expression levels of a novel metabolic gene, Radical-S-Adenosyl Domain1 (RSAD1) and its corresponding protein, Rsad1, that impact methionine usage and radical based reactions. Immunohistochemistry was used to identify specific protein expression levels and their cellular location in NeuN+ and AT8+ neurons. APOE4 vs APOE3 genotype-specific and sex-specific gene expression differences in these metabolic pathways were also observed when comparing neurons from individuals with AD to age-matched individuals.
Collapse
Affiliation(s)
- Audra York
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Angela Everhart
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael P Vitek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Kirby W Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Carol A Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
3
|
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry and
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry and
- Department of Chemistry, University of California, Irvine, California 92697-2025; ,
| |
Collapse
|
4
|
Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem 2016; 17:1191-7. [PMID: 27028019 DOI: 10.1002/cbic.201600107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/10/2022]
Abstract
Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qien Li
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Youli Jia
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Hu Y, Ribbe MW. Maturation of nitrogenase cofactor-the role of a class E radical SAM methyltransferase NifB. Curr Opin Chem Biol 2016; 31:188-94. [PMID: 26969410 DOI: 10.1016/j.cbpa.2016.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Nitrogenase catalyzes the important reactions of N2-reduction, CO-reduction and CO2-reduction at its active cofactor site. Designated the M-cluster, this complex metallocofactor is assembled through the generation of a characteristic 8Fe-core before the insertion of Mo and homocitrate that completes the stoichiometry of the M-cluster. NifB catalyzes the crucial step of radical SAM-dependent carbide insertion that occurs concomitant with the insertion a '9th' sulfur and the rearrangement/coupling of two 4Fe-clusters into a complete 8Fe-core of the M-cluster. Further categorization of a family of NifB proteins as a new class of radical SAM methyltransferases suggests a general function of these proteins in complex metallocofactor assembly and provides a new platform for unveiling unprecedented chemical reactions catalyzed by biological systems.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, United States; Department of Chemistry, University of California, Irvine, CA 92697-2025, United States.
| |
Collapse
|
6
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Bauerle MR, Schwalm EL, Booker SJ. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J Biol Chem 2015; 290:3995-4002. [PMID: 25477520 PMCID: PMC4326810 DOI: 10.1074/jbc.r114.607044] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes use the oxidizing power of a 5'-deoxyadenosyl 5'-radical to initiate an amazing array of transformations, usually through the abstraction of a target substrate hydrogen atom. A common reaction of radical SAM (RS) enzymes is the methylation of unactivated carbon or phosphorous atoms found in numerous primary and secondary metabolites, as well as in proteins, sugars, lipids, and RNA. However, neither the chemical mechanisms by which these unactivated atoms obtain methyl groups nor the actual methyl donors are conserved. In fact, RS methylases have been grouped into three classes based on protein architecture, cofactor requirement, and predicted mechanism of catalysis. Class A methylases use two cysteine residues to methylate sp(2)-hybridized carbon centers. Class B methylases require a cobalamin cofactor to methylate both sp(2)-hybridized and sp(3)-hybridized carbon centers as well as phosphinate phosphorous atoms. Class C methylases share significant sequence homology with the RS enzyme, HemN, and may bind two SAM molecules simultaneously to methylate sp(2)-hybridized carbon centers. Lastly, we describe a new class of recently discovered RS methylases. These Class D methylases, unlike Class A, B, and C enzymes, which use SAM as the source of the donated methyl carbon, are proposed to methylate sp(2)-hybridized carbon centers using methylenetetrahydrofolate as the source of the appended methyl carbon.
Collapse
Affiliation(s)
- Matthew R Bauerle
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Erica L Schwalm
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Squire J Booker
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
8
|
Tyihák E, Móricz ÁM, Ott PG, Mincsovics E. STUDY OF TRACE ELEMENTS IN BIOARENA SYSTEM AND IN IN VIVO CONDITIONS. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.907121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ernő Tyihák
- a Hungarian Academy of Sciences, Centre for Agricultural Research, Plant Protection Institute , Budapest , Hungary
| | - Ágnes M. Móricz
- a Hungarian Academy of Sciences, Centre for Agricultural Research, Plant Protection Institute , Budapest , Hungary
| | - Péter G. Ott
- a Hungarian Academy of Sciences, Centre for Agricultural Research, Plant Protection Institute , Budapest , Hungary
| | - Emil Mincsovics
- b Faculty of Horticultural Sciences, Department of Genetics and Plant Breeding , Corvinus University , Budapest , Hungary
| |
Collapse
|
9
|
Boschi-Muller S, Motorin Y. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. BIOCHEMISTRY (MOSCOW) 2014; 78:1392-404. [PMID: 24490730 DOI: 10.1134/s0006297913130026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.
Collapse
Affiliation(s)
- S Boschi-Muller
- Université de Lorraine, Laboratoire IMoPA, UMR 7365 CNRS-UL, Faculté de Médecine de Nancy, BP 184, Vandoeuvre les Nancy, 54505, France.
| | | |
Collapse
|
10
|
Cammack R, Balk J. Iron-sulfur Clusters. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Iron-sulfur clusters are universally distributed groups occurring in iron-sulfur proteins. They have a wide range of cellular functions which reflect the chemistry of the clusters. Some clusters are involved in electron transport and energy transduction in photosynthesis and respiration. Others can bind substrates and participate in enzyme catalysis. Regulatory functions have also been documented for clusters that respond to oxygen partial pressure and iron availability. Finally, there are some for which no function has been defined; they may act as stabilizing structures, for example, in enzymes involved in nucleic acid metabolism. The clusters are constructed intracellularly and inserted into proteins, which can then be transported to intracellular targets, in some cases, across membranes. Three different types of iron-sulfur cluster assembly machinery have evolved in prokaryotes: NIF, ISC and SUF. Each system involves a scaffold protein on which the cluster is constructed (encoded by genes nifU, iscU, sufU or sufB) and a cysteine desulfurase (encoded by nifS, iscS or sufS) which provides the sulfide sulfur. In eukaryotic cells, clusters are formed in the mitochondria for the many iron-sulfur proteins in this organelle. The mitochondrial biosynthesis pathway is linked to the cytoplasmic iron-sulfur assembly system (CIA) for the maturation of cytoplasmic and nuclear iron-sulfur proteins. In plant cells, a SUF-type system is used for cluster assembly in the plastids. Many accessory proteins are involved in cluster transfer before insertion into the appropriate sites in Fe-S proteins.
Collapse
Affiliation(s)
- Richard Cammack
- King's College London, Department of Biochemistry, 150 Stamford Street London SE1 9NH UK
| | - Janneke Balk
- John Innes Centre and University of East Anglia Norwich Research Park, Colney Lane Norwich NR4 7UH UK
| |
Collapse
|
11
|
Mirzahosseini A, Noszál B. The species- and site-specific acid–base properties of biological thiols and their homodisulfides. J Pharm Biomed Anal 2014; 95:184-92. [DOI: 10.1016/j.jpba.2014.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
|
12
|
Ribbe MW, Hu Y, Hodgson KO, Hedman B. Biosynthesis of nitrogenase metalloclusters. Chem Rev 2013; 114:4063-80. [PMID: 24328215 DOI: 10.1021/cr400463x] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | | | | | | |
Collapse
|